

THE

NATURAL HISTORY

OF
PLANTS.

VOL. VI.

THE

NATURAL HISTORY

OF

PLANTS.

BY

H. BAILLON,
PRESIDENT OF THE LINNAEAN BOCIETY OF PARIS, PROFESSOR OF MEDICAL NATURAL HISTORY AND DIRECTOR OF THE BOTANICAL GARDEN of the faculty of medicine of paris.

> LIDRARY GEW YORK
> motanical.
> - akUBあ

VOL. VI.

CELASTRACE Æ, RHAMNACEÆ, PENÆACEÆ, THYMELÆACEÆ, ULMACE Æ, CASTANEACE Æ, COMBRETACE Æ,
RHIZOPHORACEÆ, MYRTACEÆ, HYPERICACE※, CLUSIACEÆ, LYTHRARIACE E, ONAGRARIACEE, BALANOPHORACEA.

LONDON

L. REEVE \& CO., 5, HENRIETTA STREET, COVENT GARDEN.

$$
\begin{aligned}
& \text { QK97 } \\
& B 3 \\
& 1871 \\
& v .6
\end{aligned}
$$

LONDON :
GILBERT AND RIVINGTON, PRINTERS,
ST. JOHN'S SQUARE

NATURAL HISTORY OF PLANTS.

XLVI. CELASTRACEE.

LIERARX NEW YOKE BOTANICAK UARUEN

I. EUONYMUS SERIES.

Euonymus ${ }^{1}$ (fig.1-7) has regular, hermaphrodite flowers in four or five parts. In many species the receptacle is somewhat convex or depressed, surmounted by a large and flattened glandular disk. The

Euonymus verrucosus.

Fig. 1. Floriferous branch.

Fig. 2. Bud ($\frac{6}{1}$).

Fig. 3. Flower
calyx is short, in four or five imbricated divisions. The petals, alternate and longer, are imbricated in the bud. Alternately are inserted, near the corners of the disk, an equal number of stamens. The filaments are free, generally short, subulate, at first incurved; the anthers are bilocular, and the cells, often didymous, open longitudinally,

[^0][^1]inwards, oftener on the margin, or even a little outwards. ${ }^{1}$ Between them rise, more or less, the alternate lobes of the disk, in the centre of which, more or less depressed, the gynæcium is inserted. This is composed of an ovary of 3-5 cells, superposed to the petals when equal in number, and surmounted by a longer or shorter style, with 3-5 lobed stigmatiferous extremity. In the common Euonymus (Euonymus europous) and in many other species, ${ }^{2}$ the

Ewonymus verrucosus.

Fig. 4. Diagram.

Fig. 5. Longitudinal section of flower.
placenta, which is in the internal angle of each cell, supports, at its base, two ascending anatropal ovules, with micropyle directed downwards and outwards. ${ }^{3}$ The fruit is a four-angled capsule, depressed at the summit, one or more of the cells of which, dehiscing along their dorsal suture, contain one or more, rarely two, seeds enveloped in a fleshy and coloured aril, ${ }^{4}$ and enclosing under their coats a fleshy albumen, the axis of which is occupied by an embryo (often green), with an inferior cylindro-conical radical, and large foliaceous cotyledons.

The form of the floral receptacle, the height of the disk, and, consequently, the point of insertion of the stamens, vary in different species of Euonymus. There are species in which the two ovules of each cell, instead of ascending, descend, and then the direction of the micropyle is upwards and inwards ${ }^{5}$; in others, again, the ovules are horizontal, or nearly so. ${ }^{6}$ E. nitidus and nanus have four ascending ovules in each cell, disposed in two vertical series. E. americanus

[^2][^3]and angustifolius have from two to five in each series, and they then become horizontal or nearly so, their raphes facing. In one species from Ceylon, which has constituted the genus Glyphopetelum, ${ }^{1}$ because the base of the four petals presents two more or less decided indentures, there is only one asceuding ovule. In an Eastern Asiatic species, E. alatus, the ovary becomes more lobed with age; it has formed a genus Melanocarya ${ }^{2}$. In another Indian species, with many-ovuled cells, E. grandiflorus Wall., the petals are fimbriate and more or less prominently crested; hence, the generic name Lophopetalum. ${ }^{3}$ But these differences of detail seem to us too unimportant to justify the making of distinct genera, and we shall consider them only as sections of the genus Euonymus. Taken thus, it includes about forty-five species, ${ }^{4}$ arborescent or frutescent, sometimes scandescent. They inhabit

Euonymus curopaus.

Fig. 6. Fruit. chiefly the temperate regions of Europe, Asia, and North America, and are more rare in the tropical parts and in Oceania. The branches are rounded or oftener tetragonal, leaves opposite, petiolate, entire or serrate, persistent, with two small caducous stipules. The flowers are axillary, in cymes, often compound, generally biparous, often few-flowered and sometimes reduced to a single flower.

Pachystima, a small shrub of the western mountains of North America, has almost all the characteristics of Euomymus: leaves opposite, entire or oftener serrate; flowers 4 -merous and 4 -androus. But its ovary has

Evconym? curopers.

Fig. 7. Seed enveloped in its aril ($\frac{2}{1}$). only two incomplete and biovulate cells. The ovules are ascending, and the fruit an oblong capsulc, dehiscing late. Cutha

[^4][^5]entulis, a shrub of Eastern Africa and Arahia, also has its leaves opposite, the inflorescence, the flower of Eumymus; but its ovary, more elongate, and of three hiovulate cells, becomes a capsulary fruit, elougate, trigouous, olituse, its seeds inferiorly dikated into a very thin wing. Microlropis is analogous to Cuthe by the elongate form of its capsular fruit. The seed is enclosed in a fleshy and colored envelope which resembles an aril. But the flower is easily distinguished by its concave receptacle, the absence of the disk, the coriaceous sepals and petals; these last united at their base into a hollow gamopetalous corolla. The ovary, iuferior at the base, has two or three incomplete cells, in which are two nearly basilar ovules. Hicrotropis is Indian; the leaves opposite and coriaceous very much resembling those of Clusiacees, and the corolla, that of the Holly. Fothonu, which grows in Borneo and Ceylon, has very nearly the same organs; the hermaphrodite flowers have five thick petals, imbricate or twisted, and a large pentagonal disk having five depressions in which are inserted the same number of stamens. The three cells of their ovary contain each two series of oblique ovules, an indefinite number in each row, and the fruit is a large polyspermous capsule, with imbricate winged seeds destitute of albumen. ${ }^{1}$

Elceotendion forms the chief of a sub-scries (Eleootendrece) in which the fruit is indehiscent, instead of capsular. The flowers, moreover, 4 5-merous, are constructed like those of Euomymus, and the ovarian cells enclose two ascending ovules. The pericarp is drupaceons, with a uni- or pluri-locular stoue, and the seed is exarillate. The Etcondendrons are trees and shrubs which grow in all the warm comentries of the globe, particularly in the old world. The leaves are often opposite, like those of the Eumymus; but they may also be alternate (which proves the little value of this character). In Cussine, a Cape bush, the leaves are opposite, and the fruit is a berry. The exarillate seels are, like the two ovules in cach cell, descending instead of ascending. Intrtogia, a Cape bush, has also opposite leaves, and in each cell two ovules; but they

[^6][^7]are ascending. The cells are incomplete, and the fruit indehiscent and dry, with exalbuminous seeds. Rlucomu, a bush of tropical America, has leaves placed like those of Elcoodentron, and also the fruit indehiscent, drupaceous, or dry; but the ovarian cells have only one ascending ovule. Ptclidium, a Malagash bush, with opposite leaves, has the 4-merous flowers and 2 -ovalate cells of Eleoulendron; but its fruit is an oval or subcordate samara, with a thick and woody marginal wing. In Zinowicwiu, a Mexiciun shrub, we also observe the opposite leaves, the inflorescence, the pentamerous flower and the biovulate cells of Eleondendion; but the fruit is a compressed linear, oblong simara, surmounted by a membranous, dolabriform, vertical wing a little lateral, and iu particular terminal.

In a small separate group (Pletrostylicet) are placed Plourostylia, bushes of India and Madagascar, which have the opposite leaves aud the floral characters of the preceding genera, but in which the ovary contains only one eccentric cell, with two ascending ovules, and an equally cceentric style. We place near it Cethustreme a bush of the Cape, which has also opposite leaves and an eccentrie and unilocular ovary, but whose parictal placenta supports two vertical and parallel series of ascending ovules.

Celestrus has also given its name to a sub-series (Celastrece) in which the leaves are always altermate (a convenient character to consult in practice, but whose slight value will be marked). They have a couvex plane or concave receptacle, two or more ascending ovules in each cell, like Euonymus, aud like it, capsular fruit and arillate seeds. They are bushes of the hot and temperate regions of the whole world, often climbing or thorny, Cimmasporin cannot be generically separated from it, as was thought, because of the union to the cavity of the receptacle of the base of their ovary ; neither can Putterlickich, Africim plants, whose habit is exactly that of certain Gymnosporite, but whose ovarian cells are pluriovnlate. ${ }^{{ }^{1} \text { The }}$ capsule is voluminous, with a coriaceous partitiou. These plants are to the other species of Celastrus, by the number of their ovules, what Euonymus angustifolius, americunus, ete., are to the species with

[^8]are species such as D. pittosporoides, F. Muelz., which certainly have only two ovules in certain cells.
biovnlate cells. Meytemus, which inhabits the tropical and sub-tropical regions of South America, has been hitherto senerically separated from Celestrus, and it was formerly distinguished from it especially, for sometimes having uniovulate ovarian cells. But ovules often occurring to the number of two, ascendent, and with micropyle exterior, it is impossible to retain this as a distinct genus; it can only form a section of the genus Celastrus.

Scherferie may be considered as Meytemes diminished, inasmuch as the tetramerous flowers are unisexual, diœecious, and the two cells of the ovary enclose only one ascending ovule in each. The short style is dilated in two stigmatiferous lobes, themselves bilobed, and the fruit is: drupaceous, slightly fleshy, with two monospermous stones. They are bushes of the Antilles and of the southern parts of North America; the inflorescence is axillary. Wimmeriu, Mexican shrubs, ressmbling by their organs of regetation certain species of Celustrus of the section Pulterliclict, have also pluriovulate ovarian cells. But the fruit is indehiscent and provided with large membranous wings. In Polycerclite, very curious shrubs of Madagascar, the flowers are also those of Celastrus, with an ovary basally imbedded in the receptacle, and with biovulate cells; the fruit is a loculicidal capsule, with three, four, or five valves; but the flowers, united in small glomerules, are raised to the middle or even to the summit of the upper surface of the jrincipal nervare of the axillate leaf. In Pterocelestros, hushes of Southern Africa and New Caledonia, the infloreserner, indepentent of the leaves, is formed of compound eymes, terminal or axillate, and the flowers are nearly those of Polycurtiu. But the fruit is a loculicidal capsule, with three or six vertical wings, the seed of which is, either surrounded by an aril, or bordered by a marginal wing. Turimiu, trees of tropical Asia, have a dry fruit, with one or two cells dehiscent or indehiscent. Their ovary is sumomeded by a style of two long and slender branches, each terminated by a small capitate stigma. Perrottetia, bushes of Mexico, Cohmbia, and tropical Oceania, with slender inflorescence, and generally much ramified, have nearly valvate or slightly imbricated triangular petals, and an ovary with two cells more or less incomplete, biovulate, often incompletely divided into two half cells by a false partition interposed between the ascending ovules. 'The fruit is dry or little fleshy, nearly globular, indehiscent. Fraunhoferc, a

Brazilian shrub, is distinguished from Perrottetie, whose slender inflorescence it has, only by the configuration of its dry, long, and siliquiform fruit; for its two cells, if frequeutly uniovulate, may also here and there contain two ascending ovules. ${ }^{1}$ Plenekia, Brazilian trees, with leaves of the elder or poplar, have also an clongated, dry fruit; it is a samara, whose vertical and membranous wing recalls that of Ventilago. It encloses one or two cylindrical, elongated, exarillate seeds. The flower is that of a Celustrus, with two ovarian biovulate cells. In Tripterygium, a bush of the island of Formosa, all is also like a Celustrus, with three biovulate ovariau cells ; but the indehiscent and trigonal fruit is said to be furnished with three large membranous wings, and encloses only one seed with a small albuminous embryo.

Texas and Nerr Mexico possess three generic types with alternate leaves, but exceptional on various grounds. One of them is Morlonite, a genus formed of two or three bushes, with numerous small coriaccous persistent leaves, and with small flowers, whose receptacle is very concave, like that of many Rhemnucece. The pentamerous perianth and androcium are there very strongly perigynous, and the inferior orary has five oppositipetalous, incomplete, and biovulate cells. The fruit, imbedled in the coneave receptacle, is dry and indehiscent. Glossopetulon, a prickly bush, with small leaves, the upper ones reduced to seales, has a small cupuliform receptacle, five sepals, five elongated tonguc-shaped petals, and ten stamens disposed in two verticils round a disk, the centre of which is occupied by a unilocular and biovulate ovary. Its fruit is elongated, striate, dry, with one or two arillate and asceuding sceds. l'untite, a thomy, almost leafless shrub, has also pentamerous, but isostemonous flowers, and a gyntecium with five-celled ovary and pluriovulate cells. Its fruit is an clongated apiculate loculicidal capsule, with five bifid valves at the summit. Each encloses one asecnding, albuminous seed, prolonged inferiorly to a narrow and elongated membranous wing.

[^9]uniovulate cells (which have been regarded as five multiovulate cells, divided into uniovulate compartments by numerous false partitions), and by the axis of their gynæcium presenting a a deep depression from the centre of which rises a styliform column almost gynobasic.

II? STACKHOUSIA SERIES.

Stackhousied ${ }^{1}$ (fig. S-11), which has been made a distinct family, has regular and hermaphrodite flowers. The receptacle has the form of a hemispheric cup, the cavity of which is covered with a glandular disk. Outside the more or less salient or often but slightly developed edges of this disk, the lips of the receptacle give insertion to the perianth and to a perigynous androecium, viz, to five imbricated sepals and five petals alternating with them, much longer exserted, free and remaining so in their lower and upper parts, whilst for a variable extent of the intermediate part they approach and unite by their margins in an clongated tube resembling that of a gamopetalous corolla. The limb is imbricated in prefloration. The stamens are the same in number as the petals,

Fig. S. Long, sect. of flower ($\left.\begin{array}{l}9 \\ 1\end{array}\right)$. alternating with them, each formed of a filament free or connate with the corolla and an anther bilocular, introrse, dehiscing by two longitudinal clefts. ${ }^{2}$ Generally two of these stamens, the lateral, are much shorter than the three others. The gynæcium is free to the bottom of the receptacular cup; it is formed of an ovary, often with three, more rarely with two, four or five cells, surmounted by a style divided more or less deeply into stigmatiferous slips equal in number to the ovarian cells. The latter present, near the base of their internal angle, an ascending, anatropous ovule with mycropyle primarily directed downwards and outwards, later turned a liftle laterally. The fruit is dry, often formed of two or three achenes ${ }^{3}$ which finally separate from the central column, itself divided into as many fine threads as there are carpels. They

[^10][^11]contain each a seed, the membranous integuments of which enclose a fleshy albumen. Its axis is occupied by an embryo of equal length with cylindrical and inferior radicle and cotyledons plane or planoconvex and more or less thick.

There are some Stucthursies of which a special genus has been made under the name of Tripterococcus (fig. ?-11). The three achenes ${ }^{1}$ of its fruit are prolonged earh in three vertical wings of which one is dorsal and two are marginal, the latter much more developed than the former (fig. 11). The corolla is generally longer

Stackihousia (Tripterococcus) Brunonis.

Fig. 9. Flower. ($\frac{4}{1}$).

Fig. 11. Fruit (2).

Fig. 10. Long. sect. of flower ($\frac{4}{1}$).
and narrower than that of the other species of the genus, and its pieces are terminated by a long point. Thus composed, the genus Stackhousia contains a dozen species ${ }^{2}$ of herbs, sometimes frutescent at the base, with a woody subterranean rhizome, acrial herbaccous branches, clothed with alternate leaves, and stipules none or very little developed. Its flowers " are terminal, sometimes solitary, oftener collected in simple or compound elusters ; they are iuserted in the axils of alternate bracts and accompanied with lateral bracteoles.

[^12]Toy. Astrol. But. 89, t. 33.-H00к. F. Fl. Tasm. i. 79 ; $\mathrm{Fl} . \mathrm{N} .-\mathrm{Zel} . \mathrm{i} .47$; Man. N.-Zeal. Fl. 42. -F. Muelle Trans. Phil. Soc. Vict. i. 101 ; Pl. lict. ii.t. 14 ; Fragm. ii. 359 ; iii. 86.-Benth. Fl. Austral..i. 405.-Walp. Ann. v. 768, 770 Tripterococeus) ; vii. 585.
${ }^{3}$ White or yellow.

All are of Australian origin except two, one from New Zealand, the other from the Philippine Isles.

III. GOUPIA SERIES.

In Goupio ${ }^{1}$ (fig. 12), the flowers are regular and hermaphrodite, with a small receptacle which supprits at gamosepalons calyx with five divisions imbricated in prefloration, and five alternate petals, much longer, valvate-induplicate in the bud, and reflexed in such a manner that their attenuated summits hang in the interior of the bud like the key of a vault. Within the

Qurpia glabra.

Fig. 12. Long. sect. of Flower $\binom{6}{1}$. corolla, the receptacle bears an annular disk in the form of a short collarette with five salicnt festoons in front of the petals. In the crenatures of the festoons, and consequently in the intervals between the petals, are inserted five stamens, the short filaments of which are attached by their base exactly opposite the internal face of the disk, whence they are free and support each a bilocular introrse anther. The connective terminates in a point covered with straight apical hairs, and its short cells each open by a longitudinal cleft. The gynæcium is composed of a free ovary, but surrounded by the disk, with five oppositipetalous cells, each surmounted by a small eceentric stylary branch. In the interual angle of cach cell is a pacenta bearing two vertical scries of numerous anatropous nearly horizontal or ascending ovules. The fruit is a sinall berry, nearly globular, the cells of which, variable in number, enclose each some asceuding seeds. The latter contain under their integuments a fleshy albumen which envelopes an axilate curved embryo, with cylindrical radicle and elongated cotyledons. Only one Goupia ${ }^{2}$ is known; it is a small tree from

[^13][^14]Guyana, with leaves alternate, petiolate, entire, coriaceous, glabrous, penninerved, reticulate, subtriplinerved at the base, accompanied by two very small caducous stipules. Its flowers are inserted in the axil of the leaves in (spurious) umbels supported by a small common peduncle.

IV. AZIMA SERIES.

In this group, long considered as forming a special fanily under the name of Sulventurucce, we may study first Arimu 1 seturleiz. (fig. 13-15), formerly described as type of the genus Acteyeton. ${ }^{2}$ Its flowers are ordinarily tetramerous and polygamo-diœcious. The calyx, gamoscpalous and valvate, is divided above into four lobes. ${ }^{3}$ The petals, alternate, scssile, narrors and clongated, soon cease to touch at the margins. In the intervals are inserted, on a narrow receptacle, four stameus whose thick free filaments, in the male flower, are inserted round a rulimentary gynecium, and are each surmounted by a bilocular introrse anther dehiscing by two longitudinal clefts. It is stcrile in the female flowers in which the corolla and androcium are united below in a very short tule, with a free superior gynacium, consisting

> Azima (Actegcton) standens.

Fig. 13. Male tlower, perianth removed ($\frac{5}{1}$).

Fig. 14. Female flower.

Fig. 15. Long. sect. of female flower.
of an ovary with two cells, surmounted by a short style, soon divided into two large branches, stigmatiferous within and on the margins.

[^15]Each cell is divided by a false partition, sometimes incomplete, into two cellules containing each one seed nearly basilar, ascending, with micropyle at first directed downwards and outwards, ultimately becoming more or less lateral in consequence of a slight twist. The fruit is a berry enclosing from one to four serds. Under the integuments is found a thick fleshy embryo, ellipsoid, or nearly orbicular, with conical inferior radicle, partly concealed by the auriculate base of the plano-convex cotyledons. In another species of the geuus, A. tetracentha, ${ }^{1}$ type of a section Monctic,? the flowers and fruit are the same, except that the lobes of the style are much less developed, and that each ovary cell contains but one instead of two ovules. Thus constituted, the genus Azimu comprises two or three shrubs, ${ }^{3}$ sometimes sarmentous, natives of the warm regions of Eastern Africa, Southern Asia, and the Iudian Archipelago. The glabrous and tetragonal branches bear opposite, articulate, coriaceous leaves, furnished with two small lateral stipules; in the axils are from two to six spines representing the principal hardened nervures of the first leaves of the axillary branch. ${ }^{*}$ The flowers ${ }^{5}$ are in the axils of the leaves (or of the bracts which take their place), in simple or ramified clusters with decussate divisions, the florets springiug inferiorly from a receptacular cavity at the bottom of which is articulated the attenuated summit of the pedicel.

Beside the Azimus are ranged the Doberus, which grow in the same regions and possess the same organs of vegetation and fructification, but the flower, polygamous and ordinarily tetramerous, possesses within each petal a flattened glandular'scale, while their stamens are monadelphous to near the middle of their filaments, and their superior ovary is reduced to a single uniovalate cell and one or more sterile cellules.

Sulcudoru(fig. 17-20) constitutes a type reduced from the preceding, with hermaphrodite or unisexual, tetramerous, tetramdrous flowers, and only one uniovulate ovarian cell, surmounted by a short stigma-

[^16]tiferous prominence. But the petals, large and very distinctly imbricated or twisted in the bud, are so closely united below by means of the alternate staminal filaments that the latter seem inserted on the Salvadora persica.

Fig. 17. Hermaphrodite flawer.

Fig. 19. Fruit ($\frac{t}{1}$).

Fig. 16. Bud ($\left.{ }^{10}\right)^{\circ}$).

Fig. 21. Embryo.

Fig. 18. Long. sect. of flower.

Fig. 20. Long, sect. of fruit. corolla which appears in adult age like a perfectly gamopetalous envelop (fig. 17, 18). The Sulvadoras, of which one or two species are found in tropical Asia and Africa, have opposite leaves accompanied by small stipules, and numerous small flowers, arranged in simple or more or less ramified spikes.

V. HIPPOCRATE SERIES.

The flowers of Hippocrateal are closely analogous to those of Euonymus, regular and hermaphrodite. The receptacle, more or less flattened, bears a short calyx of five sepals, free, or united only at the base, imbricated or nearly valvate, with five alternate petals, longer, erect or expanded, imbricate or valvate in the bud. The androceium is ordinarily formed of three fertile stamens, each with a free filament, generally eularged near the base and recurved at anthesis, inserted

[^17]under the ovary, within a thick glandular disk, very variable in form, with which the receptacle is covered. The anther is bilocular, ${ }^{1}$ extrorse, often didymous, dehiscing by tro longitudinal clefts which often become confluent in their upper part.2 The ovary is more or Hippocratect obtusifolia.

Fig. 22. Flower (${ }_{1}^{2}$).

Fig. 24. Long. sect. of flower.
less deeply buried in the central cavity of the disk, and its three cells, alternate with the stamens, contain in their inner angle a placeuta bearing two ascendiug ovules with micropyle exterior and inferior, or two or three pairs of ovules in two parallel series, aseendiug or horizontal. The ovary extends upwards in a style, the stigmatiferous summit of which is either not eularged, or dilated in three lobes. The fruit generally consists of three dry carpels, united only near the base, then

Hippucratea ubtusifulia.

Fig. 25. Fruit. dilated in their free part to a compressed hollow, elliptic or orbicular, indehiscent or opening in two lateral valves by a double longitudinal cleft, ventral or dorsal. Each encloses one or many ascending seeds, often prolonged to membranous wings, imbricate in their lower part, whose superior tegumentary cavity contains a thick and fleshy embryo, with cotyledons often united in a single mass, and short inferior radicle. The Hippocratece consist of small climbing trees from all the tropical regions of both worlds. Their leaves are opposite, articulate, simple, accompanied by two small caducous stipules.

[^18]Their flowers ${ }^{1}$ are united in axillary, simple, or more or less ramified, and sometimes umbelliform cymes, with pedieels accompanied by two lateral bracteoles. More than fifty species ${ }^{2}$ are known ; they lave sometimes two or even four or five stamens, two or three of which are sterile and antherless.

The Sulucere (fig. 26,27), plants from the same tropical regions as the Ifippocrutece, often have the same habit and foliage; and their flowers present the same organisation. But their fruit, one or manyseeded, is destitute of wings, globular, or pear-shaped, often coriaccous or ligucous on the surface, pulpy within, with one or several seeds, ordinarily ascending, nude, or partially enveloped in an aril springing

Salacia vividiflora.

Fig. 27. Long. sect. of flower $\left(\begin{array}{l}\frac{2}{2}\end{array}\right)$.

Fig. 26. Floriferous branch.
from the umbilicum, and containing an embryo similar to that of the Hippocratce, or thinner, with cotyledons nearly foliaccous, and, in this case, surrounded by a fleshy albumen of very variable thickness. The plants of this series are therefore very analogous in organisation to those of the Euonymus Series. So far they are scarcely distinct except in the fertile stamens being fewer in number than the petals.

[^19][^20]But the transition is now still more gradual since the discovery in Angola of the Campylostemon, a climbing shrub with opposite leaves, and possessing, it is said, pentamerous flowers, five alternipetalous stamens, with introrse and transverse dehiscence.

VI. BOX SERIES.

The Boxes ${ }^{1}$ (fig. 28-34), long referred to the family of the Euphorliacea, have regular and unisexual apetalous flowers. The calys of the male flower is formed of four sepals, alternately imbricated in prefloration. Superposed to them are four stamens, each formed of a thick filament, long and free, inserted under the four faces of a central cuboid body (rudimentary gynecium?) whose angles project more or less into the intervals, and a bilocular introrse anther dehiscing by two longitudinal clefts. ${ }^{2}$ In the female flowers, the perianth is more ordinarily formed of six imbricate folioles, alternating on two trimerous verticils and surrounding a gynccium, the ovary of which has three cells, each enclosing two ovules, inserted near the top of the internal angle, descending, anatropous, with raphe primarily dorsal and micropyle directed upwards and inwards. The summit of the ovary is generally surmounted by six projections. Three of these, slightly developed, correspond to the partitions, and the three others, more considerable, corresponding to the cells, are stylary brauches, of eceentric insertion, ${ }^{3}$ which diverge and separate at the summit into two short lobes. The internal margin of these styles is traversed by a longitudinal furrow, the reflexed lips of which are covered with stigmatiferous papillæ. The fruit is a tricoccous and loculicidal capsule which at maturity separates

[^21]Ang. Prodr. xvi. p. 1, 13.-Tricera Sw. Prodr. i. 333, t. 7.- Hndl. Gen. n. 5868.-Crantzia Sw. Prode. 38 (bot Lag, nor Nutt, nor Schreb, nor S'cor.).
${ }^{2}$ The pollen grains are spherical with very tine pores.
${ }^{3}$ They approach the centre in a species from the Antilles, B. subcolumaris M. Ara.
into three pannels. ${ }^{1}$ Each of these is sumounted laterally by two distant halves of two different stylary branches and bears on the

Buxus sempervirens.

Fig. 28. Fructiferous branch.

Fig. 30. Male flower, diagram.

Fig. 20. Male flower ($\left.\begin{array}{l}\text { a } \\ 1\end{array}\right)$.

Fig. 32. Female llower, diagram.
middle of its internal surface a partition, on each side of which is generally a descending seed. Its thick smooth integuments enclose an abundant fleshy albumen, surrounding an embryo more or less curved, with superior elongated radicle, and thick elliptical or oblong cotyledons. The large anfractuose cavity of the seminal hilum is

[^22]covered by a fleshy aril, but slightly developed and solely of umbilical origin. ${ }^{1}$

The Boxes are shrubs or small trees, which inhabit Europe, Asia, Eastern Africa, Central America, and especially the Antilles: some twenty species ${ }^{2}$ are known.

Boxus sempervirene.

Fig. 31. Female flower (a $\frac{4}{2}$).

Fig. 34. Dehiscent fruit.

Fig. 33. Long. sect. of female flower.

Their leaves are opposite, entire, without stipules, the organs described as such being only the first pairs of leaves of the branches often reduced to small scalelike or bractiform tongues. Sometimes the axillary buds are multiple and superposed, being more voluminous the higher they are situated. The flowers, most frequently monœeious,

Fig. 35. Inflorescence.

Fig. 36. Male flower in bloom.
are collected in false umbels or in false capitules. The female flowers are sometimes solitary; or one of them more generally occupies the centre of the inflorescence, enveloped by several imbricate bracts, in many series, similar to the sepals, and surrounded by the male

[^23]flowers which are sometimes sessile as in the Boxes proper, ${ }^{1}$ and sometimes pedicellate, as is more frequently the case in certain species from the Antilles of which the genus Tricera ${ }^{2}$ has been made.

Beside the Boxes, this sub-series (Eubuxca) iucludes two genera with alternate leaves and elongated inflorescence, in which the female flowers occupy the base and the male the summit. These are Pachysandict (fig. 35, 36), and Sarcococca. The former are perennial herbaceous plants, of which one species inliabits North America, and the other Japau. Their fruit is finally dry, thin, and dehiscent, and their seeds, analogous to those of the Bores, are furnished with an umbilical aril, which is prolonged somewhat over the summit of the raphe. The latter, all natives of Southern Asia or Java, are shrubs or small trees, with fleshy fruit, and indehiscent.

Simmondsid, a Californian shrub with opposite leaves, of which one or two species are known, constitute by themselves a small subseries (Simmondsice), in which the unisexual flowers have, either a dozen or more stamens arranged in two or three series, or an orary with three uniovulate cells. The fruit is capsular and loculicidal, furnished with a filiform tripartite columella.

In the small group of Stylocerece, consisting of a single genus Styloceras, the organisation of the gynecium and the eccentric insertion of the long styles are fundamentally the same as in the preceding types. But in the female flowers, often furnished with a perianth, the ovarian cells are reduplicated into uniovulate half-cells by false centripetal partitions which advance between the two ovules of the same cell. The male flowers are without a calyx, and consist solely of a variable number $(5-30)$ of nude and central stamens. They are trees of South America, with alternate coriaccons leaves without stipules, and axillary amentiform infloresconce, unisexual or bisexual.

VII. GEISSOLOMA SERIES.

The Geissolomas ${ }^{3}$ (fig. 37, 35) have regular hermaphrodite flowers, monoperianthus and tetramerous. The calyx is formed of four sepals,

[^24]of which two are lateral, one posterior and one anterior, united only in quite their lower part, and imbricated in prefloration. ${ }^{1}$ The androccium is composed of eight stameus, inserted a little below the base of the perianth, arranged in two verticils, four, a little longer, are superposed to the folioles of the perianth. All have a free

Geissolona marginatum.

Fig. 37. Diagram of flower.

Fig. 38. Long. sect. of flower ($\frac{4}{2}$).
subulate filament and an oval introrse bilocular anther dehiscing by two longitudinal clefts. The gynacium, free, superior, is formed of an "wary with four cells, alternate with the sepals, cach surmounted by a subulate stymry hauch, traversed within by a longitudinal furrow and teminated by a stigmatiferous extremity not enlarged. The four branches of the style intertwine in early age. In the internal angle of each cell is observed a placenta bearing two collateral descending ovnles with mieropyle directed upwards and inwards, and the raphe in the neighbourhood of the umbilicum exhibits an incipient arillary thickening. The fruit is a four-celled capsule, accompanicd by a persistent calyx and surmounted by the remains of the style. The cells open at the back by a longitudinal cleft. The seed contained in them is elongate, a little flatteued, with a smooth and glossy testa of a decp colour. ${ }^{2}$ The umbilical region is thickened to a small white aril, which descends as it stretches towards the head of the raphe, and is there lodged in a furrow of little depth and bordered by two vertical lips. The fleshy albumen cuvelopes an axillary embryo of nearly the same leugth,

[^25][^26]with eylindrical superior radicle and linear fleshy cotyletons. The only Gcissoloma known ${ }^{1}$ is a C'ape shrub, with the habit of a Box. Its tetragonal branches are clothed with opposite leaves,? oval or ncarly so, sharp, entire, emriaccous, penminerved, accompanied by two very small lateral stipules. ${ }^{3}$ Its axillary solitary aud nearly sessile flowers are accompanied by from six to eight unequal, decussate, imbricate bracts, the shorter the more exterior they are.

The family Celustrucect was proposed by R. Brown ${ }^{1}$ in 1814. It did not exist with Addason and with A. L. Jussieu, wholeft the genera of this group which were known to them, the former in his Jujube ${ }^{5}$ family, the latter, following his example, in the order of Nerprum. ${ }^{6}$ With both of them, it is true, these generat were comprised in a separate section on account of their alteruipetalous stamens and the configuration of their receptacle. A. P. DE Candollef, ${ }^{\text {n }}$ in 182.5, retaining the Celextrinere as at distinct order of Rhamnere, placed the Staplylene with the former as furming a first tribe, and the Aquifolie (Holly) as constituting a thind. The secomd, Euomyme, alone corresponding to the Cclustrinete of R. Brown and more recent stanlard authors, comprised eight gencra-Eurmymus,
 and Trallience. ${ }^{8}$ Evdeicher ${ }^{9}$ enumerated seventern genera in his Celastrinete, besides some doubtful types, among which are found Cerporlotus (Rosucere) and Phyllonomen (Saxifragucece). In 1562 Bentham and Hooker ${ }^{10}$ remnited in this family forty genera, one of which, Llevea, ${ }^{11}$ of very doubtful affinity, comprised three genera,

[^27][^28]of Ilippocratect, a small family the close affinity of which with the Celestrucee had already been perceived by R. Brown. Since then we have shown ${ }^{1}$ that the genus Cenotic, previously referred to the Rosucect, and the Saldectorect, till then considered as forming a distinct family of plants with gamopetalous corolla, ought to be included in the family of Celastrucece. We have elsewhere conteuded ${ }^{3}$ that the Bores, so long classed with the Euphorliacere, should be separated from them and form, perhaps, diminished types of C'elestracece, with apetalous and diclinous flowers. In a new and recent cxamination of this family we have been confirmed in our opinion by the study ${ }^{4}$ of a small order lately considered autonomous, and formed of a single monotypic genus Geissolome. This plant, hitherto allied with the Pencelcert, though possessing none of the essential characters, is, in our opinion, much nearer the Boxes, intermediate between the latter on one side, and the diplostemonous Celustrucee, such as Glossopetelon, on the other. We have also pointed out ${ }^{5}$ why Stuckhousiu, whose floral organisation is exactly that of the C'clustrucere, could not be separated from them on account of its habit and foliage, secing that the peculiarities it presents in this respect are found in certain genera of the next family, and yet no one has dreamed of separating them from the rest of the family of I'hemmuecel. Cenotiu, which, as we have just said, can be plaeed only among the Celustructe, has also much of the habit of Crumenaria (Rhmmuceer) and of Stucthousite. So we have comprised in this fimily seven series, the general characters of which we thus recapitulate:

1. Euonvales. ${ }^{6}$-Flowers hermaphrodite or polygamous, isostemonous, rarely diplostemonous. Petals free, imbricate or valvate, inserted with the stamens outside the margins of a disk variable in form, conves, plane, or concave. Seeds ordinarily albuminous. Trees or shrubs.-28 genera.
2. Stackhousiee. ${ }^{7}$-Flowers hermaphrodite isostemonous. Petals

[^29]trib. 1.-Celastrece B. H. Gen. 360, trib. 1.Eleodendice Enol. op. cit. 1087, trib. 2.

I Stachhousece R. Br. Flind. Voy. ii. 555.Stackhousiacce Lindl. Introd. ed. 2, 118 ; Veg. Hingd. 589, Ord. 226-Encdl. Gcn. 1106, Ord. 242. -Stackhousicc, Aa. Theor. Syst. Plant. 369, t. 26, fig. 12.-B. H. Gen. 371, Ord. 48.
elongate, united in a tube (and having the appearance of a gamopetalous corolla) for a variable portion of their extent, inserted with the unequal stamens outside the margin of a concave disk. Ovales solitary, ascending. The indehiscent cocci of the fruit separating from the columella. Sceds albuminous.-Herbs with perennial rhizomes.-1 genus.
3. Goupiee. ${ }^{1}$ - Flowers hermaphrodite, isostemonous. Petals free, valvate-induplicate. Ovarian cells equal in number to the petals, pluriovulate. Styles not terminal. -Shrubs with alternate leaves, sub-3-plinervate.-1 genus.
4.-Azmee. ${ }^{2}$ - Flowers polygamo-diœcious, generally 4 -merous, isostemonous. Petals hypogynous, free or urited (in a false gamopetalous corolla). Ovary with $1 \&$ miovalate cavities. Ovule ascending. Fruit fleshy. Seeds without albumen.-Trees and shrubs, with leaves opposite.- 3 genera.
5. Hippocratee e. ${ }^{3}$-Flowers hermaphrodite, with stamens ordinarily less numerous than the petals (generally three), inserted within a highly developed disk. Ovules $\underset{\sim}{2}$ - . Fruit often winged, dry, or fleshy. Seeds without albumen.-Woody plants, often climbing, generally with opposite leaves.-3 genera.
6. Buxe.e. ${ }^{+}$-Flowers unisexual, apetalous, with hypogynous stamens, equal in number to or more numerous than the sepals. Disk 0 . Ovarian cells with 1, ? ovules, descending, and micrupyle interior and superior. Fruit dry or fleshy.-Woody or herbaceous plants, with leaves opposite or alternate.- 5 genera.
7. Geissolone.e. ${ }^{5}$-Flowers hermaphrodite, apetalous, tetramerous, diplostemonous. Disk 0. Ovarian cells with $\underset{\sim}{2}$ ovules, descending, and mycropyle interior and superior. Fruit capsular. Secds albu-minous.-A shrub, with opposite leaves.-1 genus.

[^30]Ord. 224.
${ }^{4}$ Buxec Kl. Tricocc. 12 (part.).-Buxinece Dumort. Ana?. Fam. Nat. 45 (part.).-Plée, Typ. de Ch. Fum. i. t. 74.-Buxacere Kirschleg. Fl. d'Alsuce, ii. 48.-Ag. Theor. Syst, 292 (part.). -H. Bs. Monegr. Buxac. et Styloc. (1859).M. Akg. Prodir. xvi. sect. i. 7, Ord. 180.Euphorbiacea, sect. i. (Gen. 2, 3) A. Ju'ss. Tent. E'uphorb. 13.
${ }^{5}$ Endl. Enchirid. 214.-Geissolomacea Sond. Limaca, xxiii. 105.-A. DC. Prodr. xiv. 191, Ord. 166.

The family thus understood "by concatenation" has many affinitics. By the isustemonous buonymere with ascending ovules, it approaches the Penceacece, from which we shall find it differs chicfly in the organisation of its gynxcium ; and the Rhumnucece, from which we shall distinguish it by one absolute character-the isostemony of the latter, with oplositipetalous stamens. By the Burect, and also by the Hippocrutece and Fuonymece, it presents great resemblances to certain Euphorbiacele. But in the latter, which never have more than one or two descending ovales in each cell, the micropyle is directed upwards and outwards, whilst, in the corresponding cases, it is interior and superior in the Celastracee. The latter also approach the Stapleylere (which are Sapinducece) and the Ilicinell ; but these last have been rightly referred to the families with ganopetaluts corolla; and the furmer, closely allied as they are to the Celastracece, especially the Hippocratea, are distinguished from them either by the independence of their carpels, by their composite leares, by the organisation of their fruit, by the form of their floral receptacle, and consequent mode of staminal insertion, by the isostemony of their aulrocium, or especially by several of these characters combined. The impossibility of establishing, by one or more techuical characters, an absolute difference between the Celastracer and the various groups with which tre have just compared them, arises from the fact that they themselves have not a single character which is not sometimes wanting. When their ovules are definite in number, they are ascending with the micropyle primarily exterior, or descending with the micropyle interior, but they may be neither descending, nor ascending, nor definite in number. Their floral receptacle is often convex or plane, and the insertion is then hypogynuus ; but the receptacle may, here and there, become extremely concave; ${ }^{1}$ which entails the perigyny of the perianth and androcium. Their acrial branches are ordinarily woody; ${ }^{2}$ but this character may sometimes be wanting in the exceptional type of Stackhousite.

[^31][^32]Of the forty-one Genera which we unite in this family and which comprise about four hundred and fifty species, eighteen grow only in the old world and eleven only in the netr. One third of the species belong to the latter. Like the Euomymere, the Buzece and the Hippocruteces are common to both worlds; but Goupiece are found only in South America, Geissolomece only at the Cape, and Stuckhousiet only in Occania, principally in Australia. There are some fiftecu genera of Eunnmmece with an area extremely limited, as Ptelitium and Polycurdice confined to Madagasear, Wimmeria to Mexico, Tiripterygium to Formosa, Glossopetalon, Cenotie, Puchystima, Zinowiectict and Mortomia to Texas and its neighbourhood, Plenckiet and Ficuenhoferel to Brazil, and IItitonjec, C'utheestrum and Cussine to South Africa. Those whose geographical distribution is most surprising, because they belong to regions widely separate from one another, are : the Bowes which grow in temperate Europe and Asia on the one hand, and the Antilles on the other, and have just been observed in Madagasear and to the south of the Recl Sea; Puchysandict, ane of which is American, and another Japmese; Perrottetio which exists in Mexico and Columbia, as well as in Java and the Sandwich Isles; Pterocelustius met with at the Cape and in New Caledonia; Itippocratca and Salucim, species of which are known in the four quarters of the world. The two gencra Celustrus and Eummymus, as we limit them, present the widest geographical distribution. Represented in great number by their section Mrytenus in South America, Celustrus is met with in North America, in China and Japan, in Asia and Oceania, in Madagasear and at the Cape, thence asceuding in Africa to the Canary Isles and even to Spain in Europe. Euonymus comprises gencrally plants of less warm countries; they abound in the North of Europe, of Asia and of America; but they exist also in Malaya, and one Australian species is known. From the tropic of Capricorn they ascend in Europe to Norway and the Aland Isles.

Uses. ${ }^{1}$-The Euonymee aro often rich in bittter and astringent properties, frequently united with acrid substances, purgative or emetic, sometimes slightly stimulant. Celustrus in particular

[^33]often contains plants active or suspected. The bark of C. scondens ${ }^{1}$ has loug been known in North America as emetic, evacuant, narentic. The root of C senegulensis, ${ }^{2}$ used as a gentle purgative, is, at the same time, bitter and, we are assured, astringent (?), and is employed against chronic diarloca. At the Cape there is a species of the same genus bearing the name C . venenatus. ${ }^{3}$ It is likewise dangerous for the severe or poisoncd wounds cansed by its spines. In India an oil extracted from the seeds of C. proniculatus ${ }^{4}$ is used in the treatment of beriberi. C. Oriter ${ }^{5}$ of Japan is enumerated among the medicinal plants of that conntry ; and in Peru, Rulz and Pavon have notified ('. mucorcerpus. ${ }^{6}$ as prolucing savoury alimentary buds and an edible oil extractel from the seeds. C. verticillatus ${ }^{7}$ of the same authors also bears oleaginons seeds in Peru. Maytenus or C. Boarius is an encrgetic evacuant. From its leaves and branches is prepared a decoction applied to burns caused by contact with Rlaus constica. ${ }^{9}$ Its seeds, like those of C. macrocarpus, furnish an edible oil. Many species of Euonymus have analogous properties. E. europaus ${ }^{10}$ (fig. 6, 7), latifolius, ${ }^{11}$ vervucosus ${ }^{12}$ (fig. 1-5), European species, and E. americums., ${ }^{13}$ olme'atus, ${ }^{15}$ and atropurpureus, ${ }^{15}$

[^34][^35]species from the United States, are mentioned as eracuants. They are considered dangerous for small cattle. Their seeds produce nausea and vomiting; formerly an ointment was prepared from them to destroy lice. The bark of E. utropurpureus is highly drastic ; it is prescribed in America as antisyphilitic. From the fruit of E. curopreus an insecticide powder is made, employed locally against moth, to cure seab in horses, to cicatrise nbstinate gangrenous ulcers, to expel tapeworm, etc. In India, the bark of E. tingens Wall. is used for treating affections of the eyes. The Elfordentrat are sometimes astringent; at the Cape, E. crocoum ${ }^{1}$ is employed against the bites of serpents; and in India E. Roxburghiie a against wounds and burns. The drupaceous fruits of many species are alimentary; especially that of E. sphecrophyllum, ${ }^{3}$ a Cape species. The berries of Situciu are also sometimes edible ; in Brazil are eaten those of S. elliplicu, gremulfulie, syluestris, glomerote, ${ }^{*}$ which are sweet and succulent in the interior ; in India, those of S. viridiforu Wight and Roxburghii Wall.; in tropical Western Africa, those of S. senegulensis ${ }^{5}$ and of S. piriformis, ${ }^{6}$ as large as a pear, aromatic and sweet. In Hippocrutec, desiguated by our colonists under the name of Béjugues or Bejucos, it is oftener the seed that is nutritious, as in H. comnesu ${ }^{7}$ in the Antilles, and H. Grahumi Wigirt in India. II. obcordeters is employed as an expectorant in Columbia, and II. velutime ${ }^{3}$ is administered for fever and headache at Sierra Lenne. The Rhucomus are diuretic, to which property they owe the name Myginde ; the best known are the R. Urengoy, ${ }^{10}$ and Crossopetalum, ${ }^{11}$ of Central America. Goupiu glabro Aubl. (fig. 12) is astriugent, and is sometimes prescribed in cases of inflammation and ophthahmia. Cutha ectulis ${ }^{12}$ is a vergetable which, with Cocon and Maté, has been

[^36][^37]comparel to tea as a domestic medicine. It appears to be a stimulant which, according to Forsmini, the Arabs use to dispel sleep. They chew the green leaves, and can then, without fatigue, pass the whole night without sleep. Some travellers, however, say that these fresh leaves are poisonons. Others make it an antidote against the plague. Where this plant is cultivated, they think the plague cannot make victims. Hence, doubtless, the veneration inspired in Yeman by the name of the Sheik $\Lambda_{b u-}$-Zerbin, who there introduced Cuthu. ${ }^{1}$ They go so far as to think that loy carrying a packet of these leaves about the person, they can frequent pestiferous places with impunity. The study of the pretended virtues of hhit? would probably be full of interest. There is indeed another plant of this family which was, not long since, in Europe itself, an object of much greater infatuation. It is the common Box ${ }^{3}$ (fig. 28-34). Who would believe at the present day that the emperor Joserif II. gave a quack l. 000 florins to make public a recipe which performed at miracle in the treatment of intermittent fevers, and which was nothing but an alcoholic tincture of Lond? This appars very analugous to Giniue as a sudorific, aud, consequently, an auti-rheumatic aud anti syphilitic. In too large a dose it is pursative and emetic, exactly like Euonymus. It is in fine a very suspicious, dangerous jlant, and it is very wrong to substitute it for Greundier (I'micul gronetum) as a vermicide, for Sema as a purgative, and especially for llop in making beer. The active principle of B ox, said to be volatile, disappears in the diry wood and in the leaves when subjected to the action of firc. ${ }^{+}$liy distillation orer an open fire, it passes as an empyreumatic and fetid oil formerly extolled as an antidote for rheumatism and epilepsy. The $b_{0, x}$ is one of those plants to which a thousand properties have been attributed: of curing toothache, reddening the hair, ete. The Bux of Muhm ${ }^{5}$ has the same properties. In the Balearic Isles it is considered poisonous, and cases are cited of poisoning by honey collected from its flowers. As au industrial and economic plant, the Box has always been celebrated. It is thought that the Romans introduced it among the Gauls. They have used it continually to decorate their gardens. Cut in a thousand forms,

[^38]in edging, in walls, in the shapes of amimals, in figures, and in arabesques, it has served and serves still for the ormamentation of the most celebrated parks; it will suffice to mention Pliny's villa at Tusculum, the Vatican, the Escurial, and the grounds at Versailles. The branches also figure in our religious festivals. The agriculturist formerly gathered them for manure, chiefly for the vine, and as litter for small cattle. But it is for its yellow wood, heavier than water, and but slightly combustible, with fine and close grain, that the Box is now most useful ; it is frequently employed by cabinet and toy makers, coopers, carvers, turners, musical instrument makers, and chiefly by engravers on wood. Many other Celastracece produce wood employed in industry. Of that of the indigenous Euonymus a charcoal is made, used for sketching and making gunpowder; likewise that of many species of Celustions, as C. servelutus in Abyssinia. The yellow wood of the common Euonymus is used by turners; organ pipes, spindles, knitting needles, skewers, pegs for the shoemaker, and many other objects are also made of it. ${ }^{1}$ The seminal coats of this plant are used for dyeing yellow. In many Celustracea the wood itself furnishes the dye. Euonymurs tingens of the East Indies owes its name to this fact ; it is used to tattoo the skin, and especially the face of the Hindoos. Eleorlendrom crocenm furnishes the Golden Wood of the Cape, also employed in dyeing. The Salventorech have the the same general properties as the Celustracece. The root has an acrid blisterings bark. The trunk of S. persice ${ }^{2}$ (fig. 16-21) has a tonic bark; its leaves are purgative. With the branches conveniently cut, the Arabs clean their teeth. The fruit is edible, having an aromatic and piquant flavour, like that of garden cress (Lepitium sutivum). This plant appears to be the "mustard" (Sinaqis) of Scripture, celebrated for its rapid growth. Many Celustrucece are cultivated in our gardens as ornamental plants: such as Celustrus scendens, one of our rare open-air climbers and many species of Euonymus, notably E. juponicus, so closely resembling the Box in its foliage, and comprising so many and such beautiful horticultural varieties.

[^39]making charcoal. At Ceylon, the wood of Kokonna Zeylanica Tuw. is used for making snuff.
${ }^{2}$ Garcin. Act. Angl. (1749).-L. Amaen. iii. 21.-Lamk, Ill, t. 81.-A. DC. Prodr. xvii. 28. -S. Indica Royle.-Rivina paniculata L.Cissas arborea Forsk.-Embella Grossularia Retz (Arak, Mesualis)

GENERA.

I. EUONYMER.

1. Euonymus T.--Flowers hermaphrodite regular, 4-5-merous; receptacle depressed conical or more or less concave, clothed within with a variable disk, oftener wide, broadly explanate, shortly or sometimes far produced between the petals. Sepals short, imbricate or subvalvate, open or recurved. Petals same in number longer, imbricate, rarely foveolate above, entire, dentate or more rarely fimbriate or facially cristate. Stamens alternate with petals, and equal in number; filaments subulate, generally short, often recurved at apex; authers more or less elongated or oftener short, sub-2-dymous, introrsely or more or less extrorsely rimose. Germen more or less immersed in disk and confluent with it, 8-5-locular or finally sub-$3-5$-lobed; style short, stigmatose apex not incrassate or more or less capitate or lobate. Ovules in cells 1, or oftener 2, ascending, with micropyle extrorsely inferior; or descending, with micropyle introrsely superior ; more rarely $4-\infty$, inserted in two series, oblique or transverse. Fruit eapsular, angular or alate, coriaceous, sometimes echinate, loculicidally $2-5$-valvate ; valves septiferous in the middle. Scets in cells 1,2 , or more rarely ∞, surrounded by a fleshy (coloured) aril ; allumen fleshy; cotyledons of axile embryo broad foliaccous; radicle inferior or more rarely superior.-Erect trees or shrubs, sometimes climbing, oftener glabrous; leaves opposite petiolate (persistent), entire or crenate or dentate; stipules small, caducous; flowers in axillary pedunculate eymes, more larely solitary. (Europe, temperate and warm Asia, Maluyu, Austratiu, temperate North America). See p. 1.
2. Pachystima Rafin.-Flowers nearly of Eumymus, 4-merous; receptacle somewhate concave. Scpals 4 and petals same in number alternate imbricate. Stamens 4 , inserted outside and between the

[^40]lobes of a thick disk; filaments free; anthers introrse; connective rather thick. Germen immersed in base of disk, attenuated to a capitate style with stigmatic apex; cells 2, incomplete alternipetalous. Ovules in each cell 2, ascending ; micropyle extrorsely inferior. Fruit capsular oblong, loculicidally 2 -valvate, tardily dehiscent. Seeds oblong, enclosed in membranous multifid aril; ${ }^{1}$ albumen fleshy ; cotyledons of straight embryo ${ }^{2}$ oblong.-A glabrous under-shrub ; leaves opposite, very shortly petiolate, minutely stipulate, entire or scrrate; flowers in axillary cymes. ${ }^{3}$ (North-western mountainous America. ${ }^{4}$)
3. Catha Forss. ${ }^{5}$-Flowers nearly of Euonymus, 5-merous; receptacle shortly concave. Calyx short 5 -lobed, imbricate. Petals 5 , longer erect, imbricate, finally opening at apex. Stamens 5, alternipetalous, exterior to cupular disk; filaments subulate erect; anthers short sub-2-dymis, introrsely 2 -rimose. Germen free, 3locular ; style short, apex shortly 3-lobed stigmatic ; ovules in cells 2, ascending; micropyle extrorsely inferior. Fruit capsular, linearoblong or subclavate, obtusely 3 -gonal, loculicidally 3 -valved; septa thickened in the middle. Seeds ${ }^{6} 1-3$, elongate, produced below to a thin (arillate?) membranous unequally 3 -angular wing ; testa crustaceous slightly punctulate-rugose; albumen fleshy; cotyleclons of (green) axile embryo foliaccous elliptic ; radicle rather long inferior. - A glabrous shrub; leaves oftener opposite oblong-lanccolate coriaceous, serrate or subentire; stipules mimute ciliolate; flowers in axillary short dichotomous ramose cymes. (Arubia, verom Eustern and Southern Africa. ${ }^{7}$)
4. Microtropis Wall. ${ }^{8}$-Flowers hermaphrodite or polygamous ; receptacle cupular. Sepals 5, unequal, much imbricate, persistent. Petals 5, the alternate longer, imbricate, slightly fleshy or subcoria-

[^41]ceous, coherent at base. Sometimes more rarely () (Peracelestrus ${ }^{1}$). Stamens 5, filaments at base aduate to margin of receptacle, or to base of petals, otherwise free; anthers introrse ovate rather large, 2-rimose. Germen at base adnate to concavity of receptacle, incompletely $2-3-l o c u l a r$, style thick, apex stigmatic, minutely 2-3lobed. Ovules in cells 2, collaterally ascending suberect; micropyle extrorsely inferior. Fruit capsular oblong, surrounded at base by the perianth, tardily dehiscent, \therefore - 3 -valvate. Seed 1 , stipitate oblong, exterior soft or fleshy; ${ }^{2}$ albumen dense fleshy ; cotyledous of straight embryo foliaceous.-Glabrous trees or shrubs; leaves ${ }^{3}$ opposite petiolate entire coriaccous thick, persistent; flowers ${ }^{4}$ in axillary cymes or glomerules. (East Indies. ${ }^{5}$)
5. Kokoona Thw. ${ }^{6}$-Flowers hermaphrodite; calyx cupular shortly lobate crenate or subentire. Petals 5., longer, thick coriaceous glandular-punctate, imbricate or contortcl. Stamens 5, alternipetalous; filaments free short, at base thickly subulate and inserted in as many hollows of a thick obtusely 5 -angled hypogynous disk; anthers thick ovate-acute or oblong introrse, 2 -rimose. Germen immersed in base of disk, B-locular ; style short thick, apex shortly 3 -lobed stigmatic. Ovules in cells ∞, imbricate in 2 -series, obliquely ascending. Capsule (large) subligneous thick oblong, 3-gonal, loculicidally 3 -valvate; valves inwardly septiferous. Seeds ∞, imbricate, produced either above or on both sides to a wide wing ; testa of basilar or medial nucleus coriaccous ; cotyledons of exalbuminous embryo flat obovately cuneate or depressed 3-angular; ${ }^{7}$ radicle inferior, ${ }^{\text {S }}$ or (with 2 -alate sceds and 3 -angular cotyledons), ventral and horizontal very short. Glabrous wide-spreading branched trees; leaves opposite petiolate, entire or obscurely crenate, coriaceous, sometimes punctate beneath; stipules small, caducous; flowers ${ }^{3}$ in axillary pedunculate compound cymes; pedicels 2-bracteate. (Borneo, Ceylon. ${ }^{10}$)

6? Alzatea R. et Pav. ${ }^{11}$ - "Howers hermaphrodite apetalous,

[^42]5-merous; calyx campanulate, 5 -fid. Stamens 5, alternate with sepals ; filaments short free ; anthers subcordate. German free subcordate; style short, apex stigmatic obtuse; cells 2, ∞-ovulate. Capsule obcordate, loculicidally 2 -valvate ; valves septiferous in the middle ; the intermediate septa forming the dissepiment. Seeds co, minged, attached on both sides perpendicular to dissepiment, superposed in duplex order from the base to the apex.-A glabrons tree ; branches ${ }^{1}$ verticillate; leaves opposite and verticillate petiolate wide oborate entire coriaceous; flowers * in terminal many-flowered corymbs. ${ }^{3}$ " Perru. 4)
7. Elæodendron JACQ. F ${ }^{5}$--Flowers of Eumımия ; germen 2-5-locular. Ovules in cells \bumpeq, ascending. Fruit drupaceons ; flesh sometimes scanty ; cells of hard putamen 1-3, 1- or more rarely 2 spermons. Seeds exarillate; testa thinly membranons or slightly fleshy ; cotyledons of thickly or scantily albuminous embryo flat..Small trees or shrubs; leaves (oftener persistent) opposite or more rarely alternate, entire or crenate; stipules minute, caducons; cymose inflorescence ${ }^{6}$ and other characters of Euonymus. (Asia, Malaya, Oceania, and tropical South America. ${ }^{7}$)
8. Maurocenia Mill. ${ }^{\text {s }}$-Flowers nearly of Ehtondendron (or Euonymus) 5-6-merous; stamens exserted. Anthers widely oblong laterally extrorse. Germen oftener 3-locular, free from short disk; ovules in cells 2, collaterally descenling ; micropyle introrsely superior. Fruit baccate; mesocarp finally spongy. Seeds 1- or

1 Purplish.
Sellowish.
${ }^{3}$ A very uncertain genus. Query if of this Order? (I'erhaps of Saxifragacece?)
${ }^{4}$ Spec. 1. A. verticillata R. et Pay. loc. cit.
${ }^{5}$ In Aet. Helvet. i. 36.-J. Gen. 452 (Eleoden-drum)-Gerta. Fruct. i. 274, t. 57.-Lamk. Dict, iv. 537 ; 1ll. t. 132.-DC. Prodr, ii. 10 (part.).-Fndl. Gen. n. $5688 .-1$ B. H. Gen. 367 , n. 28.-H. Bn. Payer Fam. Nat. 325 .-Hook. Fl. Ind. i. 623.-Baiker, Fl. Maurit, 49.-Schrebera hetz. Obs. vi. 25, fig. 3.-Rubentia Commers. ex J. Gen. 378.-Portenschlagia Trattin. Auch. 250.-Neerija Roxb. Fl. Ind. i. 646.-Mystroxylon Eckl. et Zeyr. Enum. 125.-Crocoxylon Eckl. et. Zeym, loc. cit. 123.-Lamarckia Hortul. (ex Exnl.).
${ }^{6}$ Flowers white or greenish.
; Spec. about 35 Vent. Jard. Malm. t. 117.
YOL. VI.
-Wigmt and Arn. Prodr. i. 157.-Wight, Ill. t. 71.-Griseb. Fl. Brit. W.-Ind. 145.-Halrv. and Sond. Fl. Cap. i. 465 (Cassine), 467, 469 (Mystroxylon).-Tul. Ann. Sc. Nat, sér. 4, viii. 106 (Mystroxylon), 107.-Benth. Fl. Austral. i. 402.-Oliv. Fl. Trop, Afr. i. 360.--Reiss. Mart. Fl, Bras. Celastr. 32, t. 5.-H. Bn. Adansonia, xi. 267.-Walp. Rep. i. 536,539 (Cassine); v. 402 403 (Cassine) ; Ann. i. 191 ; ii. 264 ; vii. 37% (Cassine), 581.
s Dict. x. L. Gen. (ed. 1737), n. 244.-C(rs.sine Mill. ex. L. Gen. (ed. ead.), n. 845 (nec. alior.). -J. Gen. 378.-Gektn. Fruct. ii. 72, t. 92.Lame. Dict. i. 651 ; Suppl. ii. 130 ; Ill. t. 130. —DC. Prodr. ii. 11.-B. H. Gen. 363, n. 12.H. Bn. Payer Fam. Nat. 325.
${ }^{9}$ Ovoid or globular; epicarp reddish, finally dark violet; mesocarp white. Said to be generally drupaceous.
few descending exarillate; albumen fleshy; cotyledons of thick (green) embryo ovate or subelliptic.-A glabrous shrub; leaves opposite or rarely alternate, petiolate entire coriaccous, flowers ${ }^{1}$ in axillary 2 -chotomous ramose cymes. ${ }^{2}$ (South Africa. ${ }^{3}$)
9. Hartogia Thuxb. ${ }^{*}$-Flowers (nearly of Euomymus) 45 merous; receptacle slightly concave. Sepals short and petals same in number longer, imbricate. Stamens $4, \bar{\jmath}$, alternipetalous, alternate with an equal number of squamiform lobes of disk; filaments subulate; anthers short, 2 -rimose, finally extrorse. Germen basally imbedded in disk, afterwards free, pyramidal, attenuated to a short style stigmatic oltuse at apex ; cells incomplete 2 , or more rarely 3 ; ovules in each $\mathfrak{2}$, asceuding; micropyle extrorsely inferior. Fruit subelliptic, dry, indehiscent; seeds 1, 2, exarillate ; testa nitid ; cotyledons of exalbuminous embryo subfoliaceons.-A glabrous shrub; leaves opposite petiolate serrate or crenulate coriaceous ; flowers ${ }^{5}$ in axillary cymes. ${ }^{6}$ (South Africa. ${ }^{7}$)
10. Rhacoma L.'-Flowers nearly of Elcodendron, smaller (sometimes 1 -sexual) 4-5-merous; sepals aud petals longer imbricate. Stamens 4, 5, alternate with lobes of disk bordering cupuliform receptacle; anthers short introrse. Base of germen imbedded in receptacle; cells 24 , oftener incomplete; lobes of style same in number short stigmatic. Ovules in cells solitary subbasilar ascending; micropyle extrorsely inferior. Fruit oftener unequally obovoid, dry or drupaceous; tlesh scanty; putamen 1, 2-locular; seeds arillate or exarillate albuminous. Other characters of Elcooden-dron.-Glahrous or pilose shrubs or under-shrubs ${ }^{9}$ oftener slender;

[^43][^44]leaves opposite ur sometimes verticillate or alteruate, stipules minute ; flowers (minute) in slender stipitate (sometimes few-floweredi) cymes. (Central America, Mexico, Chili, ${ }^{1}$ Madagascar?)
11. Ptelidium Dup.-Th. - Flowers of Eumymus, t-merous; receptacle depressed. ('alyx 4 -partite ; folioles decussate, imbricate. Petals 4, oblong sessile, imbricate. Stamens 4, alternipetalous, interior to a short disk and alternate with its lobes; filaments short subulate, recurved at apex ; anthers small subglobose, extrorsely 2 rimose Germen compressed ovate, こ-locular and with short style not thickened at apex. Ovules in cells 2 , inserted a little above the base ascculing; micropyle extrorsely inferior. Fruit dry, thickly samaroid oral-subcordate, mach compressed, produced at margin to a thick venose coriaceous wing, ${ }^{3}$ indehiseent, 1 -d-locnlar. Seed ascending linear-oblong ; "albumen fleshy thin; cotyledons of embryo (green) flat foliaceous; radicle inferior." - A glabrons shrub; leaves opposite petiolate curiaceous entire ; flowers in axillary terminal and ramose cymes. (Madagascar. ${ }^{4}$)
12. Zinowiewia Turcz. ${ }^{5}$-Flowers 5-mer us (of Elconlondion or Euonymus) ; receptacle cupular. Scpals and petals 5, longer imbricate. Stamens $\overline{3}$, exterior to 5 -angular disk; anthers short introrse. Base of germen imbedded in cavity of receptacle, ᄅ-locular ; ovules in cells ${ }^{2}$, collateraily suberect ; micropyle extrorsely superior. Fruit samaroidal, ${ }^{6}$ stipate at base with unculargel calyx, dry, 1-locular, dilated above to an unequal dolabriform, sometimes rather lateral mombranous wing, otherwise dry indehiscent; seed suberect cylindrical glabrous exarillate; embryo ... ?-A glabrous bush; leaves opposite entire (of Elcodendron) ; flowers ${ }^{7}$ in axillary deeply 2 -chotomous ramose cymes. ${ }^{8}$ (Mountainous Mexico. ${ }^{9}$)
${ }^{1}$ Spec. 7, 8. Sw. Fl. Ind. Occ. i, 340 (Myyinda). -H. B. K. Nov. Gers. et Spec. vii. 66 (part.), t. 620.-C. Gar, Fl. Chil. ii. 9 (Myginda).Griseb. Fl. Brit. W.-Ind. 146 (Mruginda). Chapm. Fl. S. Unit. St. 75 (Myginda).--Walp. Rep. v. 402 (Myginda) ; Am. i. 191; vii. 085 (Myginda).
2Gen. Nav. Mradag. 24; Hist. Vég. Iles Afr. Austr. 25, t. 4.-Lamk. Ill.t. 916.--Puir. Dict. Suppl. iv, 597.-DC. Prodr. ii. 11.-Livdl. Gen. n. 5683 - B. H. Gen. 363, n. 11.-Petalocarpum Dur.-Th. Herb. Juss. (ex Tul.). - Seringia Spreng. Syst. i. 441 (uec J. Gay).
${ }^{3}$ Wing sometimes obsolete.

[^45]13. Pleurostylia Wigit and Arn. ${ }^{1}$-Flowers 4, 5 -merous; sepals ${ }^{2}$ imbricate. Petals longer imbricate. Stamens 5 alternipetalous; filaments interior to lobe of disk and alternate with them ; anthers subbasifixed, introrse ; connective incrassately dilated at back (dark). Germen free, immersed at base in cavity of receptacle; style short, apex stigmatic 3 -goual or unequally dilated; cell in germen 1 , eccentric ; ovules in cell 2 , ascenting ; raphe dorsal. Fruit slightly fleshy, finally dry, marked with eccentric scar of style. Seeds 1 or more rarely 2 ; testa coriaccous, exterually clothed with pulp (aril ?); albumen copious; cotyledons of rather large embryo wide suborbicu-late.-A glabrous shrub; leaves opposite entire coriaceous; flowers ${ }^{3}$ in axillary cymes. (East Indies, New Catedonia, Malacca. ${ }^{4}$)
14. Cathastrum T'uncz. ${ }^{5}$ - Flowers nearly of Plrurnstylia; sepals and petals 5 , imbricate. Stamens 5 , exterior to thin 5 -gonal disk; anthers short introrse. Germen free oblique ; style short, apex stigmatic sulpeltate; ovules in cecentric cell $s(6) \delta)$, iuserted in 2 series in parictal placenta, asecnding. Fruit . . . ?- A glabrous shrub; leaves opposite oblong, entire or undulate; stipules minute, flowers in axillary or subterminal compound ramose corymbiform cymes ; pedicels articulate at base, 2-bracteolate. (South Africa. ${ }^{6}$)
15. Celastrus L. ${ }^{7}$-Flowers (nearly of Euom,mms) hermaphrodite or 1 -sexual; receptacle very various in form, shortly convex, subplane or more or less concave cupular or suburceolate. Disk very rarious in form, lining the receptacle, or flattened, 4-5-lobed (Gymmosporiu, ${ }^{8}$) or thick cupular sinuate-lobed (D enhumine, ${ }^{9}$) or more or less concave, obeonical or urccolate. Sepals 4, 5 and petals same in number alternate, longer, inserted at margin of receptacle, more or less peri-

[^46][^47]gynous, imbricate. Stamens 4,5 , alternipetalous, inserted in hollows of disk; filaments free or comnate at base, subulate, sometimes very short (Hectrelienther't) ; anthers subglobular, ovate cordate or oblong, introrsely rimose. Germen situate at bottom of disk (Eucelastrus 1) or more or less deeply confluent with it (Gymnosporita); cells $\underset{\sim}{2}-4$; style more or less elongate, apex stigmatic more or less deeply 2-4lobed. Ovules in cells 1^{2} (1Fteytemes ${ }^{3}$), 2, ascending with micropyle extrorsely inferior, or sometimes $3-\infty, 2$-seriate, oblique or transverse (Pulterlickiu,' Denhemiut ${ }^{5}$). ('apsule various in form, sometimes rather fleshy (S'cytophyllemi ${ }^{i}$), thick osscous (Denhamia Hedraiantheret) or broad submembranous (Putterlichict), loculicidally $2-4$ valved; seeds $1-\infty$, protected by a more or less developed fleshy aril, ${ }^{7}$ albuminous or more rarely (Muytenus) exalbuminous. - Small trees or shrubs ; oftener glabrous; sometimes spinose (Putterlickiu, Gymnosporiu) and glaucesent, sometimes climbing (Eucelustrus); leaves alternate or fasciculate, entire or serrate ; stipules 0 or consisting of a few hairs; flowers ${ }^{8}$ in cymes (Puttertickict, Gymnosporic) or more rarely in compound or cymiferous (Eucelastrus, Denhumia) terminal or axillary racemes. (All warm and temperate regions. ${ }^{9}$)
16. Schæfferia Jaca. ${ }^{10}$-Flowers diocious, 4-merous ; sepals and petals longer obtuse, imbricate. Stamens 4, exterior to generally small disk. Germen (in male flower effete) free ovoid; style short, presently divided into 2 -partite stigmatic lobes; cells 2, l-ovulate;

[^48][^49]micropyle of subbasilar ovule inferior, extrose or finaily lateral. Fruit dry, l-2-pyrenous. Seeds in prene solitary exarillate ; cotyledons of slightly albuminous embryo foliaccous.-Glabrous rigid shrubs ; leaves alternate entire coriaceus (oblong ovate or spathulate) exstipulate ; flowers ${ }^{1}$ axillary, solitary or oftener cymose or glomerulate. (Antilles, New Mexico, Texas. ${ }^{2}$)

17? Wimmeria Schlit. ${ }^{3}$-Flowers nearly of Celastrus, 5merous ; anthers oblong introrse, ə-rimose. Germen pyramidally 3-gonal, confluent at base with thick disk, attcnuated to 3-lobed style dilate stigmatic at apex. Ovules in cells ∞, inserted in 2 -series in the internal angle. Fruit broadly oblong 3-alate, cordate at base, indehiscent ; wings broad membranous; cell 1, 1-2-spermous. Seeds terete narrow linear; albumen fleshy; cotyledons of axile embryo flat oblong-lanceolate.-Small glabrous trees; leaves alternate petiolate exstipulate serrate coriacions; fiowers in axillary cymes. ${ }^{4}$ (Mexico. ${ }^{5}$)
18. Polycardia J^{6}.-Flowers nearly of Celastrus, F-merous; receptacle shortly cupular. Sepals 5, imbricate, and petals same in number louger, contorted, open. Stamens 5, exterior to thick disk adnate to receptacle; filaments subulate; authers short introrse, 2-rimose. Germen half immersed in receptacle, 3-r)-locular; style short, apex shortly lobed stigmatic; ovules in colls $\infty, 2$-seriate ascending; micropyle extrorsely inferior. Capsule ovoid, loculicidally $3-5$-valved; septa seminifcrous within. Sceds ∞, ascending elongate and girt at hase with a decply laciniate aril ; embryo . . .?Shrubs; leaves alternate articulate, entire or spinose dentate coriaceous; flowers few glomerulate, inserted either in the middle of the upper surface of the costa, or in the emarginate apex of the obeordate limb. ${ }^{7}$ (Madagascar. ${ }^{8}$)
19. Pterocelastrus Meissn. ${ }^{9}$-Sepals 5, imbricate, petals 5,
${ }^{1}$ Small, white or grecnish.
${ }^{2}$ Spec. 2. Sloane, Jum. ii. t. 209, fig. 1.Sw. Fl. Ind. Occ. i, 327, t. 7.-Griseb. Fl. Brit. W.:Ind. 146.-Karst. Fl. Culumb. i. 183, t. 91. -Chapm. Fl. S. Unit. St. 76.-Walp. Am. iv. 428 ; vii. 581.
${ }^{3}$ Limnoa, vi. 427.-Endl. Gen. n. 5684.-B. H. Gen. 369, n. 34.
${ }^{4}$ A genus with germen like Celastrus (sect. Putterlickia) distinguished only by its fruit and seeds. Is it not a sect. of Celastrues?
${ }^{5}$ Spec. 2, 3. Hook. Icon. t. 356.-W Walp. Rep. i. 536.
${ }^{6}$ Gen, 377.-Lask. Ill. t. 133,-Pom, Dict.
v. 481.-DC. Prodr. ii. 10.-Endl. Gen. n. 5677.-B. H. Gen. 365, n. 19.-H. Bn. Payer Fam. Nat. 325.-Commersonia Commers. (not Fohst.).-Florinda Noronir. (ex Envl.).
7 A genus as regards tlower similar to Euo= nymus (or Celastress), differing only in the nature of its capsule and seeds and in its inflorescence.
${ }^{8}$ Spec. 2 , the flowers of 1 of which are unknown. Tul. Aun. Sc. Nat. sér. 3, vii. 101,Walp, Ann. vii. 580.
${ }^{9}$ Ge\%. 68; Comm. 49.-Esdd. Gen. n. 5682. -B. H. Gen. 365 n. 21.-Astcrocarpus Eck上. et Zeyh. Enum. 122.
longer much imbricated, often finally recurved at apex. Stamens 5, alternipetalous; filaments inserted between the lobes of 5 -gonal disk and exterior to them subulate; anthers short introrse. Germen immersed in base of disk, 3-gonal-pyramidal, 3-locular; style short, apex stigmatic varivusly 3 -lobed or 3 -gomal. Ovules in cells 2, ascending; micropyle extrorsely inferior. Fruit cupsular submembranous or subfleshy, 3-fi-alate, loculicidally 3 -valved; valves inwardly septiferous in the middle; wings simple or 2 -fid to apex Sceds ascending, cither included in a membranous aril (Asterocarpus), or exarillate compressed and marginately alate (Peripterygiet); albumeu fleshy; cotyledous of (green) embryo linear or elliptic; radicle rather long inferior.-Glabrous trees or shrubs; branches angular ; leaves alternate coriaceous obovate ; stipules very small glanduliform or 0 ; flowers in axilhary or terminal ramose-compound ofteu carymbiform cymes. (South Africe Nerw Celledonic. ${ }^{2}$)
20. Kurrimia Wall. ${ }^{3}$-Flowers hermaphrodite ; receptacle subplane or cupular. Sepals 5, imbricate. Petals 5, longer, imbricate, open-recurved. Stamens 5, iuserted with alternate petals under the margin of disk lining the receptacle; filaments subulate; anthers introrse or laterally or extrorsely dehiscent. Germen inmersed within disk; cells 2 , incomplete, or complete; styles $\stackrel{2}{2}$, filiform, springing from woolly apex of germen, more or less twisted or corrugate in the bud, eapitellate at stigmatic apex ; ovules in colls \therefore, collaterally ascending subbasilar. Fruit capsular coriaceous, indehiscent or \because-valved; seeds elongate, enclosed in fleshy aril; testa smooth glossy ; albumen fleshy ; cotyledons of axile embryo linearclongate. - Glabrous trees; leaves alternate petiolate entirc coriaceous penninerved; veins transverse; stipules deciduous; flowers ${ }^{\text { }}$ in axillary and terminal racemes, simple or ramose. (South Tropical Asia, Malaya. ${ }^{5}$)
21. Perrottetia H. B. K. ${ }^{6}$--Flowers hermaphrodite or polygamodiocious (nearly of Euomymus or Celastrus), 5-merous; petals valvate

[^50][^51]or slightly imbrieate, 3-angular. Germen half immersed in rather thick, oftener 5 -gonal disk and not confluent with it; cells 2, \therefore-ovulate; ovules ascending ; a spurious septum more or less developed between the ovules in each cell (hence cells 4, l-ovulate). Berry subglobose (small) slightly fleshy ; seeds exarillate, externally more or less triate or costate ; embryo small albuminous.-Unarmed shrubs, generally glabrous; leaves alternate petiolate subovate serrulate, sometimes glaudular ; stipules minute, deciduons ; flowers ${ }^{1}$ in sleuder axillary more or less compound eymiferous racemes. (Boll tropical Americas, tropical Dceania. ${ }^{2}$)

22? Frauenhofera Mart. ${ }^{3}$ - Flowers nearly of Perrottetia, 5merous; sepals and petals imbricate, germen 2-locular ; ovules in cells 2, ascending. Fruit ${ }^{+}$cylindrical subsiliquiform, conical at apex ; pericarp fibrous coriaceous, l-locular. Seed 1, suberect, embryo...? -A small softly pubescent tree ; leaves alternate ovate entire or serrulate; stipules very small deciduous; flowers ${ }^{3}$ in axillary and terminal filiform glomeruliferous spikes, bracteolate. (Bruzil. ${ }^{6}$)

93? Siphonodon Griff. ${ }^{7}$ - Hlowers hermaphrodite; receptacle rather thick cupular. Scpals 5 , imbricate. Petals same in number, alternate longer, erect open, imbricate. Stamens 5, alternipetalous, slightly perigynous with perianth; filaments 1 -adelphous at base, complanate, incurved at free apex ; anthers basifixed shortly subsagittate ; cells marginal oblique linear, subextrorsely rimose. Germen immersed at base in hollow of receptacle and adnate to it ; cells ∞ o, ${ }^{8}$ unequally pluriseriate ; ovules in each solitary, aseending; style (?) central (subgynobasically) inserted vertically intruding between the germens, at apex obtuse or subemarginate and surrounded at base with ∞^{9} of unequal papillose squamules. Fruit drupaccous, sparsely

[^52][^53]fleshy, umbonate at apex ; pyrenes ∞, thickly woody compressed, obliquely superposed, 1 -spermous. Seeds glabrous, ascending and descending ; albumen subcornens ; cotyledons of axillary embryo foliaceous suborbiculate; radicle very small. Small glabrous trees; leaves alternate petiolate crenate or serrate; stipules minute caducous ; flowers ${ }^{1}$ axillary few ($\gtrsim 5$) spuriously umbellate; pedicels minutely bracteolate. (Australia, Java. ${ }^{3}$)
24. Plenckia Rets. ${ }^{3}$-Flowers nearly of ('ctustrus (or Eleoden(lron), 5-merous ; germen immersed in disk 2 -locular; ovules in cells 2, collaterally ascending. Fruit dry, indehiscent samaroid; pericarp subglobose, at apex marginally produced equally on both sides to straight linear-oblong membranous venose wing slightly dilated and obtuse at apex. Seed in very elongate cell 1 , suberect cylindrical acute glabrous; testa coriaceous ; albumen fleshy ; cotyledons of thin axile (greenish) embryo linear elongate ; radicle short iuferior.Glabrous trees; leaves alternate long and slenderly petiolate, generally ovate, ${ }^{4}$ serrate veined (poplar like); stipules minute, flowers ${ }^{\text {² }}$ in compound axillary pedunculate cymes. (Brazil. ${ }^{6}$)
25. Tripterygium Ноor. F. ${ }^{7}$-Flowers of Celustires, 5 -merous; anthers broadly oblong. Germen free, 3-goual; style short, apex stigmatose obtusely 3-lobed. Ovules in 3 incomplete cells in pairs ascending. Fruit ${ }^{8}$ dry, apiculate to style, 3 -gonal. 3 -alate; wings widely membranous. Seed in cell 1, solitary subcrect; embryo small, at base of copious fleshy albumen; cotyledons oblong ; radicle inferior.-A glabrous (elimbing ?) shrub; leaves alternate petiolate ovately elongate serrate reuosely striolate ; stipules 0 ; flowers (small) in short terminal axillary racemes. (Formoset. ${ }^{9}$)

26 . Mortonia A. Gray. ${ }^{10}$ - Flowers hermaphrodite; receptacle very concave obconical or subcampanulate and lined with glandulous disk. Sepals, 5 inserted at mouth of receptacle, imbricate at scarious margin. Petals 5, alternate with sepals, sessile coucave croded,

[^54][^55]caducous. Stamens 5, alternipetalous, inserted between as many oppositipetalous loles of the disk, very perigyous ; filaments free ; authers introrse cordately ${ }_{2}$-dymons, 2 -rimose. Germen inserted at bottom of receptacle, inferior at basc only, otherwise free; cells 5, altomipetalous, more "1 lews incomplete; ovules in each 2, basilar; style cylindrical, apex divided into 5 short stignatose branches. Fruit inforior, crowned with ealyx. dry or ernstaceons, iuddhisent, 1 -spermous; testa of exarillate sed membranous; albumen scarce ; cotyleilons of straight embryo oblong.-Very ramose (ericoid) shrubs; laves (ercrgreen) alternate closely packed small coriaceous enervate subsessile; stipules minute glanduliform, caducous ; flowers ${ }^{1}$ in compound terminal racemes; pedicels articulate, bracteolate under the apex. ${ }^{2}$ (Texas, North Mexico. ${ }^{3}$)
27. Glossopetalon A. Grar. ${ }^{*}$-Flowers hermaphrodite; receptacle lined with thin glandulous cupular 10 -crenate disk. Sepals 5, short persistent. Petals 5, alternate, much longer, linear ligulate, marcescent. Stamens 10, 2 -seriate ; filaments insertel in hollows of disk perigynous, short free; anthers short introrse. Germen free, immersed at base in central disk, l-locular; style very short, apex capitellate ${ }^{5}$ stigmatose ; avulus 2, suhbasiliu suberect ; micropyle extrorsely inferin. Fruit dry corianeons (finally 2-valvate?) obliquely ovoid apiculate, much striated longiturinally ; seeds $1, \stackrel{2}{2}$, ascending; funicle short dilated to a small 2 -lobed aril ; testa short ; embryo...?-An extremely ramose and spinose glabrous shrub; branches punctulate; leaves alternate small entire subspathulate, exstipulate ; floral leaves squamiform ; petiole much dilated at base; flowers ${ }^{6}$ axillary perlunculate, bracteate at base. (Texas, Ner Mexico. ${ }^{7}$)
28. Canotia Torr. ${ }^{\text {s }}$-Flowers regular hermaphrodite. Calyx small, glandulously decurrent at hase, fo-fid, valvate, persistent. Petals 5, sessile, imbricated. Stamens 5, alternipetalous, hypogynous ; filaments free subulate, persistent ; anthers cortate shortly

[^56]acuminate, introrsely 2 -rimose versatile (?), deciduous. Germen superior free, thickenel at base to a glandular disk; style eylindrical tubular, apex divided into 5 short recurved alternipetalous 2-dentate lacmix extending inwards to linear stigmatiferous costa; cells 5 oppositipetalons, subincomplete at apee ; ovoles : 6 , inserted in 2 scries in internal angle, anatropous. Capsule terete narrowoblong, styic subulate persistent apiculate, septicidally 5 -valvate; valves 2 -fid at apex ; epicarp thin flesly ; endorarp ligneons. Seeds 1, 2, ascending, produced below to a rertical membranous wins? albumen slightly fleshy; cotrlechons of large axial embryo lateral plane elliptical ; radiele terete inferior.-A glabrous ramo e leafless shrub; branches remotely altermate terete striate produced to long spines marked with squamiform bracts or their dark sears when removed; flowers in short lateral alternate pedunculate fer-flowered cymes; pedicels articulate below the middle ; the fructiferous ones open curved. (New Mexico. ${ }^{1}$)

II? STACKHOUSTE, 2.

29. Stackhousia Sur.- Flowers hermaphrodite resplar ; receptacle concave cupular or hemispherical, lined with a thin disk. Sepals :5, inserted at margin of receptacle, unequal, imbrieate. Petals i, alternate, inserted perigynulustr with the sepals. much longer, free at base, abore united in a more or less elongate tube and at the apex again free and reflexed; imbricate in prefloratinis. Stamens 5 alternipetalous, inserted with the perinuth; filaments free ereet, \therefore alternate shorter ; anthers oblong, introrsely 2 -rimose. Germen free inserted at botom of receptacle sessile, $2-5$-locular ; style erect, more or less deeply ?-5-fid; branches stigmatose within. Ovules in cells solitary subhasilar ascending; micropyle extrorsely inferior. Fruit 2-y-coccous ; cocci indehiscent fiually dry. Smooth or rugose or reticulate, sometimes with hroad rertical wings; mesocarp thin; putamen smooth or rugose; columella central. Seeds asceuding ; testa thin ; albumen fleshy ; embryo axile straight nearly equal in lenseth to the allmmen; cotyledons short; radicle inferior terete.-Peremial herbs ; oftencr with a troody rhizome ; branches herbaceous erect simple ir slightly branched; leaves alter-
 f. Plants, i. 391, n. 6.
mate, entire, linear or spathulate; stipules very small or 11 ; flowers at the top of the twigs in simple or more rarely compound spikes, 3-bracteate. (Australie, New Zeelench, Philippine Isles.) See page 8 .
30. Macgregoria F. Muell. - Flowers hermaphrodite; receptacle very shortly cupular. Sepals 5, imbricate, persistent. Petals 5, alternate, much longer, hardly perigynous, imbricate or tortuous, deciduous. Stamens 5, alternipetalous; filaments very short erect; authers basifixed erect oblong, introrsely 2 -rimose; comective produced beyoud the cells to a small glandule. Germen free 5lobed; carpels distinet subfree; styles comnate in short columella, afterwards free linear-subulate; columu above the germen dilated to a thin calyptrifurm membrane. Orules in carpels solitary suberect; micropyle inferior, finally lateral. Carpels in fruit 3-5, free, indehiseent; albumen of subcrect seed fleshy; cmbryo axile subequal to albumen, cotyledous plano-convex; radicle short inferior.-An annual glabrous herb; leaves alternate linear; flowers in terminal racemes; pedicels bracteate at base. ${ }^{2}$ (Central Australic.)

III. GOUPIE \mathbb{E}.

31. Goupia Aubl.-Flowers hermaphrodite; receptacle short. C'alyx short, 5-lobed ; imbricate in prefloration. Petals 5, alternate, much longer than the calys, induplicate valvate, far attenuated to inflexed apex and subspathulate at summit. Disk cupular, interior to petals, shortly j-lobed; lobes oppositipetalous. Stamens 5, alteruipetalous, inserted in hollows of disk; filaments very short erect; authers subovate iutrorse, :己-locular, 己̈-rimose; comective produced beyond the cells and there very setose. Germen free sessile depressed, 5-locular; cells oppositipetalous; style's 5, eccentric, stellately divaricate arcuately subulate. Ovules in cells ∞, inserted in 2 series on subhasilar placenta in internal angle, ascenting or subhorizontal. Fruit a small subglobose berry. Seeds few ascenting ; testa thick; cotyledous of axile curved cmbryo obloug ; radicle cylindrical ; albumen fleslyy. - A small glabrous tree; leaves

[^57]alternate petiolate, entire coriaccous venose, sub-3-plinerved ; stipules minute, caducous; flowers in axillary perlunculate (spurious?) umbels ; pedicels slender ; buds conical. (Ǵuiunu.) Sec p. 10.

IV. AZIMEN.

32. Azima Linir.-Flowers polygamo-diœcious regular; calyx sacciform membranous, valvate, 4. or unequally-fich. Petals t, often narrow, not continuous at base. Stamens 4, alternipetalous; filaments subulate longer than the corolla (sometimes in female flowers connate with it in a short ring) ; anthers short, introrsely 2 -rimose (in female flower effete). Germen (in male flower rudimentary) free, 2 -locular ; cells sometimes 2 -locellate; style short, apex stigmatose capitate subentire or divided into 2 acute reflesed lobes. Cells l-ovulate (Euれz̈ma) or 2-ovulate (Acteycton) and protected by a spurious septum between each orule. Ovnles subbasilar ascending; micropyle extrorsely inferior (often finally lateral). Fruit baceate globose, 1-4-spermous; testa of erect seed cartilaginous ; cotyledons of exalbuminous flesly embryo suborbiculate plano-convex, aurienlate at base; radicle short inferior concealed in auricules.-Shrubs more or less sarmentous; leaves opposite entire coriaccons; stipules lateral articulate, spines (the coste of the leaves) in axils of leaves 2 or 4-6 (of which 2 are smaller); flowers in axils of leaves solitary glomerate, cymose or racemoso-cymose. (Tropical Asict, Indiun Aichipelago, southern and tropical Eustern Africa, continontal and insular). See p. 11.
33. Dobera J. ${ }^{1}$-Flowers (nearly of Axima) polygamous (or hermaphrodite?) ; receptacle shortly cupuliform. Calyx gamophyllous, valvate, unequally divided or t-lobed. Petals 4, free. Glandules 4, oppositipetalous, flat thick. Stamens 4, alternipetalous ; filaments 1 -adelphous ${ }^{2}$ to middle; anthers elongate subsagittate introrse. Germen (in female flower effete) 2 - 5 -locular ; a cell fertile ; ovule of Azima. Berry ellipsoid, secd ${ }^{3}$ and other characters of Asimu.-Trees ; leaves opposite entire articulate ; stipules very small ;

[^58]flowers ${ }^{1}$ in axillary terminal and more or less ramose spikes, articulate at concave base. (Bustrin Afrien, south-western Asin. ${ }^{2}$)
34. Salvadora Gurcin.3-Flowers (nearly of A末mat hermaphrodite or polygamous; calyx 4 -fil, alternately imbricate, persistent. Petals ${ }^{4}$, lonser and brow contorted or imbricate, closely condunate with each rither to midtle and hy means of the filanents into a spurious gamopetalous corolla. Stamens 4; filaments alternipetalous adherent to corolla at base, above free ; anthers introrse. Germen superior, 1-locular, ${ }^{5}$ apex truncate-sessile stigmatic; ovule in cell 1 (of Azimu). Berry, seed, and other characters of Azima.Small trees or shrubs; leaves opposite simple, sometimes very coriaceous; stipules very small, caducous ; flowers ${ }^{6}$ in simple or more or less compound ramose spikes, bracteate. (S'methern Asin, tropicul and subliopical erestorn und custern continentul mel insulur Africa. ${ }^{7}$)

V. HIPPOCRATEEA.

35. Hippocratea L.-Flowers hermaphrodite ; sepals 5, small and petals same in number, longer, imbricate, or valvate. Stannens 3 (or rarely 5;2,3 anantherous); filaments free or adnate to germen at dilated base, apex attenuated, recurved or reflexed. Authers 2-lncular or t-lucellate, didymous or oblong; cells finally coufluent and extrorsely dehisenent. Disk covering receptacle, broadly explanate, conical or cupular. Germen either free, or confluent with disk, i-locular; style short subulate, apex stigmatic subentire, 3 -lobed or 3 -tid; ovules in cells $2-\infty$, inserted in two series in the intornal angle of the e lls. Carpels of fruit 3 , genceally dry, connate at base, afterwards compressed ur broadly aliform, coriaceous indehiscent or laterally 2 -valvate. Seeds compressed,

1 Whito.
2 Spec. 1, 2, imperfectly known.
${ }^{3}$ Aet. Angl. 1749 (L. Gen. ed. 6, 163).-J. Qen. 84.-Lami. 1ll. t. 8.-Poir. Dict. vi. 483 ; Suppl. v. 28.-Spach, Suit. à Buffor xiii. 335.-Endl. Gen. n. 2177.-Pı. Ann. Sc. Nat. sér. 3. x. 189.Lindl. Feg. Hingd. 652, fig. 436.-l'ayer, Fam. Nat. 14.-Lear. et Dene. Tr. Gên. 453.-H. Bn. Adansonia, ix. 287.-A. DC. Prodr. xvii. 27.
${ }_{4}$ The annular internode disjoined from tho calyx.

5 "Vestigia interdum loculi abortiontis discernere suspicatus sum." (A. DC. loc cit. 28.)
${ }^{6}$ Very small, white or greenish.
7 Spec. 1, 2. L. Spec. i. 178 ; Syst. 889 (Ilivinia).-Forsk. Ey.-Arab. 32 (Cissus),Retz. Obs. iv. 23,24 (Einbelia).-Vahl, Symb. i. 12.-Roxb. Pl. Coromand. i. 26, t. 26 ; Fl . Ind. (ed. Wall.), i. 404 -Wigitt, Ill. ii. 229, t. 181; Icou. t. 1621.-Dene. Jacquem. Voy. Bot. iv. 140, t. 144.- Wralp. Ann. iii. 282.
ascending, dorsally inserted, oftener produced below to a membranous wing and imbricate; raphe produced to a wing from base to apex; testa of muclens coriaceons or crustaceons, sometimes rusose; cotyledons of exalbuminous embryo fleshy conferrminate ; raticle short inferior.-Small trees or climbing shrubs; leares opposite eutire or serrate; petiole articulate; stipules small, caducous; flowers in axillary or terminal simple or oftener compound racemose cymes. (All tropical regions.) See p. 13.
36. Salacia L. ${ }^{1}$-Flowers of IIipporvaten: petals 5 , open imbricate. Anthers 2 -dymous, 2 -locular; cells trimsversely rimose (T ontelcu ${ }^{2}$) or longitudinally dehiscent (Eusalucit, Diplesthes, ${ }^{3}$) sometimes confluent in 1 transversely elongate and finally 1 -rimose cell (Anthodon. ${ }^{\text {. }}$) Gynecium and other characters of Hippocratea. Froit baceate. spherical, ovoid or obovoid, thickly corticate; pulp mucilaginons. Seeds $1-\infty$, oftener angular, sometimes arillate; cotyledons of exalbminons or more rarely (Culyps, ${ }^{5}$) allmminons embryo ${ }^{6}$ thick, free or conferruminate; radicle short inferior.- Erect sarmentons or climbing glabrous shrubs; leaves opposite or more rarely (liphlesthes) alternate, entire, or crenate or serrate; stipules rery small or 0; flowers ${ }^{7}$ axillary, solitary, 2-nate or oftener cymose-os, sometimes in terminal compound cyniferous racemes. ${ }^{8}$ (All tropical regions.")
37. Campylostemon Welw. ${ }^{10}$ - "Flowers (nearly of Iipmocreter) 5 -merous; petals open. Stamens 5 , inserted in scarcely visible disk; filaments incurved; anthers d-locellate, introrsely transversely rimose. Germen 3-locular ; stigma sessile 3 -fid ; orules in cells 6-8, 2-seriate.

[^59]Fruit . . . ?-A scandent glabrous shrub; leaves opposite oblong acuminate serrate ; flowers ${ }^{\text {' in axillary cymes much shorter than the }}$ leaf. ${ }^{2}$ (Angola).

V. bis. OLINIEÆ.

38. Olinia Tuunb.-Flowers hermaphrodite; receptacle very concave surromding the adnate germen below, and fir produced in a tube above; the mouth rome the insertions of the perianth produced externally to a short subentire or obscurely sinuate ring. Sepals $4-5$, inserted in the throat of the receptacle subspathulate (coloured), pilose within at base, valvate. Petals $\pm-\overline{5}$, inserted and alternating with the seprals, short squamiform incurved subcucullate, valrate. Stamens same in mmber oppositipetalons; filaments short inctured; anthers small 2-dymons; comective produced beyond the (introrsely rimose) cells to a cupuliform slandule. Germen inferior, aduate to bottom of receptacle, 3 -5-locular; style erect, apex subclarate stigmatose. Ovules in cells © 3, ascending; micropyle extrorsely inferior. Fruit drupaceous, areolate at truncate apex; putamens 足-5, oftener 1 -spermons. Sced ascending " exalbminoms; testa thinly coriaceous; cotyledons of axile embryo irregularly conrolute ; radicle short inferior."-A glabrous shrub; leaves opposite petiolate entire pemmerved cortaceons. Flowers in short axillary oftener 3-chotomous cymes. (South Africa.)

VI. BUXEÆ.

3!. Buxus T.-Flowers monccions or more rarely diœecions apetalous; male calyx 4-partite; lacinix decussately imbricate. Stamens 4, opposite the petals; filaments free, insertel mider the oftener 4 -gonal rudiment of the gynacium; authers introrse 2 -rimose. Female sepals often 6, 2-seriately 8-nate, imbricate. Staminoies 0 . Germen free 3 -hecular; cells opposite exterior sepals; styles free, very rarely comate at base, oftener separate from each other and peripheric, sulcate within and stigmatose at subhilobed apex ; top of the germen slightly prominent between the styles and turgidly tuber-

[^60]the "Ifippocralce with the rest of the Celastrinee" (B. H.).
culate. Ovules in cells 2 , inserted under the apex in the internal angle, collaterally descending; micropyle introrsely superior. Capsule coriaceous, loculicidal ; columella short or 0 ; valves at apex 2cornute septiferous within; seeds in each 1, 2; testa crustaceous nitid ; hilum concave thickened to an aril within ; albumen copious fleshy ; embryo axile longitudinally subequal to albumen, straight or slightly curved; cotyledons oblong elliptical ; radicle equal or longer superior.-Shrubs or under-shrubs (evergreen); branches often 4gonal; leaves opposite petiolate exstipulate entire penninerved; flowers axillary. The female terminal pluribracteate ; the male inferior spicate (Eubuxus) or oftener racemose pedicellate (Tricera), 1-bracteate; bracts decussate imbricate. (Europe and temperate Asia, tropical eastern Africa, Madagascar, central America, Antilles.) See page 16.
40. Pachysandra Micex. ${ }^{1}$-Flowers nearly of Buxus; male sepals 4. Stamens $4,{ }^{2}$ inserted under the rudiment of the gynæcium. Female sepals 4-6. Germen small oftener 3-locular; styles much longer patulous, stigmatose within and to the subbilobed apex. Ovules (of Buxus) in cells 2 ; micropyle introrsely superior ${ }^{3}$ obturate. Capsules 2, 3-coccous, with 2 persistent styles, 3-cornute; seeds ovoid or subglobose ; testa crustaceous nitid, thickened to hilum produced to an aril ${ }^{4}$ to summit of raphe; albumen and other characters of Buxus.-Perennial herbs; ${ }^{5}$ rhizome and branches herbaceous terete ; leaves alternate petiolate exstipulate subovate coarsely scrrate; flowers terminal or cauline in axils of leaves or bracts spikelike; flowers ${ }^{6}$ alternate; the female few inferior; the male superior more numerous, sessile or very shortly pedicellate, often bracteolate. (North America, Japan. ${ }^{7}$)
41. Sarcococca Lindl. ${ }^{\text {s- }}$-Flowers nearly of Buxus; the male 4androus. ${ }^{9}$ Female sepals 4-6, imbricate in 2 series. Germen 2-3-

[^61][^62]locular ; styles 2, 3, entire or 2-lobed at apex ; ovules 2 (of Buxus) closed to micropyle. Fruit baceate or finally subdry, indehiscent; seeds and other characters of Buxus (or Pachysundia).-Shrubs (evergreen); branches terete; leaves alternate exstipulate entire, penninerved or oftener 3-plinerved to base; flowers ${ }^{1}$ in racemes or axillary spikes; the female inferior. (Southern Asia, Sumatra, Java. ${ }^{2}$)
42. Simmondsia Nurt. ${ }^{3}$-Flowers apetalous, ${ }^{4}$ 1-sexual; male calyx 4, 5-partite, imbricate. Stamens 10-12, 2 -seriate, ${ }^{5}$ inserted in depressed receptacle; filaments free short ; anthers ovately oblong extrorse ; cells adnate, longitudinally rimose. Female calys 4, 5partite; folioles connivent to base dilated concave, attenuated at apex, imbricate, persistent. Germen free shorter than calyx conoid, 3 -sulcate, 3-locular, crowned with 3 thick subulate papilliferous recurved branches of style. Ovules in cells solitary descending; micropyle introrsely superior. Capsules loculicidal, often 1 -spermous, columelliferous in the centre; columella filiform, 3-partite, persistent. Seed descending; "cotyledons of exalbuminous embryo thick; radicle short superior." - Fvergreen shrubs more or less villose; leaves opposite entire coriaceous penninerved exstipulate; flowers axillary; the male in short ramosely glomeruliferous spikes, ${ }^{6}$ bracteate; the female solitary. (California. ${ }^{7}$)
43. Styloceras A. Juss. ${ }^{8}$-Flowers monœcious; the male nude. Stameus on (5-30); filaments free very short, centrally inserted on suboblique receptacle; anthers erect basifixed, introrsely 2 -rimose; apiculate at obtuse apex. ${ }^{9}$ Female sepals $4-10$, unequal, 2- or 3cussate, imbricate. Germen free sessile, 2-3-locular; style $\underset{\sim}{2}, 3$, peripheric or subconnate at base, stout, canaliculate stigmatose

[^63][^64]within. Ovules (nearly of Buxus) in cells 2, descending; micropyle introrsely superior ; each cell finally divided, by a spurious dissepiment, into 2 l-ovulate cellules. Fruit suberose, indehiscent, finally dry subligneous, ᄅ્-6-locellate; cells 1 -spermous. Sceds smooth; testa rather thick; hilum broad; albumen fleshy; radicle of subequal embryo superior terete. - Glabrous trees; leaves alternate petiolate exstipulate, entire coriaceous penninerved, sub-3-plinerved at base; flowers ${ }^{1}$ in axillary spikes; spikes lor 2 -sexual ; male flowers inferior, 1 -bracteolate; female 1 - or pluribracteate. (South Western America. ${ }^{2}$)

VIII. GEISSOLOME雨.

44. Geissoloma Lindl.-Flowers hermaphrodite regular apetalous; sepals 4, connate at base, ovate mucronate, alternately imbricate, persistent. Stamens 8, 2 -seriate; filaments inserted at base of calyx, otherwise free, subulate; oppositipetalous longer; anthers short ovate versatile, introrsely 2-rimose. Germen free, 4 -lobed; cells 4 (2 anterior), alternate with scpals, attenuate at apex to as many free styles, approximating to one pyramidally acuminate, longitudinally sulcate within and stigmatose under acute apex, at first spirally twisted together ; ovules in cells $\mathfrak{2}$, collaterally descending; micropyle introrsely superior. Fruit capsular, 4locular, loculicidal ; seeds in cells solitary or 0 , oblong ancipitally compressed; testa very smooth nitid (dark), dilated at hilum to a small (white) aril continuous with the top of the somewhat thickened raphe and there attenuated and received in a short dorsal furrow of the testa; albumen fleshy; radicle of straight axile embryo (in leugth nearly that of the albumen) superior cylindrical; cotyledons linear fleshy.-A shrub; branches 4 -gonal ; leaves opposite, very shortly petiolate; stipules very minute glanduliform; limb entire coriaceous penninerved, somewhat thickened at margin; flowers axillary solitary, very shortly pedunculate, surrounded at base by 68 bracteoles, larger from the exterior to the interior and decussately imbricate. (Cape of Good Hope.) See p. 19.
[^65]
XLVII. RHAMNACEA.

I. THE BUCKTHORN SERIES.

The flowers of the Buckthoms ${ }^{1}$ (fig. 39-4\%) are regular and hermaphrodite or polygamo-diocious. The concave receptacle has the

Fig. 40. Longitudinal section of male flower ($\frac{5}{1}$).

Fig. 41. Diagram.
form of a deep cup or horn, lined with a thin layer of glandulous tissue, representing the disk, the bottom of which is occupied by the gynecium, while its margin bears the perianth and androcium. The sepals, four (fig. 42) or five (fig. 40, 41) in number, are

[^66]triangular, thick, valvate, and the petals, alternate, small, flat, or spoon-shaped, are induplicated in the bud, or do not even tunch, or replaced by three very narrow tongues, they may, in certain species, entirely disappear, The stamens, equal in number to the petals, are superposed (fig. 41) to and enveloped by them, each being formed of a short filament and a bilocular, introrse anther dehiscing by two longitudinal clefts. ${ }^{1}$ 'The gynecium, inferior but free, consists of an ovary with two, three, or four cells (sterile in the male flower), surmounted by a style more or less decply divided into obtuse lobes and stigmatiferous at the summit. In each cell, at the base of the internal angle, are inserted one or, very rarely, two ${ }^{2}$ ascending, anatrop us ${ }^{3}$ ovules. The mieropyle is at first directed downwards and inwards; but, in consequence of a twist more or less decided, it often becomes lateral, as also the raphe, which is at first dorsal. The fruit is a drupe, at the base of which is seen a circular scar corresponding to the margin of the persistent and nonaccrescent receptacle, enclosing, in a sarcocarp sometimes partitioned, one or four monospermous stones, often thin, membranous or parch-ment-like, often inferiorly incomplete, indehiseent or irregularly dehiscent. The seeds enclose under their integuments* a fleshy allumen which surrounds an embryo with a short inferior radicle. The cotyledons are flat and fleshy (Fromgultu), or foliaceous and recurved at the margin, in such a manuer that one more or less envelops in its hollow the other which bounds internally a large vertical furrow. The albumen is sometimes wanting, and the thick cotyledons then become plano-convex. Mure than fifty species of
-Hook. Fl. Ind. i. G3s.-Alaternus T. Inst. 595, t. 366.-Frangula T. Inst. 612, t. 383.Meeveh. Meth. Suppl. 271.-Gertn. loc. cit. t. 106.-A. Gray, Gen. Ill. t. 167.-Marcorella Neck. Elem. n. 799.-Cardiolepis Rafin. Alog. (182б), n. 2.-? Sciadophila Phil. Lincea, xxviii. 618.-? Phamnella Mra. Ann.Mus. Lugd.Bat. iii. 30 (Microrhanmus Maxim, not A. Gray). ${ }^{1}$ In all the Rhannacece observed, the pollen grains were ovoid, with three folds and in water spherical with three papillary bands.
(H. Монl. Ann. Sc. Nat. sér, 2, iii, 338).
${ }^{2}$ Payer has seen, in the same ovary, one placenta bearing two ovules; another, only one ; and a third, none. Finally each cell contained one orule.
${ }^{3}$ The coat is domble.

4 The external seminal coat is membranous or more or less thick and coriaceous, sometimes the same throughout, sometimes traversed by a deep vertical furrow: In like manner the transverse section of the seed has nearly the form of a crescent, sometimes much curved, sometimes circular or oval. There are, however, all possible transitions between these diverse configurations. The raphe also may be dorsal, lateral, or even ventral. Below, the external coat of the seed often thickens into a sort of aril which may even extend across the void which the putamen presents below. On the organisation of the seeds of Rhamnus and of many other genera of this family, see: Benn. Pl. Jav. Rar. 131.-T. G. Ag. Theor. Syst. 178, t. 15.-Mires, Contrib. i, 230. t. 33.

Rham ${ }^{1}{ }^{1}$ are known. They are trees or shrubs, with alternate leaves, sometimes more Rhamnus pumilus. or less opposite, cadu-

Fig. 42. Flower (${ }_{1}^{4}$) cous or persistent, petiolate, penninerved and entire or dentate, accompanied by two small lateral caducous stipules.
The flowers ${ }^{2}$ are axillary, Fig. 43. Fruit ($\frac{2}{1}$). Fig. 44. Trans. arranged in cymes rarely

sect. of fruit ($\frac{3}{2}$).
solitary, more generally compound or fasciculate, or united in a cluster on a small common axis.

Beside Rhammus are ranged, in this very strictly natural group, genera differing from it ouly in characters of very small value which would otherwise be considered of no importance. Such are Rhumaidium, trees or shrubs of tropical America, which have the leaves opposite or nearly so, and the flowers of the Buckthorns with a receptacle and a disk less deep, an ovary of two uniovulate cells and a fruit described as a berry with membranous endocarp, but which almost always finally becomes dry and thin, indeliscent, nearly ovoid, crowned with an apicule representing the remains of the style, and basally inserted in a persistent receptacular capsule ${ }^{3}$ Karwinstia, native of Mexico and the neighbouring regions of North America, having nearly the leaves of lhamnidium, but fincly punctate; the same flowers aud fruits; but the two or three incomplete cells of the ovary contain each two ascending ovules instead of only one.
'Ihe Emmenospormu of Oceania, with alternate or opposite leaves,
${ }^{1}$ Inér. Sert. t. 5, 8, 9.-Duham. Arbr, ed. nov. iii. t. 8, 10, 13, 15.-H. B. K. Nov. Gen. et Spec. vii. t. 616, 617.-Waldst. et Kit. Pl. Rar. Hung.t. 255.-PPall. Fl. Ross. ii. t. 61, 62. -Jace. Fl. Austr, t. 53.-Vent. Pl. Malmais, t. 34.-Webb. Phyt. Canar. t. 67.-Gren. et Godr. Fl.de Fr. i. 335.-Cav. Icon.t. 181, 182.Bl. Bijdr. 1139.-Hook, Fl. Bor.-Amer. t. 42-44. -Wrght, Icon. t. 159.-A. Gray, Man. ed. 5, 114, 115.-C. Gay, Fl. Chil. ii. 17.-Hanv, and Sond. Fl. Cap. i. 476.-Oliv. Fl. trop. Afr. i. 381.-'Тнw. Enum. p1. Zeyl. 74.-Miq. Fl. Ind.Bat. i. p. i. 645.-Griseb. Fl. Brit. W.-Ind. 99 (Frgngula).-Boiss. Fl. Or. ii. 14.-Seem. Fl. Vit. 11.-Reiss, Mart. Fl. Brers. Rham. 90, t. 29 (Frangula).-Tr. Ann. Sc. Nat. sér. 5, xvi.
379.-Maxim. Rhamn. Or.-Asiat. 6 (ex Mên. Acad. Pétersb. sér. 7, x).-Walp. Anm. i. 192 ; ii. 267 ; iii. 842 ; ए1i. 588.
${ }^{2}$ Greenish, yellow, or whitish.
${ }^{3}$ Macrorhamnus, a tree of Madagascar, with sub-opposite leaves, large 5-7-nerved at the base, with seeds Hattened, otherwise analogous to those of Rhamnus, cannot bo definitely classed because its flowers are unknown. But its drupaceous superior free fruit indicates an alliance with the genera here collected, at the same time it is distinguished from them by its cocci with elastic dehiscence similar to those of the Euphorbiacce, and separating at maturity from a fleshy mesocarp, itself divided into three bifid pannels.
have polygamous flowers, similar to those of the Buckthorns in the obconical form of their receptacle, of the disk which clothes it and of the perianth. Their free ovary, generally bilocular, is succeeded by a capsular fruit the dehiscent cocci of which separate at their base from the receptacle on which remain the seeds, generally of a red colour, smooth and glossy. The receptacle and disk are the same also in Sarcomphahes, unarmed or prickly trees or shrubs from the Antilles, with thick triangular sepals and long-clawed petals. But the stamens have an extrorse anther with very distinct didymons cells, which, notwithstanding the marked incurvation of their tilaments in the bud, occupies (like that of the Mclustomacce) the interval which separates the free gynacium from the coat of the receptacle covered by the disk. The fruit is an ovoid drupe, inserted in a deep receptacular cupule. The alteruate leaves of these plants are often triplinerved and not unlike those of the Lauracere.

Hovenia, trees of temperate Asia, differ from the preceding genera in their floral receptacle being more open, furnished likewise, however, with a thin disk which lines the entire cavity, and in their ovary not being completely free but slightly adherent at the base. They are beautiful trees, with alternate unsymmetrical leaves resembling those of our Limes. The flowers are arranged in cymes the axes of which thicken and become quite fleshy and succulent as the fruit attains maturity (Fig. 45). Noltia, a South African shrub, with dentate leaves, has also an ovary ad-

Fig. 45. Portion of fructiferous inflorescence. hering at its base and surrounded, where it begins to be free, by a disk which, covering the interior of the receptacle with a thin layer, ascends as far as the insertion of the perianth and the andrœcium. But its fruit, decidedly dry, is inserted, nearly to the middle, in a deep cupule formed by the accrescent receptacle, and it separates at maturity into three cocci dehiscing longitudinally within. Colubrina has a fruit similar to that of Noltia ; but in the flower the ovary is still more deeply sunk in the concavity of the receptacle from which it is inseparable, and is surrounded by a thick disk to which it equally
adheres. The Colubrinas are common to all tropical countries; they are erect or climbing shrubs, unarmed, with leaves almost constantly alternate. Cormonema, prickly trees or shrubs of Brazil, with alternate leaves and axillary cymes, have the flower and fruit of Colubrine, from which perhals they ought not to be generically separated. They can always be easily distinguished at the first glance by the presence of two sessile glands at the base of the foliar limb. Alphitonic has nearly the flowers of Colubrina, with the ovary in great part inferior and the fruit sunk to nearly the middle in the receptacular cup. The mesocarp sometimes remains thin and dry to the end ; but it often thickens and becomes fleshy or suberose. In any case it finally separates into cocci dehiscing internally which, like those of the Limmenosperma and of some Colubrina, are basally detached from the receptacle on which the seeds remain. The latter are red and large; but, in the species producing a drupaceous fruit, they are partly enveloped in a well developed aril. The Athitonius are Oceanian, arborescent, nearly always covered with a ferruginous or whitish down, rarely glabrous; they have alteruate leaves and multifloral cymes, axillary or terminal.

Berchemin, erect or climbing shrubs from the warm regions of Asia, Africa, and America, with the general organisation of the precediug genera aud the ovary inferiorly adherent, presents however these differences. The receptacle
Ventilago maderaspatana.

Fig. 47. Long. sect. of flower.

Fig. 46. Flower ($\frac{3}{2}$). is in form a shallow cup, or nearly plane, the margin of which bears the perianth and andrecium. The latter are therefore sometimes nearly hypogynous. The disk which surrounds the base of the ovary, instead of being a thin layer covering the coats of the receptacle, rises in the form of a well or sack the upper opening of which is transversed by the style. The flowers are disposed in clusters of eymes, axillary or terminal and ramified, and the drupaceous fruit with bilocular stone, is accompanied at its base by the receptacular cupule. Sageretia, found in the same regions (except Africa), has also a disk freely raised between the ovary and the receptacle, the free margin of which
is festooned ; but the fruit is drupaceous, with two or three indehiscent stones, and the small flowers are disposed (often in glomerules) on the opposite and divaricate branches of a large compound terminal cluster. Scutia, glabrous shrubs, often armed with hooked spines, growing in Asia, Africa, and South America, has nearly the same flowers, slightly fleshy, as Sarcomphalus, a disk free above but thicker and shorter, often undulated at the margin, and the fruit encloses two or three crustaceous nuts; but the flowers occupy the axils of the thick and coriaceous leaves, and are in umbelliform eymes.

Ceanothus also has nearly the flower of Scutia; but the floral receptacle, in form a shallow cupule, is filled with the short and thick disk, and the long-clawed petals rise in the intervals of the connivent sepals. To the semi-inferior ovary succeeds a drupaceous fruit, but the exocarp of which separates from the inwardly dehisecnt cocci. Ceanothus abounds especially in the southern and western regions of North America and in Chili. They are shrubs with alternate and penninerved or triplinerved leaves. The inflorescence is ter-

Fentilago leioctrpa.

Fig. 48. Fruit. minal in dense and ramified cymiferous clusters.

In Ventilago (fig. 46-48), of which a distinct tribe has sometimes been made, the receptacle is also a hollow shallow cup, filled with the thick flattened and depressed disk; but the semi-inferior and bilocular ovary is succeeded by a dry indehiscent fruit, accompanied at the base by a receptacular cupule, and the persistent style is dilated to a flattened, rigid, membranous and veined wing.

Fig. 40. Fruit. They are climbing shrubs from all tropical regions of the old world. The leaves are alternate, and the flowers collected in simple or compound cymes. Smythec, having the same foliage and flowers, and inhabiting Polynesia and the Indian Archipelago, is distinguished by its oval, flattened, ligneous fruit, dehiscing in two valves following the middle of the two faces. In these two genera the seeds are destitute of albumen.

Paliurus (fig. 49) was formerly ranged among the Jujubes (Zizyplus), and gave its name to a separate tribe becauso its semiinferior ovary was succeeded by an indehiscent fruit with a one- or many-celled putamen. The hard and dry

Fig. 53. Iomg. sect. of fruit pericarp is dilated above into a wide orbicular and horizontal wing. They are prickly shrubs of temperate Asia and the Mediterranean region. The true Jujubes (fig. 50-53) have, like them, spinous branches, and alternate $3-5$-nerved leaves; but the fruit is a drupe with osseous or ligneous putamen, with one or many monospermous cells. The seeds enclose an embryo without, or with a very thin, albumen. They are trees or shrubs from all warm regions of the globe.

Zizyphus vulgaris.

Microrhemmus, a prickly shrub of 'Texas, with small ericoid leaves, solitary flowers and an ovoid drupaceous finally dry fruit, with an osseous monospermous putamen and basilar cupule, has been associated with these; but in our opimion it is only a species of Condetid with the flower destitute of petals, an abnormal type (which might strictly constitute a separate series) whose axillary flowers, solitary or collected in small cymes, have a receptacle in the form of a hollow cup, lined with a thick flattened and pentagonal disk. The corolla is almost always wanting, and the ovary is reduced to a single cell into which a parietal placenta advances, forming an incomplete partition on each side of which is an ascending ovule, with the micropyle turned to the side of the placenta. The fruit is drupaceous. The Comdalias inhabit the warm and temperate regions of the two Americas.

II. GOUANIA SERIES.

Gouania ${ }^{1}$ (fig. 54) consists of Rhamacece with an inferior ovary not free. The floral receptacle has the form of a sae in the concavity of which the adherent gynecium is lodged, whilst the perianth and androcium are inserted near its opening above an epigynous disk with five alternipetalous lobes, often very prominent. ${ }^{2}$ The triangular sepals, five in number, are valvate in the bud. With these alternate five small bowllike petals sheltering in their concavity the superposed stamens. The latter are epigynous, formed of a free filament, inflexed in the bud, and a bilocular anther, with lateral or extrorse dehiscence, sometimes furnished with a salient glandular interior. The ovary has three cells, each containing one ovule of Rhamnus, and is surmounted by a style more

Gowania domingensis.

Fig. 54. Fruit (3). or less deeply divided into three stigmatiferous branches. The fruit is completely inferior and crowned with the remains or scars of the perianth; it is a capsule with three cells and furnished with three wide vertical rounded wings. At the time of the separation of the fruit, these divide into three cocci, in such a manner that the latter are bordered with a thin half-wing. They are otherwise indehiseent and leave on the receptacle a slender columella which divides into six filaments. Each encloses an obovate seed compressed inwards, plano-convex, with a smooth, testaceous external envelope containing a scanty fleshy albumen and an axile embryo, with a short inferior radicle and broad rounded cotyledons, slightly flattened. The Goumnia to the number of some thirty species, ${ }^{3}$ inhabit the hottest regions of both worlds. They are generally climbing shrubs which attach themselves to neighbouring objects by tendrils representing sterile

[^67][^68]branches or axes of inflorescence, spirally twisted. They are glabrous or oftener clothed with down. The leaves are alternate, petiolate, accompanied by two caducons stipules, entire or dentate, penninerved or triplinerved. The flowers ${ }^{1}$ are axillary or terminal, and disposed in ears or simple or ramified clusters arranged in small cymes or glomerules.

Reissekiu, climbing and cirriferous shrubs inhnbiting Brazil, has the flowers of Gonania; but the fruit is furnished with three or four membranous wings, and the pedicellate flowers are disposed in numerous umbelliform cymes, in the axils of the leaves. Ciumenariu has the flower and fruit of Gounnic, with membranous and veined wings; but the organs of vegetation are quite different; for they are nearly all peremnial herbs, with a thick, woody stock, from which proceed aerial reedy branches, leafless or bearing small alternate seanty leaves, accompanied by small ciliate stipules (which makes these plants the analogues of Cenotit and Stuckhorsict among the Celustrucece). The flowers are few in number on slender pedicels, and disposed in clusters of cymes. The Crumenarius are Brazilian plants. One of them is an annual, with membranous, oval, and trinerved leaves. Helinus, on the contrary, consists of sarmentous and hairy shrubs (Asiatic and African), like Goumnio and Reissekiu, but they differ from them as also from Crumenarit, in the absence of wings from the surface of the fruit, which is capsular, inferior, and the three cocci of which open along their internal angle, after they are detached from the columella.

Phylica (fig. 55, 56), which constitutes a sub-scries by itself (Phylicene), differs in habit as much from Goumnie and Crumenteria as these do from each other. Like many other plants from South Africa, to which this genus is limited, they are cricoid shrubs with alteruate coriaccous and often linear leaves, covered with a down generally whitish. The woolly flowers are axillary, rarely disposed in cymes, oftener grouped in ears or terminal capitules. At the bottom of the very concave receptacle, as in the preceding gencra, is a quite inferior adherent ovary, surmounted by an epigynous disk ;

[^69]and the fruit, equally inferior, conformed to that of Helinus, finally divides into three cocci dehiscing internally, but destitute of a columella. Nesiota, a shrub from the island of St. Helena, covered with a whitish down, has opposite broad and oval-oblong leaves, and flowers disposed in loose cymes. The fruit is that of Plylica; but from the superior opening of the deep sac formed by the receptacle emerges the summit of the pericarp proper, which represents a sort of small conical cover. In Lasiodiscus, of which two African species are

Phylica givida.

Fig. 55. Flower (${ }_{1}^{8}$). Fig. 56. Long, sect. of flower. known, one from the Western tropical region, the other from Madagascar, the leaves are also opposite, large, glabrous, and accompanied by wide and long pointed interpetiolate stipules, sometimes free, sometimes more or less conuate in pairs, straight and imbricate with them, for some time persistent. The flowers in axillary cymes, the inferior ovary of which is surmounted by a style articulate at the base, are succeeded by a fruit equally inferior, depressed, slightly convex at the summit and areolate.

Trymatium, Australian shrubs belonging to a distinct subscries, exclusively oceanic, has alternate leaves, gencrally tomentose, with a simple or stellate, whitish or rusty down. The inferior ovary is surmounted by an annular or 5 -lobed disk, surrounded by coloured epigynous sepals, and petals in a hood capping an equal number of stamens. The fruit, inferior, capsular and dehiscent, like that of Nesiota, is generally surmonnted by a conical projection which represents the summit of the ovarian cells; it is the same with that of Pomuderris, Australian and New Zealand shrubs, with numeruus flowers generally disposed, like those of Trymutium, in great ramified groups of cymes; they are distinguished from Trymalium by the absence of petals or their being nearly flat, too little developed to cover the stamens which are superposed to them. Spyritium has the same flowers as Pomaderris and Trymalium, with a capsular fruit altogether inferior,
stamens covered by the petals and flowers united in capitules accompanied by imbricate and persistent bracts. They are from extra-tropical Australia, as are also Ciyptemetre and Stenonthemmm. But in these last two genera, the receptacle is prolonged in a neek above the ovary, before bearing the perianth and androcium. Stenanthemem is distinguished by its infloresconce which is that of Spypritium, whilst Cigptandice has sessile or shortly pedicellate flowers, surrounded at the base by brown persistent bracts. They are solitary along the small divisions of inflorescence or grouped in short ears, intermixed with leaves, but they are never seen disposed in capituliform cymes, as in Spmpritium. Like many other genera of the same family, they are in other respects by no means clearly separated from each other.

III. COLLETIA SERIES.

In Colletia ${ }^{1}$ (fig. 57), the flowers are regular and hermaphrodite. The perianth, often simple, petaloid, ${ }^{2}$ has the form of a tube or small elongated bell, the cupuliform base of which, covered with a disk, supports the gynæcium, and its summit is divided into four or five valvate ${ }^{3}$ lobes. In the hollows are sometimes inserted an equal number of small petals, superposed to which are as many stamens similarly inserted and formed of a free filament ${ }^{4}$ and an introrse anther. ${ }^{5}$ The two cells open by longitudinal clefts which often become confluent above. The cupule of the disk, about which there was recently some question, is oceasionally thin and searcely visible. ${ }^{6}$ Oftener, its upper margin is incurved or involute on the side of the gynæcium. The latter consists of an ovary in great part free, but adnate to the concavity of the receptacle in its lower portion, trilocular, and surmounted by a style the stigmatiferous summit of which is dilated to a three-lobed head.? In each ovarian cell there

[^70][^71]is one ovule inserted at the base of the internal angle, with micropyle ascending and at first directed downwards and inwards but, as in Rhammus, ultimately becoming more or less decidedly lateral. ${ }^{1}$ The fruit, accompanied at the base by a receptacular cupule, ${ }^{2}$ is a drupe, with thin mesocarp, finally dry, and formed of three cocci which separate and open in two valves to liberate each an albuminous seed, analogous to that of the Buckthorns, plano-convex, with a crustaceous testa. Colletia consists of shrubs from the temperate and cool regions (especially the western) of South America, often leafless or with very small leaves decussate, as also the axillary branches, often thickened, spinescent, vertically flattened and generally nearly triangular. ${ }^{3}$ The flowers, axillary and solitary, or collected in few-flowered cymes, are situated under these axillary branches. A dozen species ${ }^{4}$ are known. Formerly the

Fig. 57. Long. sect. of flower ($\frac{1}{2}$). genus included a much larger number ; but it has recently been dismembered of a number of secondary genera which in other respects searcely possessed the value of a section. Sometimes it happens that, the fruit separating into cocei as in Colletict, the disk is attached in the form of a cupule to the bottom of the perianth, and that the opposite and spinous branches are articulate, as in Discariu, natives of South America, New Zealand, and Australia; or the floral receptacle, less deep and obconical, its concavity lined with the disk, supports an open perianth with independent folioles, as in Adolphica infesta, a subaphyllous American shrub, with opposite and articulate spinous branches. In Retenilla, Chilian and Peruvian shrubs, spinous and leafless, the diminishing disk ascends the internal surface of the perianth, and the fruit is a drupe with a 1-3-celled putamen. The same fruit is observed in Telguenea and Trevoa, also from South America, but

[^72][^73]they bear tolerably developed membranous leaves. They are 5 -nerved in Talguenea, the fruit of which is enclosed in the receptacular cupule, and trinerved in Trevoa, the drupe of which is superiorly exserted. In the two latter genera, the calicinal petaloid sac is not accompanied by any glandular thickening constituting a distinct layer belonging to a disk.

The family Rhamnacee was proposed in 1814 by R. Brown. ${ }^{1}$ An order of Buckthorns (Rhami) is doubtless found in the Genera of A. L. de Jussiev ; ${ }^{2}$ but it is scarcely other than the family of Jujubes (Ziayphi) of Adanson, ${ }^{3}$ with the name changed, and some genera of unicarpellar Rosacee which it contained removed. There remain then the Staphylece, the Hicince, the Celastracese, the Brunice, certain Rosacea as Carportetus, some Cornete as Aucuba, some Myrsinee as Samara, etc. R. Brown elearly established that his Rhamnee should comprise only those of the Rhami of Jussiev "which have the ovary more or less adherent to the tube of the calyx, sepals of valvate profloration, and stamens equal in number and alternating with the sepals; an ovary of which each of the two or three cells contains one erect ovule ; an crect embryo, generally situated in the axis of a fleshy albumen or entirely destitute of albumen; the petals to which the stamens are opposite, enveloping the anthers with their concave limb and sometimes wanting." Ad. Brongniart, in a special monograph ${ }^{\text {+ }}$ in 1826 , adopted this family of Rhamnere as conceived by R. Brown, and, after him, A. P. de Candolee, ${ }^{5}$ and it then comprised nineteen genera still preserved, viz.: Paliurus, Ziayphus, Condalia, Berchemia, Ventilugo, Sageretia, Rhamnus, Scutia, Retanillu, Colletia, IIovenia, Colubrina, Ceanothus, Noltia (Willemetia), Pomaderris, Cryptundice, Plylica, Goumia and Crumenuriu. Ten years later, Endlicher, ${ }^{6}$ imbibing the ideas of Reissek, to whom we are indebted for great labours on this family, divided it, after him, into six tribes, and adopted the two new genera Cormonema and Alphitonia of this author (to whom he dedicated a genus

[^74]Reissekia), as well as those his colleague Fexzt ${ }^{1}$ had just established, viz. Trymatium and Spmpiditm, also Itelinus E. Mex., till then remaining in manuscript in herbaria, Ochetophitn of Poeppig, Disceria of W. Huorer, ${ }^{2}$ KaminsFia of Zuccarini, ${ }^{3}$ Adolphia of Meissver, ${ }^{4}$ and Talguenca observed in Chili by Mrers. ${ }^{5}$ The latter, revising in a detailed monograph the entire group of Colletiece, ${ }^{6}$ which then comprised five genera, retains a sixth, Trevor, established at the same time as Talguenea. The number of genera is thus raised to thirtyone. Reisser, studying this family for the Flora Brasiliensis, 7 found there another new type, Rhamnitium; he afterwards established the Australian genus Stenanthemum. ${ }^{8}$ All are adopted in his Gencre by J. Hooker, ${ }^{\text { }}$ who, in the same work, creates the two African types Nesiota and Lasiodiscus, and revives the old generic name Surcomphatus $\mathrm{P} . \mathrm{B}_{\mathrm{R}}$. With him, then, the Rhamnucere number thirty-seven genera, including Smythea of Seemann, ${ }^{10}$ and Microrhamnus of A. Gray, ${ }^{11}$ with us only a Condulia with a corolla. The genera Emmenosperma of F. Mueller ${ }^{12}$ and Macrorkamnus, which we have just proposed, ${ }^{13}$ complete the total of thirty-eight. This number is probably too great, regard being had to the species known. It consists of a group very closely natural in most of its parts, the generic differences of which are frequently of small value; and it is probable that a certain number of genera actually retained may disappear as intermediate species are observed which may serve as natural links between many of them. ${ }^{14}$

Whatever may be the limits of the genera, those of the tribes hitherto adopted have been singularly effaced by the most recent discoveries. The Colleticec represent the series best characterised by habit and organisation of perianth, but among them, Adolphia has

[^75][^76]been signalised ${ }^{1}$ as having sensibly the flower and fruit of Colubrina. This latter genus presents an ovary inferior and, as authors understand, really "adherent" in the greatest portion of its extent. By that, it approaches many of the types with a totally inferior ovary as Reisselia. This is distinguished only by its fruit, equally inferior in its entirety, whilst the receptacular cupule of Colubrina and analogous genera finally envelops only a more or less considerable portion of the pericarp. In other respects Reissckia, in habit, foliage and cirri, is very elosely allied to other types of the Gouaniece series; but it has not the winged fruit; which also deprives the last character of much of its importance. For these reasons, we have been compelled to withdraw from these external characters, borrowed from habit, leaves and pericarp, a great part of the value which has generally been attributed to them, and to reduce the series distinguishing this family to the three following.

1. Rhannef.-Flowers with concave receptacle, cupuliform or much deeper, lined with a thin disk envering its internal surface, or with a thick annular disk which fills it, either around the ovary, or above it. Perianth and andrœcium, perigynous or epigynous, inserted on the margin of the receptacular cup. Ovary free or more gencrally united, inferiorly or to a very variable, sometimes even to almost its entire extent, with the receptacle and disk which covers it, but free in an upper portion however small, which always grows and becomes independent of the receptacle in the fruit. ${ }^{2}$ Fruit dry or drupaccous, indehiscent or dehiscent, sometimes surmounted by a vertical wing. Seed sometimes (Ventilaginece) destitute of albumen. -20 genera.
2. Gounnef - Flowers with very concave receptacle, in form of a sac like a gourd or narrow-necked bottie, covered above the iuferior (and adherent) ovary with an epigynous disk, occasionally very restricted or nought. Fruit inferior, crowned with the remains or scars of the calyx, enveloped ${ }^{3}$ with the receptacular sac, finally dry and divided, with cocei dehiscing within the fruit.-12 genera.
3. Colletiee.-Flowers with cupuliform receptacle, prolonged above to a thin and coloured tube the summit of which is divided into

[^77]margins cut straight and representing even the contour of the receptacle.
${ }^{3}$ Except the extreme summit which often protudes in Pomaderris Trymalium.
calycinal lobes. Petals none or inserted at the buttom of the hollows which separate these lobes. Disk lining the receptacular cupule and not extending beyond it or rising more or less high along the tube (sometimes none or nearly so). Ovary free, except at base adnate to receptacular cupule. Fruit with dehiscent or plurilocular puta-men.-Shrubs with decussate branches, often thickened and spinous, leaves opposite, often very reduced or none.-6 genera.

The thirty-eight genera are very unequally distributed over a vast extent of the globe. Eight of them are met with in both worlds, thirteen are limited to America, and consequently seventeen belong exclusively to the old world. The Buckthorn extends over the widest area and alone has been observed in all parts of the world. In Oceania, it is true, it is represented by a very small number of species, often doubtful; but it extends over nearly the whole of America, and, in the old world, from the Cape to the North of Europe, a belt of about 70°. On the other hand, there are genera of very limited area, as Crumenaria and Reissekia, which are exclusively Brazilian, Helimus and Noltia, special to South Africa, and Nesiota, confined to the island of St. Helena, where, like many other shrubby species, it will doubtless soon cease to exist. The Trymaliece are all Oceanic, and the Phylicece are observed only in South Africa and Madagascar ; Mucrorhamnus belongs to this island. On the contrury there are two distinct centres of vegetation, one in the old world and the other in America, for Berchemia, Sageretia, Scutia, Colulrina, Gouania, and Discarit. The greater part of these latter, however, are American, as also the five other genera of Colletico. In Europe, the family is represented only by the two genera Buckthorn and Jujube.

The affinities of the Rhamnaceo are in great part established by a knowledge of the mode of composition of Jussiev's family of Buckthorns from which they have been detached. The Celastrucece formed the greater portion of this group, and they might appear very far removed from the genera of Rhamnacece then known, because the latter have a concave receptacle, lined with a disk more or less thick, and in the bottom of this receptacular the gynæcium is inserted, while a perianth and a perigynous androcium are inserted on its margin. In this the Rhamnece, as perceived by

Adanson and admitted by many authors after him, closely approach the Rosacece with concave receptacle and single ovary. The Celastracene, on the contrary, at least those which had then been studied, presented a receptacle, either convex or much less concave, and their insertion was nearly that of a great number of hypogynous types. Again, it was thought that the mieropyle, exterior in the ascending ovule of the Celustrucece, became constantly interior in that of the Rhamnacee when it had the same direction. But the study of a large number of more recently discovered types conclusively provis that these two great diffcreutial characters between the two groups are not at all constant. In Perrolletict (notably in Caryospermum), Frouenhofera and in many other genera of the Celastrucece, especially in certain Mortonias, the concavity of the receptacle and the mode of insertion of the perianth and androcium become evidently what they are in a great number of the Rhumnacee, and it has been truly said that apart from the situation of the stamens, the flowers of these Celustracee were altogether those of Rhamnacere. It might be added that the halit, the foliage, the inflorescence, the fruit, the direction of the sced, might be in one point or amother ilentical. Whder these circumstances, to separate the two families, there remains ...ly the oppositipetalous character of the stamens in the Rhumacere, invariably alternipetalous in the Celastracere, a character which we admit to be sufficient, although it would not be so in other natural groups, since we retain the two families as distinct; but we maintain ${ }^{1}$ this consequence of what has just been established: "that the Rhumnacece, oftener perigynous or epigynous than the Celustracece, but not constantly, might strictly and justly be considered a series with oppositipetalous stamens." 'This character suffices to distinguish them from a great mumber of other families, especially from those which constituted the Buckthorn Order of Jussieu. Ad. Brovgnint ? has completely differentiated them. The Ilicince, whose corolla is most ofteu gamopetalous and which, in their descending seed with micropyle interior and superior, have an abundant albumen, with a sma!l apical embryo, are neighbours of the Elenacese and Sepotaces. ${ }^{3}$ The Staphylece, studied in the family of Sidpindaceere, ${ }^{4}$ have neither the andræcium nor the ovarian cells

[^78]always uniovulate or biovulate, nor the invariable simple leaves of the Rhamacece. The Brmiere, by us referred to the family of the Sarifrayucee, have certainly the concave receptacle of most of the Rhumnecere; but besides their stamens being alternate with the petals, the latter are developed, and the ovarian cells, often incomplete, enclose one or many descending ovules. Other Saxifragacecc, as the Inamemelitere and the Cotlece, very closely allied to the Brunice, resemble also certain Rhammece, but they have likewise alternipetalons stamens and at least two desocuding ovules in each cell. The Santulacece, with oppositipetalous stamens, like the Rhammacece, have the ovules iuserted on a placenta centrally free, or descendiug in ovarian cells more or less incomplete. ${ }^{1}$

Uses. ${ }^{2}$ - What we have said of the close affinities of the Celastraceer and Rhamacee agrees with what is known of the properties of both. The latter are bitter, acrid and astringent. According to the species or parts used, the Rhumnucese furnish evacuant or tonic and febrifuge medicines. They are also frequently rich in colouring matters, many of which are employed in the arts. Their wood is analogous in structure and qualities to that of most of the Celustracce. The Buckthorns are, in our country, the most active of the Rhamnacece employed in medicine. The drupaccous fruit of Rhummes cortharticus ${ }^{3}$ (fig. 39-41), wrongly designated as Buckthorn berries, is especially used in country districts as au energetic purgative. They have been employed as hydragogues; they have the inconvenience of greatly irritating the intestinal mucous rimbrane, producing violent colic and sometimes vomiting. They are generally prescribed in the form of a syrup prepared with the green, bitter and nauseous pulp. They are frequently given to animals. Several other species of Rhammus might be substituted for

[^79][^80]this one, particularly the Alder, ${ }^{1}$ the fruit of which is employed in veterinary medicine; Alaternus, ${ }^{2}$ R. saxatilis, ${ }^{3}$ infectorius, ${ }^{4}$ alpinus, ${ }^{5}$ pumilus ${ }^{6}$ (fig. 42). The internal bark of these plants has the same properties, but is less used. Its extreme acridity in certain species, as R. Frangula and sanguineus, causes it to be sought after for the treatment of scab in man and animals. Nearly all are tinctorial. According to the degree of maturity, their fruits furnish various substances yellow or green. Those of R. infectorius may be substituted for the Weld or Yellow-weed of dyers. From them, as likewise from those of R. saxatalis, Alaternus, oleoides, ${ }^{7}$ buxifolius ${ }^{8}$ and amygdalinus, ${ }^{9}$ the still de grain, a yellow colour used by painters, is prepared. The Chinese green or lo-kao, so highly esteemed, is extracted from two species of Rhammus, which Decaisne considered should be described as new, under the names of R. chlorophorus and R.utilis. ${ }^{10}$ Some parts of the Buckthorns have been described as astringent, particularly the leaves of Alaternus. From the branches is prepared a charcoal sometimes used in the manufacture of powder and resembling that of Euonymus. Those of Paliurus australis ${ }^{11}$ (fig. 49) furnish firewood in the south of Europe, where this shrub is planted to form impeuctrable hedges. Very solid canes are made from them, on the thorns of which figs are exposed to dry. The seeds, formerly extolled for cough,

[^81][^82]have been used for dressing burns. ${ }^{1}$ A decoction from the crushed fruit is prescribed for chronic diarrhœa, laxity, and as a diuretic. It is, in fact, an astringent plant; its root serves for the same purposes. There are many other Rhamnacece which likewise contain tannin and are astringent. Sageretia theezans, ${ }^{2}$ which supplies the place of tea as a beverage for the Chinese poor, owes its qualities in a great measure to its slight astringency. Colubrina asiatict ${ }^{3}$ is employed in Polynesia as a local remedy for wounds, hastening their cicatrisation. In Chili Trevoa trinervis ${ }^{4}$ has the reputation of curing wounds and abscesses. Discaria fobrifuga ${ }^{5}$ owes its specific name to the fact that the Brazilians consider it salutary in the treatment of tertiary fevers. In Rio Janciro, especially, a bitter extract of the bark is employed as a tonic and digestive. In Brazil again, Condalia infectoria, ${ }^{6}$ a tan-bearing plant, is used to dye black and brown. In Chili Retanillet Ephedret ${ }^{7}$ and obcordete ${ }^{8}$ are also considered astringent and tonic. Goumia domingensis ${ }^{9}$ (fig. 54), of the Antilles, has analogous properties. A stomachic and tonic juice is extracted from its fruit. From its bitter wood, reputed as antiseptic, a dental cure is prepared, the use of which, it is said, hardens the gums. The North American Ceanothus is also frequently sought after, as an astringent. C. americamus ${ }^{10}$ from the leaves of which a digestive infusion, under the name of New Jersey tea, is prepared, has a reddish, bitter, tinctorial root, extolled by the Indians as a sovereign remedy against fevers, aphtae, angina, syphilitic accidents, dysentery and the ulcerations of scarlatina. C. discolor ${ }^{11}$ has an astringent bark, and is equally an antidote to intestinal flux. ${ }^{12}$ Beside these properties others are noted which oft appear contra-

[^83]dictory. Colletia spinosa ${ }^{1}$ passes in Chili and Brazil as a purgative wood from which is prepared a tincture, prescribed against fever fits, under the name of estratto alcoholico de Quina. C. cruciata² (fig. 57), feroc. ${ }^{3}$ and Cruzerillo ${ }^{+}$are employed by Chilian physicians as purgatives; it is the wood that is used. Berehemier lineuter ${ }^{5}$ is reputed in China as a hydragogue; its roots chiefly are useful in the treatment of dropsy. Hovenia dulcis ${ }^{6}$ is, in the same country and in Japan, considered salutary in asthma. The over-developed axes of the inflorescence, which become succulent at the period of the maturity of the fruit (fig. 45), are especially used. They are caten with pleasure, their flavour being nearly that of dried grapes. They are believed to dissipate drunkenness produced by the abuse of saki, a kiud of beer prepared from fermented rice. In Abyssinia, Rhcmmus incbrians ${ }^{7}$ forms part of a kind of beer (mead) in which its litter bark supplies the place of hops. In Guyana Colubrina formentum ${ }^{8}$ orves its name to the part in fermentation played by its bitter bark in sweet liquids to which it is added. In Hindostan, an ointment is prepared from the leaves of Scutia circuncissa, ${ }^{9}$ the application of which is supposed to hasten accouchement.

The drupaceous fruits of the Jujubes appear very different in their properties from the preceding genera. The pulp is sweet, mucilaginous, scented, slightly acid or astringent. It is considered pectoral, and should form part of Jujube paste, but gum and some aromatic substances are too often substituted. The true Jujubes of commerce are the fruit of Zizyphus culyuris ${ }^{10}$ (fig. 50-53), a Syrian species, now cultivated in the Mediterranean region of Europe. Z. Jujubu, ${ }^{11}$ a species considerably different, belonging to India and

op. cit. 805.
${ }^{9}$ S. indica AD. Br. Rhamn. 56.-Rhamnus circumcissus L. F. Suppl. 152.-Ceanothus circuncissuls Gertn. Fruct. ii. 111, t. 106.
${ }^{10}$ Lamk. Dict. iii. 316 ; Ill.t. 185, fig. 1.DU. Prodr. ii. 19, n. 1.-Lindl. Fl. Méd. 165.Mér. el Del. Dict. Mat. Méd. vii. 1010.--Rev.
 Fl. de Fr. i. 334.-CAz. Pl. Médic Indig. (éd. 3), 542.-Guib. op. cit. iii. 536, fig. 721.-Z. sativa Desf. Avbr. ii, 873.-Duham, op. cit. iii. t. 16 (not Gekrin.).-Rhamnws Zizyphus L. spec. 382 (Chicourlier, Guindourlier, Epine à cerises, Croc de chien).
${ }^{1 I}$ Lamk. Dict. iii. 318.-DC. Prodr. n. 21. -Rhamnes Jujuba L. Spec. 282 (Kool, Bier, Bengha).

China, ${ }^{1}$ bears alimentary fruit, but it does not reach this country ; and, besides, though edible, it is much less swect and agreeable to the taste than our true jujubes. They are to the Tudians what the drapes of Z. Lotus, ${ }^{2}$ the Sada of the Africans, and, according to Desfontaines, the tree Lotus of the ancients, are to the lotus-eating tribes of Lybia. In Egypt and Arabia the fruit of Z. Spina Christi ${ }^{3}$ is eaten ; in Senegambia those of Z. mucronate, and Z. or thucantha ${ }^{5}$; in India those of Z. nupect, ${ }^{6}$ Nitida, ${ }^{7}$ and Enmplia; ${ }^{8}$ in Cochin China that of Z. agrestis ${ }^{9}$, and that of $\%$. mouritiemu ${ }^{10}$ in Mauritius. The fruit of the Indian Z. Xylopyrue ${ }^{11}$ is insipid and not agreeable. That of Z. Joazeiro ${ }^{12}$ is but little appreciated in Brazil, although the shepherds refresh themselves with it in very hot weather ; its leaves are prized by small cattle ; its bitter and astringent bark is a cure for ague. In the Philippine islands Z. exserta ${ }^{13}$ is used for the treatment of skin diseases and syphilis. Z. Sororite ${ }^{17}$ is also recommended for the same affections in India. Z. soporifere, ${ }^{15}$ of northern China, owes its name to the fact that the decoction of its kernels calms grief and procures refreshing sleep to invalids. Some species of Zizyphus have, besides, oleaginous, acrid, and purgative seeds, as Z. Enoplit, Napeca, and perhaps some others. The iudigenous Rhemmecece rarely have a wood of good quality. That of the Privet is sometimes employed by toy and cabinet-makers; it is especially used to heat ovens, as also that of R. cathurticus, of the branches of which canes imitating those of the Hawthorn are made. The Mongols cut idols of small size from the wood of R. lycioides.

[^84][^85]In many parts heels of shoes and matches are made of the wood of R. frangula, otherwise very indifferent and more generally employed for heating and for the manufacture of charcoal, a constituent of gunpowder. The wood of the common Jujube is sometimes employed in turnery. At the Cape, Scutia capensis ${ }^{1}$ furnishes a hard and durable wood, and that of Rhumnus celtifolia ${ }^{2}$ serves to make axletrees, yokes, and barrels. In India the textile bark of Ventilago maderaspatana ${ }^{3}$ (fig. 46, 47) is used to make mats and string, remarkable for their tenacity and durability. Colubrina reclinata ${ }^{*}$ and ferruginosa ${ }^{5}$ of the Antilles have exceptionally a woorl so hard that they constitute one of the iron wonls of this country. The sharp spines of Discaria Toumatou ${ }^{6}$ served as tattooing needles to the savages of New Zealand. Several IChamnacte are ornamental. There are seen in our gardens many Buck thorus with beautiful persistent leaves; Jujubes; Paliurus austratis, a very elegant plant; charming Cconothus with white, pink, or blue flowers; and in our greenhousis and orangeries Pomaderis, Trymatiums, Phylicas, Cryptandrus, having sometimes the foliage and habit of the Heaths, and requiring nearly the same kind of culture ; Hovenit ctulcis, in its foliage and odorous flowers much resembling certain Tilias, and bearing our mild winters as well as Colletia cruciata, remarkable for the enormous development of its spinescent branches.

[^86]
GENERA.

I. RHAMNE.E.

1. Rhamnus T.-Flowers hermaphrodite or polygamo-diœcious; receptacle very concave, obconical or urceolate, lined with a thin or more rarely somewhat thickened disk entire at apex. Sepals 4,5 , 3 -angular, valvate, inserted at margin of receptacle. Petals 4, 5, (or sometimes 0), small, cucullate, or flat. Stamens same in number oppositipetalous, inserted with perianth; filaments short; anthers introrse, 2 -rimose. Germen inserted at base of receptacle (in male flower effete rudimentary), free, 3-4-locular ; style erect, at apex more or less deeply $3-4$-lobate or ramose stigmatose. Ovule in cells 1, suberect; micropyle introrsely inferior, finally more or less lateral. Fruit drupaceous, spherical or oblong, girt at base with very short annular scar of receptacle; pyrene 2-4, osseons or cartilaginous, finally obscurely dehiscent within or opening at base, oftener indehiseent. Seeds obovate compressed or sulcate, sometimes dilated at base to a short aril, albumen fleshy (sometimes 0); cotyledons of straight embryo flat or recurved at margin, foliaceous or tleshy; radicle inferior short.-'Trees or shrubs; leaves alternate subopposite (deciduous or persistent) petiolate, entire or dentate ; stipules lateral small, deciduous ; flowers axillary in simple fasciculate or ramosely compound cymes. (All warm and temp. regions.) See p. 52.
2. Rhamnidium Reiss. ${ }^{1}$-Flowers nearly of Rhamnus ; receptacle subturbinate or shortly obconical, lined with a disk. Perianth

[^87]and stamens of Rhammes. Germen free, immersel in disk; cells 2, 1-ovulate. Fruit ovoid baccate (or sometimes drupacenus?), apiculate to base of style and girt at base with cupular receptacle, finally corticate subdry, indehiscent; endocarp membranons, 1-2-locular. Albuminous seeds and other characters of Rhommes.-Shrubs; leaves opposite or subopposite entire, with very closely lineate nerves; stipules small, deciduous; flowers ${ }^{1}$ crowded in axillary subsimple or fasciculate cymes. ${ }^{2}$ (Trop, and South America. ${ }^{3}$)

3? Macrorhamnus II. Bn.'-Flowers hermaphrodite; petals 5, subfree (?). Petals and stamens...? Germen free, 3-locular. Fruit shortly ovoid drupaceous; exocarp ${ }^{5}$ separable; lobes 3, at apex ¿-fid; endocarp woody :3-coccous; cocei separable, parting elastically inwards. Seeds in cocci solitary suberect exarillate obovate much compressed; testa crustaccous nitid; exalbuminous embryo and other characters of Rhammus.-A glahrous shrub; branches nodose at leaves ; leaves subopposite or altermate ovate peminerved, at base, sub- $\overline{3}-7$-nerved reticulate-veined; flowers axillary solitary (?); fructiferous peduncles curved. ${ }^{6}$ (Madagascar. ${ }^{7}$)
4. Karwinskia Zucc. ${ }^{〔}$-Flowers of Rhummitium; germen free, immersed in disk; cells \because, 3 , incomplete ; ovulcs in each 2 , ascending. Fruit of Rhumidium (glandulous); putamen 1, 2-locular. Seeds in cells solitary obovoid; testa rerrucose (dark coloured) ; albumen thin; cotyledons of erect embryo ovate fleshy.-Shrubs; leaves opposite or subopposite ohlong peminerved punctulate; stipules membranous, deciduous ; flowers in axillary cymes, oftener pedunculate in pairs. ${ }^{9}$ (North and Wcst. South America. ${ }^{10}$)
5. Emmenosperma F. Muell. ${ }^{11}$-Flowers (nearly of Rhammus) polygamous; receptacle obconical or campanulate, lined with thin

[^88][^89]disk. Germen at base of receptacle, 2- or more rarely 3-locular; style short columnar or truncate-conical, apex stigmatose shortly lobed or 2-3-fid; ovules in complete or incomplete cells l, other characters of Rhemmus. Fruit free capsular ; exocarp thin, finally separable from endocarp; cocci of endocarp, cartilaginous-crustaceous or membranous-woody, septicidally solute and opening inwards, and also at base solute from short receptacle and exposing the shortly stipitate and ereet persistent sceds in it. Seed exarillate ; testa very hard nitid; ${ }^{1}$ albumen fleshy or subeartilaginous; cotyledons of axile embryo flat rather thick.-Trees or shrubs; leaves opposite or alternate penninerved; stipules small or 0 ; flowers in subumbellate subsimple or compound eymes axillary or iuserted in the wood of the branches. (Austratiu, New Caledonia. ${ }^{2}$)
6. Sarcomphalus P. Br. ${ }^{3}$-Flowers (nearly of Rhamnus) hermaphrodite somewhat flesly ; receptacle obconical or sub-hemispherical. l'etals loug-anguiculate cucullate. Stamens 5, equal in length to opposite petals; filaments much incurved in the bud ; anthers hence before anthesis inchaded between the germen and the disk, finally exserted; cells didymous, extrorsely rimose. Germen : 3-locular, ovules and other characters of Rhummes ; branches of style 2,3 , apex obtuse stigmatose. Drupe ovoid, girt at base below the middle with cupule of receptacle; putamen osscous, \quad - - 3 -locular ; septa thick very hard. Seed suberect obovate compressed, sometimes subcarinate within exarillate ; embryo...?-Glabrous trees or shrubs, unarmed ${ }^{4}$ or spinous; leaves alternate petiolate quite entire glabrous coriaceous, penninerved or oftener 3-plinerved; stipules small; flowers in axillary and terminal ramose pedunculate cymes. (Antilles.5)
7. Hovenia Thuns. ${ }^{6}$ - Flowers hermaphrodite; receptacle depressed and broadly obconical, lined with a thin pilose disk. Sepals

[^90][^91]5, 3-angular, 3 -nerved, in the middle carinate within, valvate. Petals 5, unguiculate cucullate, surrounding the stamens the same in number a little longer. Germen conical, adnate at base to receptacle, otherwise free; style thick 3-fid; cells and ovules 3 of Rhamnus. Fruit shortly oroid, at base girt with cupule of receptacle, indehiseent ; seeds (of Rhammus.) compressed sparsely albumi-nous.-A moderate-sized tree ${ }^{1}$; leaves alternate petiolate minutely stipulate ovate, unequal at base, 3-nerved, serrate; flowers ${ }^{2}$ in axillary and terminal cymes, 2-chotomously ramose ; branches of infloreseence under mature fruit much thickened fleshy curved; the pedicels not perceptibly thickened. (North. India, China, Japan. ${ }^{3}$)
8. Noltia Reichb. ${ }^{4}$--Flowers polygamo-diœcious; receptacle ob-conico-turbinate, lined with a thin disk, thicker around germen becoming thinner to margin. Perianth and stamens (of Rhamnus) inserted beyoud the clisk. Germen adnate at base to receptacle, otherwise free and tapering to a style 3-lobed at stigmatose dilated apex ; cells and ovules 3 (of Hovenia or Rhammus). Fruit ellipsoid or shortly obovoid, finally dry, surrounded below the middle with cupule of receptacle; cocei 3, cartilaginous solute, dehiscing longitudinally within. Seeds erect compressed thinly albuminous, furnished at base with a small cupular aril.-A glabrous shrub; branches erect; leaves alternate petiolate oblong obtuse obtusely serrate penninerved; stipules persistent tuberculiform; flowers ${ }^{5}$ ramose axillary and terminal cymes. (South Africa. ${ }^{6}$)
9. Colubrina L. C. Ricir. ${ }^{7}$-Flowers nearly of Noltia; receptacle shortly obconical or hemispherical. The thick disk lining the receptacle annular or 510 -lobed. Germen within aduate to receptacle (and disk), at free apex attemated to a 3 -fid style ; stylebranches obtuse at stigmatose apex. Cells and ovules of germen 3

[^92]
5 White, crowded.

${ }^{6}$ Spec. 1. N. africana Reichb.--Wight, Ieon. t. 490.-Harv, and Sond. Fl. Cap. i. 478.Cearoohus africanus L. Spec. 284.-Selsa, Thes. i. t. 22.-DC. Prodr. ii. 32, n. 31.-Vittmannia africana Wight and Arn. - Willemetia africana AD. Br, loc. cit. 64.
${ }^{-1}$ Ad. Br. Rhamn. 61, t. 4.--EnidLe Gen. n. 5728.-B. H. Gen. 379, n. 17. - Baker, F\%. MLaurit. ól.- Ноок, Fl. Ind. i. 642.-Tubanthera Commers, MSS.
(of Rhamnus). Fruit subglobular (of Noltia); cocci finally solute and dehiscing within; seeds ${ }^{1}$ compressed sparsely albuminous.Erect or sarmentose shrubs ; leaves alternate (or very rarely opposite) petiolate, peminerved or 3-nerved at base; stipules deciduous; flowers ${ }^{2}$ in more or less ramose axillary eymes. (All trop. regions. ${ }^{3}$)

10? Cormonema Reiss. ${ }^{4}$ - Flowers nearly of Colubrina, 5 -merous; germen immersed in and free from disk, 3-locular. Fruit and other characters of Colubrina; cocci of endocarp finally dehiscing within. -Prickly trees or shrubs; leaves alternate petiolate entire membranous penninerved; limb 2-glandulous at base; stipules small deciduous ; flowers ${ }^{5}$ axillary cymose. ${ }^{6}$ (Brazil. ${ }^{7}$)

11? Alphitonia Reiss. ${ }^{8}$-Flowers hermaphrodite or polygamodiocious (nearly of Colubrina); receptacle obconical and lined with a thick, 5 -gonal, often pilose disk. Stamens 5, involved with elongate petals. Germen adnate at base to receptacle (hence also to disk) attenuated in a $2-3$-fid style to free apex. Cells and ovules of germen 2, 3 (of Rhamnus). Fruit globular, ovoid or ovoid-conical, clothed below the middle with cupule of receptacle; exocarp either thin, dry, or oftener finally suberose-subcarnose and at maturity pulverulent; cocei woody 2,3 , scparable, dehiscing longitudinally within and at base free from seminiferous receptacle. Seeds :2, 3, persistent after the fall of the cocci erect, exarillate or clothed from base to middle with a loose obconical aril, pervious at apex; testa hard nitid ; embryo albuminous. - Trees or shrubs, either glabrous, or often ferruginous-tomentose; leaves alternate petiolate entire penninerved, oftener hoary beneath; stipules small, deciduous;

[^93][^94]flowers ${ }^{1}$ in axillary and terminal very compound ramose manyflowered cymes. ${ }^{2}$ (Trop. and subtrop. Oceania. ${ }^{3}$)
12. Berchemia Neck.-Flowers t, S-merous, hermaphrodite or polygamous; receptacle concave hemispherical or turbinate, sometimes rupular or subplane, lined with a disk. Germen free (immersed in concavity of disk), 2-locular, attenuaterl to 2-fid style; branches at stigmatose apex obtuse. Drupe ${ }^{5}$ elongate-oblong obtuse, girt at base with short cupule of receptacle ; putamen wooly or crustaceous, 2-locular.-Unarmed shrubs, erect or climbing ; leaves alternate petiolate, minutely stipulate, coriaceous penninerved; nerves parallel close; transverse veins slender ; flowers ${ }^{6}$ disposed in the divaricate twigs of a wide terminal ramnsely-compound spike or of a much branched raceme; solitary or cymulose, sessile or pedicellate. ${ }^{7}$ (Warm regions of Africa and North America ${ }^{8}$)
13. Sageretia Ad. Br. ${ }^{9}$-Flowers hermaphrodite (nearly of Berchemia) ; receptacle hemispherical or urecolate. Disk lining tube of receptacle, afterwards free and crect; margin sub-cutire or 5lobed. Germen immersed in concavity of disk free; cells 3; 1-ovulate. Fruit drupaceous; pyrenæ 3, coriaccous, indehisecnt; seeds thinly albuminous and other characters of Seutio.-Unarmed or spinescent shrubs; leaves sub-opposite peuninerved and reticulate veined, entire or serrate; stipules minute, deciduons; flowers ${ }^{10}$ on the opposite divaricate branches of a terminal or axillary oftener

[^95][^96]large raceme, glomerate or solitary crowded. ${ }^{1}$ (Wurm Asiu, Indian Archipelago, warm North America, and North-west South America ${ }^{3}$)
14. Scutia Conmers. ${ }^{3}$ - Flowers nearly of Berchemia; petals erect unguiculate, flat or cucullate, often 2-lobed. Disk undulate at margin. Stamens nearly equal in length to petals. Germen globular or ovoid free; cells 2-4; style short, 2-4-fid, branches obtuse stigmatose at apex. Fruit dry or slightly fleshy, globular or ovoid, surrounded at base with cupular receptacle; pyrenæ 2-4, angular. Seed compressed; testa various; albumen slight or 0 ; cotyledons of slightly fleshy embryo plano-convex. Other characters of Ceanothus.-Glabrous shrubs, unarmed or ofterer spinous; spines straight or curved ; branches often angular; leaves opposite, sub-opposite or 2-nate oblong, ovate or obovate, entire or serrulate, coriaccous penninerved, petiolate ; stipules small; flowers in axillary scarcely stipitate umbelliform cymes. (Africa, Asia, and trop. South America. ${ }^{4}$)
15. Ceanothus L. ${ }^{5}$--Flowers hermaphrodite (nearly of Seutia); receptacle concave, or hemispherical, or shortly and depressedly turbinate; sepals 5, 3 -angular, valvate, mombranous (often coloured), connivent. Disk thick filling the eavity of the receptacle. Petals and stamens same in number long-stipitate, extending between the sepals. Germen immersed in centre of disk, free or aduate at base, of glandular with 3 slightly prominent angles; style short, 3 -fid; branches stigmatose within or to apex. Fruit drupaceous free, subglobosely 3 -lobed or depressed at apex ; exocarp finally dry ; cocci 3, cartilaginous or crustaceous, solute within and dehiscing longitu-

[^97][^98]dinally. Seeds smonth ; testa crustaceous, arillate to hilum; cotyledons of albuminous embryo elliptical or obovate.-Small trees or shrubs, sometimes spinescent; leaves opposite or generally alternate, entire or dentate, penninerved or 3-plinerved at base, glabrous or somewhat scaly or canescent tomentose beneath, petiolate; stipules small, caducous ; flowers ${ }^{1}$ in corymbs or racemes terminal and axillary to uppermost leaves of twigs, densely ramose, cymiferous or glomeruliferous, umbelliform or elougate thyrsoid. (Temp. and trop. west. regions of both Americas. ${ }^{2}$)
16. Ventilago Gertn. ${ }^{3}$ - Flowers hermaphrodite or more rarely polygamous; receptacle shortly obconical or broadly cupular, lined with a thick annular or obtusely 5 -gonal disk flat or depressed above. Sepals 5, valvate, carinate within. Petals same in number deflexed cucullate, entire or 2-lobed at apex. Stamens equal in number; filaments free or adnate to petals at base ; anthers introrse or laterally rimose ; connective sometimes exeurent. Germen immersed in centre of disk, "-locular ; style very short compressed, stigmatose at apex, shortly or very shortly 2-lobed, afterwards accrescent. Fruit dry, indehiscent, subglobular, girt at the base or to a greater or less height with the cupular receptacle apiculate to style accrescent and dilated on both sides to an erect linear membranous or coriaceous veined wing. Seed 1, exalbuminous ; cotyledons of fleshy embryo thick; radicle inferior short.-Scandent or sometimes subprostrate shrubs, glabrous or pubescent; leaves alternate ovate or oblong, oftener oblique at base, petiolate ; stipules minute, caducous; flowers in terminal or axillary more or less compound ramose cymiferous racemes, bracteolate. (Warm Asiu, Africa and Occania. ${ }^{4}$)
17. Smythea Seem. ${ }^{5}$-Flowers of Fentilago. Fruit ${ }^{6}$ ovate much

[^99]compressed, thickly crustaceous or woody, the capsule dehiscing vertically along the middle of both faces, 2-valvate. Seeds 1, compresssed; albumen exalbuminous. - Subscandent shrubs; habit, leaves and other characters of V entilago; flowers in axillary or terminal ramose cymes. (Viti Island, New Culedonia, Bornco.')
18. Paliurus T. ${ }^{2}$-Flomers nearly of $V_{\text {entilugo ; receptacle broadly }}$ cupular or depressed obeonical, lined with a thick depressed, 5 -lobed disk, flat above. Sepals 5, 3-angular acute, carinate within. Petals 5 , cucullate, oftener deflexed, and stamens of Ventilayo. Germen semi-immersed in disk and almost entirely free, 3-locular ; branches of short style 3 oblong. Fruit girt at base with short cupular receptacle, obconical and dilated above to a large orbicular transverse membranaceo-coriaceous venose entire or lobate wing, iudehiscent; endocarp thin dry ; putamen woody, 1-3-locular. Sced in cells 1, olovate compressed smooth; testa crustaceous ; cotyledons of scantily albuminous embryo orbicular or elliptical ; radicle short inferior.Decumbent or erect shrubs, glabrous or slightly tomentose, armed with strong straight or curved stipular spines; leaves alternate petiolate; limb ovate or cordate crenulate, 3-nerved; flowers ${ }^{3}$ in short axillary fasciculate cymes. (South. Europe, the East, north. China. ${ }^{4}$)
19. Zizyphus T. ${ }^{5}$-Flowers nearly of Patiurus, rarely apetalous; disk plane depressed, obtusely 5 -gonal. Anthers introrse or laterally subextrorse. Germen 2-4-locular; style-branches from base or higher a-t-fid divergent, stigmatose at attenuate apex. Drupe globular or ovoid, furnished at base with short cupule of receptacle (rarely deciduous, sometimes concave); cells of osseous or woody

[^100]Bot. Mag. t. 2535.-Bente. Fl. Hong Fiong, 66. -Boiss. Fl. or. ii. 11,-Gren. et. Godr. Fl. de Fi. i. 335.-WILp. Ann. vii. 586.
${ }^{5}$ Inst. 627, t. 403.-J. Gen. 380.-Gertn. Fruet i. 202, t. 43.-Lamk. Dict. iii. 316 ; Suppl. iii. 191 ; Ill. t. 185.-DC. Prodr. ii. 19. -Ad. Br. Rhamn. 47, t. 1.-Spach, Suit. à Buffon, ii. 441.-Endl. Gen. n. 5717.-Payer, Organog. 490, t. 97.-A. Gray, Gen. Ill. t. 163. B. H. Gen. 375, 998, n. 4.--H. Bn. Payer Fam. Nat. 328.-Hook. Fl. Ind. ì. 632.-Baker, Fl. Mawit. ól.
putamen 1-3, 1-2-spermous. Seeds plano-convex smooth ; albumen thin (or 0), more rarely rather thick; cotyledons of erect somewhat thick embryo rather fleshy.-Trees or shrubs, erect, sarmentose or decumbent, often uncinate-aculeate; leaves alternate, entire or crenate, coriaceous or membrauous, glabrous or tomentose, at base oftener 3-5-nerved; stipules 2 ; both spinescent straight or hooked ; or one caducous; flowers ${ }^{1}$ in axillary short or subumbellate cymes. ${ }^{2}$ (All warm regions. ${ }^{3}$)
20. Condalia Cav. ${ }^{4}$ - Flowers oftener hermaphrodite; receptacle broadly obconical, lined with thick fleshy flat 5 -gonal disk; calyx 5 phyllous, valvate, and other characters of Zizyphus. Petals 5, small (Microrlemnus) or oftener 0 . Germen immersed in concavity of disk free; style short thick, at apex stigmatose 2-3-lobed; cell of germen 1 ; ovules in cell 2 subbasilar ascending; micropyle introrsely inferior; spurious septum more or less incomplete ventral somewhat projecting between the two ovules. Fruit drupaceous or finally siccate, girt at base with cupule of receptacle ; putamen thick osseous or woody, l- or spuriously 2-locular ; testa of seeds thin ; cotyledons of sparsely albuminous, sometimes subruminate, embrgo flat.-Rigid ramose glabrous shrubs; branches spinescent; leaves ${ }^{5}$ alternate or fasciculate subsessile entire coriaceous penninerved, deciduous; stipules minute, deciduous; flowers ${ }^{6}$ in axillary cymes, few or solitary. (Trop. and temp. regions of both Americas. ${ }^{7}$)

[^101][^102]
II. GOUANI平.

21. Gouania L.-Flowers hermaphrodite or polygamous ; receptacle concave obconical or urceolate. Sepals 5, inserted at mouth of receptacle, valvate. Petals same in number alternate cucullate. Stamens 5, oppositipetalous, inserted with perianth and superior. Disk epigynous interior to perianth and stamens, 5 -gonal or 5 -lobed; lobes sometimes very prominent produced to horns or layers more or less connate internally at the base with the sepals. Germen inferior and adnate to concavity of receptacle, 3-locular; style central divided more or less deeply into 3 brinches stigmatose at apex. Ovule in cells 1, suberect (of Rhamms). Fruit inferior coriaceous, crowned with sepals and disk, vertically 3 -alate; wings wide rotund; cocci of endocarp 3, woody or submembranous, finally separate from 6 -partite columella and indehiscent, externally alate at margin. Seeds obovate compressed or plano-convex ; testa hard nitid ; cotyledons of sparsely albuminous embryo somewhat flat; radicle short inferior.-Shrubs oftener scandent cirrhiferous, glabrous or tomentose; leaves alternate, entire or dentate, penninerved or 3-plinerved at base, petiolate; stipules oblong, sometimes large, deciduous; flowers in spikes or terminal and axillary glomeruliferous racemes; rachis ofteu changed into a cirrlus. (All trop. regions.) See p. 59.
22. Reissekia Evdl. ${ }^{1-}$-Flowers of Goumia ; germen inferior, 3-4-locular. Fruit inferior, 3-4-gonal coriaceous; lobes compressed membranously alate; $3-4$-coccous within; wings finally : 2 -partite and spongily reticulate ; cocci crustaceous, separate from 6-8-partible columella. Seeds and all other characters of Gouamia.-A scandent much-branched cirrhiferous shrub; branches slender angular; leaves alternate cordate serrulate, sub-3-nerved at base, petiolate ; stipules minute; flowers ${ }^{2}$ in axillary compound umbelliform cymes; pedicels long. ${ }^{3}$ (Brazil. ${ }^{4}$)
[^103][^104]23. Crumenaria Mart.-Flowers polygamous (nearly of Goumia) ; receptacle campanulate beyond aduate germen. Sepals valvate. Petals cucullate, inserted at the base of the hollows of calyx. Stamens enclosed by petals. Germen quite inferior, 2-3-locular; branches slender cylindrical erect (2-3-fid); style dilated at stigmatose apex. Fruit inferior and crowned with remains or prominent cicatrice of perianth, produced in 2, 3 vertical winged lobes; wings membranous veined (marginal as regards cocci), 2-lamellate ; cocci chartaceous obcordate, finally separate from 3-partite columella and dehiscing within. Seed obovate; testa rather hard; cotyledons of thinly albuminous embryo suborbicular plano-convex fleshy; radicle inferior very short.-Herbs or annuals $;^{2}$ root fibrous; leaves alternate petiolate cordato-ovate membranous, 3 -nerved at base; or oftener perennial ; rhizome woody ; annual branches thin reedy, terete or compressed ; leaves 0 or very small scaly ; stipules very small linear ciliate; flowers ${ }^{3}$ in axillary slightly ramose, more rarely racemose cymes, sometimes few or solitary. (Trop, Brazil.4)
24. Helinus E. Mey. ${ }^{5}$-Flowers of Gouania; disk epigynous rather flat. Fruit inferior, shortly obovoid exalate, arcolate at depressed apex, finally dry coriaceous; cocci 3, crustaccous, finally separate from central 3 -partite columella and dehiscing within; seeds and other characters of Gouania (or Reissekia). -Scandent shrubs, glabrous cirrhiferous or pubescent; leaves alternate cordatoovate entire, slenderly petiolate; stipules small, deciduous; inflorescence of Reisseliut. (East Indies, South Africa, Abyssiniu. ${ }^{6}$)
25. Phylica L. ${ }^{7}$-Flowers hermaphrodite or more rarely polygamous; receptacle very concave, tubular or obconical or urceolate,

[^105][^106]sometimes cylindrical or hypocrateriform (Calopheylica ${ }^{1}$). Sepals 5, superior, inserted at mouth of receptacle, villose without or on both sides or densely barbate. Petals 0 , or setaceous (Trichocephalus ${ }^{2}$), oftener concave or cucullate, either glabrous (Soulenyia, ${ }^{3}$ Tylanthus ${ }^{4}$), or ciliato-barbate (Petulopegon. ${ }^{\text {) }}$) Stamens 5, opposite to and enclosed by petals; filaments generally short incurved ; authers short, sometimes 3 -dymous; clefts of cells $\stackrel{\sim}{\sim}$, finally introrse, either distinct or oftener confluent at apex into one hippocrepiform. Disk epigynous, produced to greater or less height within the tube of the calyx, sometimes small or inconspicuous. Germen inferior; style short or elongate, at stigmatose apex 3 -fid or 3-lobed, persistent or caducous; ovules in cells 3 solitary (of Rhammes). Fruit ${ }^{6}$ inferior, subplane at apex or slightly depressed, generally prominent and areolate, glabrous or tomentose ; exocarp more or less thick; cocci of endocarp 3, fivally separate and deliscing within. Seeds com-pressed-obovoid; testa coriaceous nitid; embryo scantily albuminous. -Small shrubs, rarely arborescent; indumentum various, often tomentose-iucanesceut ; leaves alternate or rarely opposite, generally ericoid crowded, rarely expanded coriaceous-membranous veined; margin oftener recurved ; stipules generally 0^{7}; flowers axillary to leaves or uftener sessile or shortly pedie llate in axils of bracts or uppermost leaves of twig.s, hence spicate or capitate terminal, more rarely cymose. (South extretion., insulter und cust trop. Africa. ${ }^{\text {s }}$)
26. Kesiota Hook. f. ${ }^{9}$-Flowers (nearly of Plytica) 4-5-merous; receptacle obconical. Germen quite inferior, 3-4-locular, crowned with pubescent disk. Fruit avoid, exserted at apex beyond urccolate receptacle and there free, otherwise adnate with it ; exocarp subfleshy; cocei finally separate and other characters of Phylica.Small branched trees; ${ }^{10}$ leaves opposite petiolate, elliptico-obloug

[^107](wide) entire coriaceous penninerved reticulate-veined canescenttomentose; stipules interpetiolate large, deciduous ; flowers axillary in loose pedunculate cymes, bracteate or bracteolate. ${ }^{1}$ (St. IIclena. ${ }^{2}$)
27. Lasiodiscus Hoor. F. ${ }^{3}$-Flowers hermaphrodite; receptacle cupuliform or broad obconical. Sepals 5, wide, 3-angular, ralvate, finally reflexed. Petals small concave, rather shorter, deciduous. Stamens inserted with perianth around thick epigynous glabrous or deusely velutinous disk crowning the germen; filaments subcomplanate longer than the petals; anthers small introrscly 2 -rimose. Germen inferior, filling the cavity of the receptacle; cells 3, 1ovulate; ovules of Rhamnus; style erect rather thick, sometimes articulated a little above the base, at apex 3 -fid; branches recurved, stigmatose within and at obtuse apex. Fruit finally dry obconicoturbinate, entirely adnate to receptacle except at depressed convex apex, 3 -coccous (?); seed unequally obovoid depressed; cotyledons of albuminous embryo suborbiculate (virescent).-Shrubs, sometimes subscandent, glabrous ; innovations strigillose ; leaves opposite large, shortly petiolate entire or serrulate membranaceous; stipules interpetiolar erect lanceolate, free or conuate at base, deciduous; flowers (rather large) in terminal axillary compound subumbellate pedunculate cymes; branches and twigs of inflorescence compressed or ferruginco-tomentose; fructifcrous curved. (Trop. Western Africa, Malacca. ${ }^{4}$)

28? Trymalium Fenzl. ${ }^{5}$ - - Flowers polygamous; receptacle obconical. Sepals 5, ${ }^{6} 3$-angular, deciduous or 1 atent. Petals 5, cucullate, enclosing small anthers. Stamens 5 ; filaments incurved, inserted with perianth around epigynous annular or 5 -lobed or partite disk; anthers ovoid. Germen inferior, internally aduate to receptacle, free only at apex and attenuate to 2,3 -lobed style; cells $1,2,1$ ovulate. Fruit capsular, quite adnate within to thin receptacle,

[^108][^109]or slightly prominent at vertex, 2 - 3 -valvate at apex ; cocci finally dehiscent or indehiscent. Seeds ovoid or compressed, attached to a dilated or cupular-arillate funicle; embryo albuminous.Shrubs oftener stellate-canescent or ferruginous; leaves alternate membranous, revolute at margin ; flowers ${ }^{1}$ in very compound ramose cymiferous racemes. ${ }^{2}$ (South west. Australia. ${ }^{3}$)
29. Pomaderris Labill. ${ }^{4}$-Flowers nearly of Trymalium ; petals 5 , concave, flat (or 0). Stamens 5 ; filaments inflexed or plicate at apex; anthers oblong, not enclosed by petals. Disk epigynous thin covering the top of the germen exserted from the receptacle to the base of the calyx, sometimes pilose. Capsule at apex projecting from aduate conical tube of receptacle and free, there dehiscing longitudinally or transversely by an operculum; endocarp 3-coccous; sceds and other characters of Trymalium.-Shrubs, for the most part adpressedly stellato-canescent or rufeseent, sometimes hirsute; leaves alternate flat, revolute at margin; stipules small, often fuscate, caducous ; flowers ${ }^{5}$ in very ramose compound-cymiferous umbelliform or corymbiform racemes ; cymes sometimes axillary solitary. (Southwest. Australia, New Zealand. ${ }^{6}$)
30. Spyridium Fenzl. ${ }^{7}$-Flowers nearly of Pomaderris; petals enclosing small anthers. Germen free at apex or wholly adnate within to receptacle. Disk covering either the top of the ovary and base of receptacular tube or the apex of the latter when higher than the germen (Stenodiscus ${ }^{8}$) ; cells 3, 1-ovulate ; capsule inferior crowned with persistent sepals and 3 -valved at apex; seeds and other characters of Pomadervis.-Shrubs; leaves oftener small, flat or revolute at margin; stipules (fuscous) persistent; indumentum of Pomaderris; flowers capitate; capitules in cymes or capituliform

[^110][^111]compound glomerules scarcely exceeding the leaves; floral leaves (generally different from the cauline) 1,2 , or ∞, surrounding and sub-enveloping the exterior capitules of the inflorescence. ${ }^{1}$ (Extra trop. Austratia. ${ }^{2}$)
31. Cryptandra Su. ${ }^{3}$-Flowers nearly of Spyritium ; receptacle, covering the germen below, hypocrateriform or campanulate, and beyond produced to a tube, sometimes tubular (Wichurea ${ }^{4}$); disk annular thin or 0 , sometimes clothing the tube and more conspicuous (Wichuree); genital organs, fruit, seeds and other characters of Spyridium (or Pomaderris). Small ramose shrubs, ofteuer spinescent or ericoid; leaves small, ovate or revolute at margin and hence narrow, gencrally canescent beneath ; stipules (fuscate) persistent; flowers capitate, intermixed with leaves or collected at the ends of twigs or separated, sometimes pedicellate, surrounded figurelike with imbricate bracts. ${ }^{5}$ (Extra trop. Australia. ${ }^{6}$)

32? Stenanthemum Reiss. ${ }^{7}$-Flowers of Cryptandiot ; receptacle clothing adnate germen within and beyond produced to a thin often constricted tube. Disk epigynous, lining the top of the receptacle, thin or sometimes 0 . Perianth and other parts of flower, inferior fruit and seeds of Pomuderris (or Ciyptandra).-Shrubs; habit, leaves small flat or revolute at margin, and stipules of Spyridium; capitules dense crowded in capituliform glomerules; inflorescence and floral leaves of Spyritium. ${ }^{8}$ (Extra trop. Australia? ${ }^{9}$)
${ }^{1}$ A genus scarcely to be retained.
2 Spec. about 20. Labill. Pl. Nouv.- IIoll, 1. t. 85 (Ceanothus),-Ноок, F. Fl. Tasm. i. 72 (Cryptandra).-Rerss. Linnea, xxix, 270 (Trymalium), 288.-F. Muell. Fragne iii. 78.Benth. Fl. Austral. i. 425.-Walp. Ann. vii. 598.
${ }^{3}$ Trans. Linn. Soc. iv. 217.-DC. Prodr. ii. 38.-Ad. Br. Rhamn. 65, t. 3.-Spach, Suit. d Buffon, ii. 465.-Evdl. Gen. n. 5742.-B. H. Gen. 383, 999, п. 27.
${ }^{4}$ Nees, Pl. Preiss. ii. 290.
${ }^{5}$ Oftener dark.
6 Spec. about 20. Redg. Tians. Linn. Soc. x. t. 18.-Fenzl, Hueg. Enum. 23 (part.).-Rerss. Pl. Preiss. ii. 283 ; Linnaa, xxix. 291.-Hook. f. Fl. Tasm. i. 74, t. 12.-Sohlitl, Linnaa, Ex.
639.-Lindl. Mitch. Exp. ii. 178. - Trucz. Bull. Mosc. (1858), i. 459.-F. Muell. Fratm iii. 64.-Benth. F7. Austral. i, 437.-Walp. Ann. ii. 268 (sect. 1, 3) ; vii. 601.
${ }^{7}$ Linnaa, xxix. 295.-B. H. Gen. 382, 999, n. 26 .
${ }^{3}$ A genus scarcely to be retained, flowers nearly of Cryptandra, between which and Spyridium they form a mean, but generally more slender.
${ }^{9}$ Spec. 6. Reiss. Pl. Preiss, ii. 288) Cryp-tandia).-Hоок. F. Fl. Tasm. i. 75, t. 12 B. (Cryptandra sect. Stenocodon).-Schlitl, Linncea, xx. 640 (Cryptandra). - Turcz. Bull. Mose. (1858), i. 458.-F. Muell. Fragm. iii. 83 (Spyridium),-Benth. Fl. Austral. i. 435.Walp. Anm. vii. 600.

III. COLLETIEA.

33. Colletia Comers.-Flowers hermaphrodite or polygamous; calyx membranous (coloured) cylindrical or urceolate-tubular, enlarged at base and there circumscissus; laciniæ of limb 4, 5, valvate, finally reflexed. Petals 5 (or 0), small cucullate. Stamens same in number opposite petals and with them inserted in the hollows, subequal in length; filanents free; anthers short, 2 -locular; clefts 2 , often finally confluent above into one of horseshoe shape. Disk glandular lining cupule at bottom of flower, sometimes thin or invisible, oftener thick and involute at free margin. Germen for most part free, adnate to base of cupule, 3-locular; style erect elongate, capitate at hollow apex; lobes stigmatose 3 or 6 (3 alternate scarcely perceptible). Ovule in cells ${ }^{1}$ (of Rhammus); micropyle introrsely inferior, finally lateral. Fruit drupaceous, girt at base with cupule of receptacle ; exocarp finally dry coriacoous ; endocarp 2, 3-coccous; cocci crustaccous, 2-valvate. Seeds plano-convex; testa coriaceous ; albumen fleshy; cotyledons of erect embryo compressed ; radicle short inferior.-Shrubs generally leafless ; branches decussate spinescent, sometimes thick compressed very rigid; leaves opposite very small, squamiform (or 0) ; flowers below spines solitary or cymose ferw pedicels short and slender wavering. (Warm and temp. South America.) See p. 62.

34 ? Discaria Поок. ${ }^{1}$-Flowers (nearly of Colletit) 4 - 5 -merous, sometimes apetalous (Notophena ${ }^{2}$) ; tube of calyx terete or campanulate, more or less produced beyond disk. Petals equal in number to lobes of calyx (or sometimes 0) inserted in hollows of orifice of calyx-tube cucullate small. Stamens of Colletic, inserted with and opposite to petals ; anthers 2-rimose (Ochetophila ${ }^{3}$) or from apical confluence of cells horseshoe-like rimose (Eudiscaria). Disk lining bottom of tube, annular, entire or lobed at margin free. Germen generally subglobular, sub-3-lobed, at base adnate to or immersed in concavity of receptacle; cells 3 ; ovule ${ }^{4}$ and other

[^112]characters of Collefic. Fruit drupaceous, finally coriaceons, dry capsular, surrounded at base to greater or less height with the persistent receptacular cupule and disk; cocci 3, crustaceous, finally 2-valvate. Testa of suberect plano-couvex seed coriaceous; micropyle in general finally lateral; albumen fleshy; cotyledons of slightly fleshy embryo orbicular or shortly ovate; radicle very short inferior.-Ramose shrubs, foliate or more rarely leafless; twigs decussate, often spinescent, articulate or subarticulate at nodes; leaves (small or minute) coriaceous rather thick, imperceptibly penninerved, oftener obovate, sometimes serrate; flowers axillary solitary or oftener few cymose; pedicels waving; other characters of Colletia. ${ }^{1}$ (Trop. alpine and extrettrop. America, Austialia, New Zcaland. ${ }^{2}$)

35? Adolphia Meisss. ${ }^{3}$-Flowers nearly of Colletiat ; receptacle much shorter subeampanulate, lined with a disk as far as the insertion of petals and stamens. Petals 5, inserted between the 3 -angular-ovate and recurved lobes of the calyx, small, cucullate, at base rather longer attenuated subspathulate. Stamens ó, oppositipetalous and inserted at margin of disk, nearly equal in length to corolla; anthers small; cells 2, finally confluent in one above and hence hippocrepiform-rimose. Germen subglobular or at base adnate to receptacular cavity and disk, glabrous; cells 3, 1 -ovulate; style slender, 3 -lobed at stigmatose apex. Fruit drupaceous finally coriaceous subdry subglobular, surrounded at base with the somewhat enlarged aud adnate cupule of receptacle, 3 -coccous ; cocci chartaceous, perforated at the base, finally separate aud dehiscent within. Testa of suberect broadly oblong planoconvex seed coriaceous; albumen fleshy; cotyledons of somewhat fleshy embryo urbicular ; radicle short inferior. Other characters

[^113][^114]of Colletia (or Discaria). A very ramose shrub; leaves very small opposite linear-lanceolate entire; stipules minute subpersistent (finally fuscate); branches and twigs rigidly spinescent, articulate at nodes; flowers axillary cymose. (Mexica, Colembia, Bolivio.1)

36 ? Retanilla Ad. Br. ${ }^{2}$-Flowers of Colletia, 4-5-merous; tube of campanulate or urceolate calyx generally far produced beyond disk; lobes ovate-acute, valvate. Petals 4,5 , inserted in hollows of neek of calys, small, cucullate. Disk covering base of calyx-tube and produced upwards, tapering from bottom to top, unlimited. Stamens 4, 5; anthers subpeltately affixed and opening in 2 valves by subtransverse cleft. Germen sessile, or free, or slightly aduate at base to receptacle and disk, pilose, 3-locular ; style conical or cylindrical columnar, 3-lobed at stigmatose apex. Fruit drupaceous globular, girt at base with short cupule of receptacle ; exocarp fleshy or spongy; putamen hard, 3-locular. Seeds suberect; testa crustaceous, raphe lateral percurrent; micropyle finally lateral; albumen fleshy; cotyledons of straight embryo flat subelliptical; radicle short inferior and other characters of Colletia.-Shrubs or undershrubs ${ }^{3}$ subaphyllous ramose; branches virgate, $2-3$-chotomously ramose terete spinescent ; leaves obsolete or opposite minute very entire the smallest most caducous; stipules minute scarious, persistent ; flowers in short compound cymose ramules, shortly pedicellate. (Peru, Chili. ${ }^{4}$)
37. Talguenea Miers ${ }^{5}$. - Flowers nearly of Colletia; tube of calyx membranous, lined with hairs (not a glandular disk), cylindrically attenuated above, at base gencrally obconical and far produced beyond disk, somewhat contracted at meck. Petals 5, inserted between lobes of calyx neek, small cucullate. Stamens same in number inserted with and opposite to petals; filaments complanate

[^115][^116]pilose; anthers subpeltate, 2-locular, finally confluently rimose and opening very widely transversely. Germen immersed in bottom of tube, sometimes hirsute, sub-3-lobed, 3-locular; style slender hirsute, 3 -lobed at stigmatose apex. Fruit "carcerular chartaccous very hirsute oblong, enclosed br unchanged calyx, a little louger than it, apiculate to style, indehisceut; cells 1 -3, 1-spermous ; seeds of of Colletia. ${ }^{1}$ " A highly branched shrub; branches opposite ; the younger ones spinous; leaves opposite membranous oblong, entire or serrate, 5 -nerved at base, sericious beneath, stipules small scarious; inflorescence and other characters of Retamille or Colletia. (Chili ${ }^{2}$.)

38? Trevoa Miers. ${ }^{3}$-Flowers nearly of Colletia; calyx membranous, subcampanulate or long urceolate ampullaceous, lined with hairs not a glandular disk; tube far produced beyond receptacle; limb 4-5-lobed, valvate. Petals 4,5 , inserted between lobes of calyx-neck, very cucullate. Stamens same in number opposite to and enclosed by petals; filaments short pilose; anthers subpeltate, confluently rimose and finally opening very wide transversely in ? valves. Germen semi-immersed at bottom of tube, sul-2-3-lobed, 2-3-locular very hirsute; style straight pilose, 2-3-lobed at stigmatose apex. Fruit drupaceous ovoid, girt at base with persistent cupule of receptacle; putamen rather hard nutlike, 1-3-locular; seeds and other characters of Retunillu (or Telguenea); testa nitid, raphe lateral percurrent; micrepyle finally lateral ; albumen fleshy ; cotyledons of straight embryo suborbicular or shortly elliptical; radicle short inferior.--Very ramose leafy shrubs; branches not suleate; leaves opposite, ovate or obovate, serrulate, 3 -nerved at base; stipules deciduous; infloresecuce and other characters of Colletia. (Bolivia, Chili. ${ }^{4}$)

[^117]
XLVIII. PEN EACEÆ.

In this small family, the flowers are regular, tetramerous, monoperianthous and hermaphrodite. Those of Pencea ${ }^{1}$ (fig. 58-66) have

Penca myrtifouia.

Fig. 59. Flower ($\frac{4}{1}$).

Fig. 58. Habit.

Fig. 61. Long. sect. of flower.
their floral envelope tubular or conical, coloured, ${ }^{2}$ surmounted by four lobes, two lateral, an anterior and a posterior, in prefloration valvate in the bud (fig 60). In the intervals, on the same level, are inserted an equal number of alternate stamens, each formed of a very short filament and a bilocular and introrse anther. ${ }^{3}$ The two cells

[^118]
Abstract

tation of most authors), could not be definitely determined independently of the study of the development. But it is probable from what we observe in the neighbouring groups, that it represents a receptacular organ, bearing at its upper orifice the true perianth, represented by the lobes and the androecium, whilst the bottom supports the gynæcium, hence doubtless a striking analogy between Pencea and Colletia. ${ }^{3}$ The pollen is (H. Moнl, Ann. Sc. Nat.

occupy a small inferior portion of the internal face of a thick and elongated connective, and open by a short oblique cleft. At the bottom of the flower, the receptacle rises in a short cone which

Fig. 60. Diagram.

Penca myrtifolia.

Fig. 63. Dehiscing fruit.

Fig. 62. Gynæcium (8) . Fig. 65. Open seed. Fig. 66. Embryo,
supports four free carpellary leaves alternate with those of the perianth. ${ }^{1}$ Each presents to our notice an inferior ovarian portion enlarged, concave within and furnished with an internal median ridge; an attenuated stylary portion, and a stigmatiferous extremity more or less dilated. At its edges, it is in contact with the neighbouring carpellary leaves without effecting any adherence with them at any age ; these four pistillar leaves are valvate with each other in prefloration; and, by their dilated ovarian portions, they thus circumscribe four cells superposed to the leaves of the perianth and consequently alternate with the divisions of the style. Near the base of each carpellary leaf are inserted two ovules, separated from each other by the base of the prominence formed by the internal longitudinal ridge; and thus two ovules are found enclosed in each of the cavities of the ovary. They are collateral, ascending, ana-
sér. 2, iii. 314) ovoid, with six or eight longitudinal furrows. In water it becomes spherical, with bands, three of which alternately bear papillæ.
${ }^{1}$ On the structure of the gynæcium and the

[^119]tropal and primarily the micropyle is directed downwards and inwards so that the raphe is dorsal; but later a slight twist occurs which causes the raphes to approach, whilst the micropyles become more or less lateral. The fruit, to which the perianth remains for a longer or shorter time persistent and accrescent, is capsular, loculicidal, separating into four equal valves extending from the base to the summit of the persistent style. Each cell contains one or two ascending seeds, the coats of which enclose a fleshy large-footed embryo, nearly conical, with inferior obtuse or depressed radicle, and two very short superior cotyledons, separated from each other by a vertical cleft scarcely visible (fig. 65, 66). The Penceas are small suffrutescent and cricoid plants from South Africa. Their persistent leaves are opposite, entire, coriaceous, sessile or nearly so, accompanied by two very small blackish glanduliform stipules. The flowers are solitary in the axils of the upper leaves of branches, which are often transformed to coloured bracts, so that the whole constitutes a small terminal spike. Each is accompanied by two lateral bracteoles. ${ }^{1}$

In some species, as P. cricoides and fruticulosa, the gynæcium differs from that of the Penceas proper, in that the back of each carpellary leaf presents only a more or less salient angle, instead of being prolonged to a vertical.membranous irregularly slashed wing, extending from the stigmatic lobe nearly to the top of the ovary (fig. 61-63). For this reason they have been separated generically under the name of Stylapterus; ${ }^{2}$ but we can make of them only a section of the genus Pencea. Thus understood, the latter comprises seven or eight species. ${ }^{3}$

The Surcocols, plants of the same country, with the same foliage and the same habit as Pencea, with which they were formerly classed, have generally larger flowers, the petaloid perianth of which has a cylindrical tube, surmounted by a limb with four re-duplicate-valved lobes. In the Sarcocols proper, such as S. formosa, fucata, the tube is elongated and the stamens have a long filament;

[^120][^121]which causes them soon to become exserted. In others, as \mathcal{S}. speciosa, the tube is also very long, but the staminal filaments are so short that the anthers remain enclosed. Thus the former species are united gradually to S. acuta, rupestris, etc., of which a genus Bractiysiphon has been made and of which, the stamens being also enclosed, the tube of the perianth remains relatively shorter.

Endoneme, formorly classed with Sarcocolla, is distinguished by each of the ovarian cells enclosing two pairs of, instead of two, ovules. Those of the upper pair are ascending with inferior micropyle; those of the lower pair, descending, with superior micropyle. All have a dorsal raphe. Sometimes the lobes of the perianth are valvate, as in the true Endonemu, and sometimes they are reduplicate, as in the section Glyschrocolia. The stamens are shorter or longer than the perianth. Endonema is from the same country as Sarcocolle whose organs of vegetation it has.

This small family, according to Livdley ${ }^{1}$ was verbally established by him in 1820. Jussieu had left Pencea among the Genera of uncertain place. ${ }^{2}$ In 1830, Kunth ${ }^{3}$ divided the old genus Pencea of Linneus and Thunberg into three genera; Penwa, Sarcocolla and Geissolomea. But Endicher, ${ }^{4}$ in 184.1, placed the Geissolomece in a small distinct group, following the Penceacece, which consequently, according to him, contained only Pencea and Sarcocollu. In 1846, A. de Jussieu, in a note on the family of Penceucere, ${ }^{5}$ added to the preceding gencra Stylapterus and Brachysiphon, which we cannot retain, and the genus Endonema, to which should be added one of the three species of Sarcocolla admitted by him, and of which A. de Candolle, in 1867, ${ }^{6}$ made a genus Glyschrocolla, proposed by EndLicher ${ }^{7}$ as a section of Sarcocollu. Summing up, the Pencacece with us number only three genera, comprising some twenty species, all natives of the Cape, all frutescent or suffrutescent, ${ }^{8}$ with opposite persistent leaves, regular apetalous isostemonous flowers, gynxcium,

[^122][^123]like the other verticils of the flower, tetramerous, seed exalbuminous with fleshy large-footed embryo, and differing generically one from another only in the prefloration of the perianth and the number of ovules contained in each cell ; either two ascending, or four, of which two are ascending and two descending, but whatever the direction, always having the micropyle interior and the raphe dorsal.

We have shown ${ }^{1}$ that the Pencoccece approach the Colletice on the one hand, and the Aquilarice on the other ; but that, from the one as well as from the other, they are immediately distinguished by the very singular organization of the gynæcium, unexampled apparently in the Vegetable Kingdom, consisting of four carpellary leaves, independent from each other at every age, valvate, with styles superposed to the partition separating the cells. The latter have their dorsal wall formed of the adjoining halves of two different carpellary leaves.

To several Pencacce is attributed the production of a viscid, sweetish and somewhat nauseous substance, used by the ancient physician under the name of Sarcocol. ${ }^{2}$ The genus which has thence derived its name is, in particular, rich in a resinous waxy glue; but the real source of this kind of balm, formerly so extolled for healing wounds, is not yet determined.

[^124]that it exudes from a spinous tree. It is not known whether the Persians obtained it from their own country or from Africa. The Sarcocol of commerce resembles a pale, yellowish, odorous, somewhat bitter incense, often mixed with the fruits of the Umbelliferæ, as Sagapenum Galbanum.

GENERA.

1. Penæa L. - Flowers hermaphrodite regular apetalous, 4merous; periauth (coloured) shortly tubular or conical ; lobes a little shorter, valvate. Stamens 4, alternate with lobes, inserted in neck; filaments very short; anthers introrse enclosed ; connective basifixed thick somewhat compressed ; cells much shorter, inferior oblique rimose; fimbrilli-ciliate. Gynacium superior; carpels 4, oppositipetalous, dilated at base (by germen), concave within, contiguous at margin, valvate (not coadunate), dorsally angular apterous (Stylapterus), or oftener produced to a vertical vitteform wing to the top of the style (Eupenca), at the base internally produced to a thick free septum (contiguous within and hence dividing the germen into four cells, not connate); styles 4, free, approximating to a 4suleate column, cruciately dilated at stigmatose apex. Ovules in cells $\stackrel{2}{\sim}$, collaterally ascending suberect ; micropyle introrsely inferior. Capsule clothed with augmented perianth, loculicidally 4 -valvate; valves septiferous within, l-2-spermous. Seeds suberect; testa crustaceous; radicle of thick exalbuminous fleshy ovoid-conical embryo inferior thick truncate or concave; cotyledons 2, superior very small, visible from a very short cleft or almost entirely confer-ruminate.-Evergreen undershrubs; leaves opposite imbricate, entire ericoid or oftener flat coriaceous; stipules very small lateral glanduliform (blackish); axils often setiferous; flowers in axils of uppermost leaves (sometimes changed into coloured bracts) solitary subsessile, decussately bracteolate. (Cape of Good Hope.) See p. 95.
2. Sarcocolla K. ${ }^{1}$-Flowers nearly of Penae (larger); perianthtube ${ }^{2}$ oblong; lobes shorter than tube (Eusarcocolla ${ }^{3}$) or subequal
[^125][^126](Brachysiphon ${ }^{1}$), or valvate (Euclissa ${ }^{2}$), or oftener reduplicate-valved (Eusarcocolla, Anaclissu. ${ }^{3}$) Stamens inserted in neck; filaments free, either long exserted (Eusarcocolla), or short enclosed (Brachysiphon); anthers shorter more or less than connective or subequal, introrse. Gynæcium of Penca (exalate); style slender elongate ; ovules in cells 2 and other characters of Pencea.-Undershrubs ; ${ }^{4}$ leaves opposite generally flat, imbricate ; stipules very small; flowers axillary solitary, more or less approaching the apex of the branches (spuriously spicate or capitate); bracts oftener expanded or attenuated, coloured. (Cape of Good Hope. ${ }^{5}$)
3. Endonema A. Juss. ${ }^{6}$-Flowers of Sarcocolla; perianth valvate (Euendonema ${ }^{7}$) or reduplicate (Glyschrocolla. ${ }^{8}$) Stamens 4; filaments rather long. Germen-cells 4, 4-ovulate; $\underset{\sim}{2}$ ovules ascending; micropyle introrsely inferior; the other 2 descending; micropyla introrsely superior. Capsule wingless, loculicidally 4 -valvate; seeds in cells $1-3$, or sometimes 4 (2 ascending; but 2 descending); funicle swollen arilliform; testa produced to a cupule at apex; ${ }^{9}$ embryo and other characters of Sarcocolla (or Pencea).-Shrubs or undershrubs; habit and leaves of Surcocolla; flowers axillary often to upper leaves solitary; bracts imbricate, sometimes coloured. (Cape of Good Hope. ${ }^{10}$)

[^127]
XLIX. THYMELAACE®.

1. AQUILARIA SERIES.

Aquitarit ${ }^{1}$ (fig. 67-69), the name of which has been given to a family long admitted as distinct, consists of plants with hermaphrodite, regular and monoperianthous flowers. The floral receptacle ${ }^{2}$

Fig. 67. Flower (5 $\frac{5}{1}$).
Fig. 69. Long, sect. of fruit ($\frac{3}{2}$). Fig. 68. Long. sect. of flower.
has the form of an obconical or nearly hemispherical sac, on the margin of which are inserted five or six obtuse sepals, imbricate in prefloration. More internally, from the throat of the receptacle spring ${ }^{3}$ ten or twelve stamens, perigynous like the sepals to which five of them, somewhat longer, are superposed, whilst the five or six others, belonging to another verticil, are alternate. Each is formed of a filament, very short or almost nil, often long ${ }^{4}$ enough for the

[^128][^129]anther with which it is surmounted to be partiy or wholly exserted. The latter is formed of a connective continuous with the summit of the filament and to the internal face of which are applied throughout their entire length the parallel and independent cells of the anther, dehiscing introrsely by a longitudinal cleft. With the stamens alternate ten or twelve obtuse or flattened tongues which occupy the intervals 1 and are covered with whitish hairs. At the bottom of the floral receptacle is inserted a sessile gynrcium, the ovary of which, generally dicarpellar 2, is surmounted by a short style, dilated above to a stigmatiferous head with more or less salient lobes. The ovary is divided into two cells, complete or incomplete, ${ }^{3}$ each of which encloses, in its internal angle, a descending anatropous ovule, with micropyle directed upwards and outwards. ${ }^{*}$ The fruit is a drupe, but slightly fleshy, finally dry or nearly so, obovate or obcordate, attenuated at base to a sort of foot around which persist the perianth, and a portion of the androcium ; compressed perpendicularly to the partition which divides it iuto two cells. It opens marginally into two valves, septiferous in the middle of their internal face, and encloses one or two seeds the coats ${ }^{5}$ of which are prolonged inferiorly to a sort of chalazine horn ${ }^{6}$ and cover a fleshy embryo, with short superior radicle and thick plano-convex cotyledons. Of one species of Aquilaria from the Philippines a genus Gyrinopsis ${ }^{7}$ has been made, because it has a receptacular sac longer in tube and very short staminal filaments. Aquilerio comprises trees and shrubs from tropical Asia and the warmest regions of Malaya. They have alternate leaves, entire or nearly so, penninerved, with numerous sccondary nervures, linear and parallel, and terminal lateral or axillary flowers, ${ }^{8}$ arranged in simple or more or less compound umbels. Four or five species are described. ${ }^{9}$

[^130][^131]Gyrinops Walla ${ }^{1}$ (fig. 70, 71), a shrub from Ceylon, similar to Aquilaria in its organs of vegetation, differs in that the throat of its narrowly tubular receptacle gives insertion to only five oppositipetalous stamens and to an equal number of alternate scales, forming

Fig. 70. Flower ($\frac{4}{1}$). by their contiguity a short collarette covered with hairs, and in that their bilocular ovary is supported by a long foot. ${ }^{2}$

Phateria, ${ }^{3}$ shrubs from all the tropical regions of Asia and Oceania, differs directly from the preceding genera by its opposite leaves. The flowers have also a long tubular receptacle, but coloured and petaloid, as well as imbricate sepals, ${ }^{4}$ to the number of four or five, which are inserted in the throat. It is lined with a very thin disk which thickens only at the throat and there terminates in a straight or festooned edge, or is dilated into lobes which project into the intervals between the superior stamens. The latter are the same in number as the parts of the perianth to which they are superposed, whilst the alteruate stamens are situated lower down on the receptacular tube. All are composed of one filament of variable length and one bilocular and introrse anther, dehiseing by two longitudinal clefts. The ovary, with two or often a single cell, is surrounded at the base by a cupuliform and membranous disk, entire or lobed, and surmounted by a style, like the staminal fila-

[^132][^133]ments, of very variable length, 1 dilated at the summit to a stigmatiferous head more or less lobed. The fruit is a slightly fleshy drupe, with one or two seeds the fleshy embryo of which is destitute of albumen. Some dozen ${ }^{2}$ species of Phaleria are described; the flowers are arranged in short, often umbelliform, spikes, terminal or axillary, surrounded by imbricate bracts forming an involucre. ${ }^{3}$

Instead of being elongated, as in the flower of Phaterice and of Gyrinops, the receptacle of Aquilurit may become short, cupuliform ; so that the perigyny there becomes much less distinct. This occurs in Gonistylus, a tree from the Indian Archipelago, which has alternate leaves, five sepals, ten stamens, some thirty scales in their intervals, four or five cells in the ovary and a large bacciform fruit. By the form of its receptacle, it is intermediate between the preceding genera and Octolcpis, a genus from tropical and western Africa, whose leaves are alternate, and its tetramerous and diplostemonous flowers have a receptacle almost flat, with an insertion, consequently, scarcely perigynous, and an ovary almost entirely superior, with four uniovulate cells.

II. THYMELAEA SERIES.

We commence the study of this series, not by Thymelet, from which it has derived its name, nor by Daphne, the best known representative in our country, but by the most complete types, such as those presented in their flowers by Linostoma (fig. 72, 73). It may be said of these that, but for their unicarpellar gynæcium, they would be altogether inseparable from Aquiluria. ${ }^{5}$ They have

[^134][^135]regular, hermaphrodite pentamerous flowers. The concave receptacle, ${ }^{1}$ in the form of a reversed cone, bears on its margin the five divisions of the calyx, quincuntially imbricate, then open or even reflexed in anthesis. In the throat are inserted with and superposed to

Linostoma decandrom.

Fig. 72. Flower ($\left.\begin{array}{l}1 \\ 1\end{array}\right)$.

Fig. 73. Long. sect. of flower.
them five stamens each formed of a free filament and an exserted and introrse anther, bilocular and dehiscing by two longitudinal clefts. Five other stamens, alternate with and shorter than the preceding, of the same organisation, constitute a second verticil; and with the ten parts of the androcium alternate an equal number of glands, also inserted in the throat, elongate, nearly petaloid, glabrous, obtuse ${ }^{2}$ at the summit, long contracted towards the base. The gynecium is quite at the bottom of the receptacle, accompanied at the base by ten very small hypogynous glands each of which corresponds to a prolongation of one of the stamens. The ovary is free, nearly sessile, covered with hairs, surmounted by a terminal slender style, the exserted summit of which is dilated to a stigmatiferous head. In the single cell of the ovary is seen a parietal placenta bearing, a little below the summit, a single descending anatropous ovule, with micropyle superior and exterior. The fruit is a naked drupe (?), fiually dry, enclosing one descending seed, with thick fleshy embryo and short superior radicle, and accompanied by an unabundant fleshy albumen. Linnstona, of which only one or two Indian ${ }^{3}$ species are known, consists of glabrous

[^136][^137]shrubs, with opposite leaves, without stipules, entire, penniuerved, and terminal flowers arranged in umbeliform eymes and accompanied by leaves modified as to form and consistence.

Close to Linostoma ranges Lophostoma, a beautiful tree from the region of the Amazon, which, with the same leaves and the same floral organisation, presents short and hairy alternipetalous glands, an ovary destitute of hypogynous disk, and a fruit with thin and dry pericarp, around which persists the accrescent perianth, almost vesiculate and thickened at the base to a sort of crenelated ring. Synaptolepis, a sarmentous shrub of Zanzibar, has likewise opposite leaves and pentamerous and decandrous flowers; but the perianth has the form of a horn still more narrow and elongate; and, above the oppositipetalous stamens, is scen, instead of free scales, a short collarette with entire or finely crenelate margin. The fruit is ovoid, closely surrounded by an induvium formed by the base of the perianth become fleshy and perforated at the summit; the flowers are axillary and solitary. In Stcplanadenia, native shrubs of Madagascar, the habit is altogether different, and the leaves are alternate, elongate and pointed, with numerous fine pinnate nervures. The flowers, either arranged along a long and slender spike to which they. are articulate, or gathered in a sort of umbel at its summit, are constructed nearly as those of the preceding genera. But the perianth has the form of a tube nearly cylindrical, and the throat bears, above two distant verticils of sessile anthers, a thick glandular collarette, spread out, and fringed with prominent papillæ. The gyniccium, suppurted by a very short foot, is composed of an ovoid ovary extending upwards in a terminal style with stigmatiferous extremity somewhat cularged. In Dicrenolepis, on the contrary, the scales of the throat of the limb attain so great a development, that they nearly equal the five divisions of the calyx and resemble a corolla. A pair of these large petaloid and coloured scales correspond to each interval between two neighbouring sepals. The andrecium is equally diplostemonous, and the ovary is supported by a short foot surrounded by a disk in the form of a membranous sheath and surmounted by a style with a stigmatiferous claviform and elongated extremity. Dicranolepis consists of shrubs from tropical western Africa with distichous unsymmetrical leaves and axillary sessile flowers. Gnidict has also petaloid scales at the throat of the perianth, but they are much less developed. They are simple or double in
each interval between two calycinal lubes. The latter are five in number in the species of which the genus Lasiosiphon has been made, and four in Guidic proper, whose perianth often separates circularly

Fig. 74. Floriferous branch.
above the ovary. The latter is generally surrounded at the base by a hypogynous disk of very variable dimensions. Gnitio has alternate or opposite leaves and flowers generally

Fig. 75. Flower $\binom{2}{1}$, collected in terminal capitules surrounded by an involucre of imbricated floral leaves; more rarely they are axillary, solitary or grouped in spikes. They inhabit India, Madagascar and especially tropical eastern and southern Africa. Lachncea (fig. 74-77), all natives of southern Africa, has always tetramerous flowers and eight stamens, four of which may be sterile; but, what is remarkable, these flowers are sometimes regular and sometimes irregular, with such transitions between the one form and the other, that it is quite impossible to divide the genus. The gynæcium is destitute of hypogynous scales, and those
which alternate with the stamens are inserted lower down on the tube of the corolla (fig. 77) ; a character which has given a name (Cryptadenia) to one section of the genus. Lachnaa consists of ericoid ramose shrubs, with alternate or opposite leaves, and flowers terminal or solitary or collected in a variable number at the summit of the branches, in heads bare or surrounded by an involucre.

In the following types, while all the characters remain the same as the preceding, the scales of the throat of the perianth disappear. This

Fig. 77. Perianth and andiocium. is observed not only in Daphne, but in the numerous genera which, with it, here constitute a second subseries (Eudaplnece). The most complete are those which, as Dais (fig. 78), have regular hermaphrodite pentamerous flowers, with two series of five stamens, of which five, longer and higher placed, are oppositipetalous, and a gynæcium surrounded by a hypogynous disk. Dais, shrubs of Madagascar and the Cape, has, besides, the foliage and inflorescence of Gnidia, to which it is often united, being distinguished only by the absence of scales from the throat. Lasiadenia, a shrub from Guyana and Venezuela, has nearly the same flowers; but the terminal and few-flowered capitules are destitute of an involucre, and the five glands which accompany the base of the ovary are short and covered with long hairs. It is

Fig. 78. Inflorescence. scarcely possible to separate Hargasseria, shrubs of Cuba, except that the stamens are exserted instead of being enclosed, and the flowers are polygamous and collected in a capitule (without involucre) the receptacle of which is covered with abundant hairs (like that of Lasiosiphon). In Goodallia, a shrub of Guyana, which also has alternate leaves and flowers in terminal and capituliform spikes, the flowers are diœcious, pentamerous ; and the hairy glands of the disk, ten in number, are not hypogynous, but inserted on the tube of the perianth, near the base; the form
is linear. Duphnopsix, slurubs of tropical America, has also diœcious flowers, with a bell- or fumnel-shaped perianth; but they are tetramerous. The gynæcium is accompanied by a hypogynous disk, formed of four small glands independent or united in a short tube or cupule. The flowers are alteruate, and the inflorescence is in umbels or pedunculate capitules, solitary or collected in cymes.

Lugettu, the Lae tree of the Antilles, has also tetramerous fowers; but they are hermaphrodite, and the coloured perianth is ovaloblong, narrowed at the throat, then divided into four imbricate lobes. The androcium is formed of two verticils of four enclosed stamens, nearly sessile, and the ovary, whose base is destitute of disk and its surface covered with long hairs, is surmounted by a short style, swollen at its stigmatiferous extremity. The fruit is dry, covered with hairs and surrounded by the

Dirca palustris.

Fjg. 79. Floriferous branch.

Fig. 80. Flower, perianth laid open $\binom{3}{1}$. persistent base of the calyx. It is a tree with large alternate and oval leaves, and flowers in simple and terminal spikes. Funifera, sometimes united with Lagetta, are Brazilian, and have alternate or opposite leaves, with flowers collected in racemiform or spiciform cymes, terminal or occupying the axils of the upper leaves. They are tetramerous, with eight enclosed stamens, but diœcious, and the base of the ovary is accompanied by eight long linear setaceous glands intermixed with long silky hairs. The fruit is also dry and surrounded by the accrescent and persistent perianth. Peldicu, shrubs of southern and tropical Africa, have alternate or nearly opposite leaves and hermaphrodite, umbellate, terminal flowers, with articulate pedicels. The perianth is cylindro-conical, with 4 or 5 imbricate lobes. The andrœcium consists of 8 or 10 enclosed stamens, inserted within the tube in two verticils, and the ovary is accompanied by a hypogynous disk in form of a denticulate cupule. The fruit is drupaceous and bare.
Diret pulustris (fig. 79, 80), a shrub of North America, has also hermaphrodite and tetramerous flowers. The petaloid perianth has the form of a horn with an aperture cut obliquely, and the eight
stamens, arranged in two verticils alternating with the teeth of the perianth, are inserted towards the lower part of the perianth and exserted. The ovary is accompanied by a small annular disk and surmounted by a style attenuated towards the summit. The fruit is a naked berry. The leaves are alternate, caducous, and the flowers, which blossom in early spring, are axillary and solitary or in few-flowered cymes.

Daplune (fig. 81-8y) has also hermaphrodite and tetramerous flowers. The periantl, green or petaloid, has the form of a tube or Daphne Mezereum.

Fig. 82. Flower ($\left.\begin{array}{l}1 \\ 1\end{array}\right)$.

Fig. 84. Fruit ($\frac{3}{2}$).

Fig. 81. Floriferous branch.

Fig. 83. Long. sect. of Hower.

Fig. 85. Long. sect. of fruit.
funnel, and its limb consists of four folioles, disposed in the bud in imbricate-alternate prefloration. As in the preceding genera, the throat is destitute of scales, and the andræcium is formed of eight stamens, sessile or nearly so, of which four superposed to the sepals are taller. The gynæcium is surrounded by a disk generally very short, and the ovary is surmounted by a style nearly apical, with dilated summit, spherical or ovoid, covered with stigmatic papillæ. In Edgeworthia, which has been generically distinguished, it is longer and claviform in its stigmatiferous portion. The fruit is a naked berry, with a pericarp sometimes thin; it contains one seed with albumen thin or nil. Daphne consists of shrubs from the
temperate regions of Europe, Asia, or Africa, with alternate or rarely opposite leaves most frequently persistent. The flowers are sometimes axillary and sessile, generally in the axils of the upper leaves or bracts which take their place, so that collectively they form a sort of capitule. In the Dephene of South-western America, the habit and the foliage are the same; but the tetramerous flowers are declinous, and the perianth is infundibuliform, constricted at the throat. Of the eight stamens, reduced in the female flower to narrow sterile tongues, the four superior are oppositipetalous and exserted. The gynæcium is surrounded by a small disk of four scales, and the elongated style is dilated to a stigmatiferous head. They formed the genus Oritiu, abundant especially in the Andes. Wikstromia was also formerly comprised in the genus Daphene, and is scarcely distinct; the periantl and andræcium are the same; the disk is nil or formed of four hypogynous, linear seales, free or united at the base. The fruit, generally but slightly fleshy, finally separates from the perianth, which opens lengthwise, and the seed has a scanty albumen. They are Oceanic and Asiatic trees and shrubs, with opposite, more rarely alternate leaves, not persistent, and terminal inflorescence.

Beside Duplue and Wikstromiu are ranged some other closely allied genera, all of which have regular, diplostemonous flowers, without scales in the throat. Such are Stellert, shrubby or herbaccous plants of temperate Asia. The perianth is hypocrateriform, 4-6merous, and its tube presents above the ovary a transverse articulation. The upper becomes detached, whilst the indurated base surrounds the dry fruit. The ovary, surrounded by an oblique membranous disk, is surmounted by a bundle of hairs from which emerges the style dilated at the summit. The leaves are alternate and the flowers disposed in spikes or in terminal capitules. Thymelcea has tetramerons, unisexual or hermaphrodite flowers, without hypogynous disk. They are shrubby or subshrubly plants of the Levant, Asia and North Africa. The leaves are alternate, and the flowers axillary, solitary or collected in glomerules. Arthrosolen, shrubs or undershrubs of southern and eastern Africa, having flowers axillary or terminal and surrounded by an involucre, has an infundibuliform coloured perianth; the flower differs from that of Gnidit only in the absence of scales in the throat of the perianth. Diartliron is also very analogous. The tetramerous perianth has the
form of an elongate tube and presents a transverse articulation constricted above the ovary. The latter is surrounded by a thin annular disk, and becomes a dry fruit surrounded by the inferior portion of the perianth. Diarthron comprises slender herbs from central Asia; the leaves are alternate, linear, and the flowers form elongated and slender spikes, destitute of bracts. Passerna (fig. 86) has also tetramerous flowers, with hypocrateriform calyx; the ovary is without a disk, and the two staminal verticils are sufficiently near to appear a single verticil. The fruit is dry or more rarely fleshy, as in P. empetroides, of which has been made a genus Chymococca, but which, like its

Fig. 86. Floriferous branch. congeners, is a Cape plant, ericoid, tomentose, with linear opposite leaves, and flowers solitary or collected in short spikes or terminal capitules.

The andrœeium is rarely isostemonous in this series, and there are only four genera therefore constituting the subseries Struthiolece. Struthiole and Kelleria have in fact only four stamens, alternate with the divisions of the perianth; but the throat of the latter bears four simple or unsheathed scales, superposed to the divisions (Eustruthiolecx). In Drapetes, on the contrary, the scales disappear (Drapetecx), all the other characters remaining those of Kelleria. Struthiola consists of Cape shrubs or undershrubs, ericoid and with leaves almost always alternate. Kelleria and Drapetes are humble subshrubby and cæspitose, musciform plants, with sessile and imbricate leaves. The former are Oceanic; the latter inhabit the mainland and principal islands of the Magellanic

Pimelea ligustrina.

Fig. 87. Flower ($\left.\begin{array}{l}4 \\ 1\end{array}\right)$.

Fig. 88. Long. sect. of flower.
region. Schoenobiblus, of which only one woody species from Brazil is known, has membranous alternate leaves, and male flowers disposed in terminal umbels. The perianth presents a short, infundibuliform tube, covered with hairs at the bottom, with four linear open lobes, to which are superposed an equal number of exserted stamens, with oblong and introrse anthers. The female flower is unknown. Still more rarely there are less stamens than parts in the perianth, and the small subseries (Pimelece) in which this is observed, comprises the single genus Pimelea (fig. 87, 88), which has only two stamens superposed to the most exterior of the four divisions of the perianth, and which includes shrubby, subshrubly or herbaceous plants, natives of Australia, Tasmania, New Zealand and, very rarely, of Java. In nearly all cases the leaves are opposite and the inflorescence capitate and terminal.

This very natural family is of very ancient origin. Adanson ${ }^{1}$ had very clearly indicated it in 1793, in section II of his Family of Gerou ('hymelece 2). A. L. de Jussieu ${ }^{3}$ gave to the same group the name of the order Thymelect, but he introduced into it wrougly Quisqualis (Combretucere), Lindiey ${ }^{4}$ and Endlicher ${ }^{5}$ fairly limited this fumily for which C. A. Meyer proposed the name Daphuacee) ; but the former included Exocerpus (Santalacece ${ }^{6}$), and Mernandiee , which we have referred to Lauraces; ${ }^{6}$ and the latter retained Cansiera (of the Santalacea) and Hernandiucere; but he added, as a doubtful genus, however, Phuleriat which Jack ${ }^{7}$ had published some fifteen years previously. In fact Endhinier, in 1836, admitted fourteen of the genera now preserved, Dirca, Daphne, Dais, Lachncea, Passerina, Diarthron, Drapetes, Pinclen, Dtruthiola, G'uidit, Linostoma, Wikstromia, Lagette and Phuleria. Meissner, who at various times ${ }^{5}$ occupied himself with this family, in 1857 added to it the genera Ovidita and Lophastoma, at the same time ascribing to it in their respective order the ancient genus Thimeloce of Toulinefort,

[^138][^139]Stellera of Gmelin, Arthrosolen and Funifera of C. A. Meyer, Kelleria of Endlicher, Peddiea of Harvey, Daplnopsis and Sehocnobiblus of Martius and Zuccarini, Dicrunolepis of Planchon, Coleophore of Miers and Goodulliu and Lasiudenia of Benthans. In fact, he admitted among the Thymelece thirty-three genera which we have reduced to twenty-seven and to which Ol.iver ${ }^{1}$ has just added Synaptolepis. We have also proposed, in this series, a new genus Stephecnodapme; ${ }^{2}$ bringing the total up to twenty-nine. The Aquilarica, which formerly comprised only the genera Aquilaria of Lamarck ${ }^{3}$ and Gyrinops of Gertner, ${ }^{4}$ have been long separated from the Thymelacece, chiefly on account of their pluricarpellar gynæcium; but R. Brown, who ranged them beside the Dichapetalece (Chailletiece), declares, however, ${ }^{5}$ " that their affinity with the Thymelece would be less difficult to establish than with any other group." This opinion, the 'paradoxical appearance' of which he did not dissimulate, is indeed now adopted by everyone. We have seen Endlicher placing Phalaria in the series of the Thymelacere; which entails the annexation to this family of Aquilaria and Gyrimops, inseparable from Phalcria. Unfortunately, Dechisne, engaged with these plants in 184.3^{6} and $1864,{ }^{7}$ placed before the latter generic name that of Dirymispermum, ${ }^{8}$ which is posterior to it, and, inconsiderately multiplying generic and specific divisions, introduced the utmost confusion, making with the true Phateria at the same time Drymispermum, Psculais and Leucosmia, persisting in and even aggravating his errors in his work of 1864 , in which he appears to take no notice of the progress of science or the labours of his predecessors. ${ }^{9}$ Meissner, ${ }^{10}$ also, having passively admitted the valueless gencra established by Decatsne, was led to divide the Aquilarica, under the same title as the Thymelce, into two tribes, Gyrinopece and Drymispermece, distinguished from each other by the presence or absence of scales in the throat of the perianth, and to place the same genus, under different names, in both tribes. Happily in

[^140][^141]$$
8-2
$$

1866, Seemann ${ }^{1}$ had the credit of restoring in one and the same genus Phaleria (Drymispermum) and Leucosmia of Benthan; ${ }^{2}$ a union fully adopted by this conscientious observer. ${ }^{3}$ Miquel long since, in 1861 and in 1863, enriched this series with the genera Sleaphium, ${ }^{4}$ Lachnolepis ${ }^{5}$ and Gonistylus, ${ }^{6}$ the two former of doubtful position, and the last intermediate, in the form and dimensions of the floral receptacle, between the Aquilarice formerly known and the genus Octolepis proposed some years since by Oliver. ${ }^{7}$

The thirty-three genera whose autonomy we admit comprise about two hundred and sixty species. Not two are common to both worlds, and a dozen of them are American. The greater part are monotypes and their total represent only some thirty odd species, whilst about two hundred and fifty are peculiar to the old world, and are distributed in twenty-one genera. None of the Aquituriece (some score of species grouped in half-a-dozen genera) belong to America, and all, except Octolepis which is African, are natives of the warmest parts of south-eastern Asia and tropical Oceania. The American Thymelece are nearly all from South America. Only a couple of Daphnopsis and Dirca are from North America. The three genera Duphonosis, Lagetta and Hargasseria, are found in the Antilles, and the two latter are met with nowhere else. Coleophora, Funifera, Lophostoma and Scheonobiblus have been observed only in Brazil ; Lutsiculenia in the north of Brazil and in Venezucla ; Goodullie in Guyana ; Ocidia in the Columbian Andes and Chili; Drapetes in the Magellanic region. Among those that belong to the old world there are genera, not rich in species, the geographical distribution of which is quite as limited. Thus Pectdien is exclusively from Southern or Western Africa; Dicrunolepis, from tropical Western Africa ; S'yuntptolepis, from Zanzibar ; Stephenodephure, from the castern isles of Λ frica; Passerina and Aithrosolen, from southern Afriea; $D_{\text {orthion, from central Asia; Duis, from }}$ Madagasent and the Cape; Ficllerie, from Ocrania; Limnstome, from

[^142][^143]India. The greater part of the Oceanic Thymelece are Pimeleas, to the number of nearly a huudred. To the Cape belong exclusively two genera of numerous species, Struthiold and Lachnuea. The genera most widely spread in the old world are: Gnidu, which grows in Africa, in Asia and as far as tropical Oceania; Wikstromia, which is Asiatic and Occanic ; Thymelood, extending like Daphene, through Asia, Africa and Europe. In America, from Tierra del Fuego, where Drapetes muscosa grows, to Camada, where Dirca palustris is found, there are a hundred degrees. In our hemisphere, from Tasmania and New Zealand, where the Kellerias are the analogues of Drapetes, to Sweden and Norway, where also Dapline grows, there is the same distance. The latter genus has representatives in Java, in China and Japan, in India, in Siberia and in all the countries of Europe.

All these plants have pretty numerous constant characters. The principal are: the simplicity of the perianth ${ }^{1}$ and its imbricate prefloration; the definite number of parts of the androcium and their insertion on the floral envelope; the independence of the gynæcium and its insertion inferior to that of the stamens. ${ }^{2}$ The characters which vary most and which generally serve to mark the generic divisions are: the number of the parts of the flower, the point of insertion of the stamens and the dimensions of their filaments which render them exscrted or enclesed, the presence or absence of scales in the throat of the perianth and of glands forming a disk at the foot of the gynocium, the consistence of the pericarp, the mode in which the base of the perianth falls after floration or persists growing round the ripe fruit, the relative proportions of the embryo and albumen which may be wanting, and the arrangement of the inflorescence. A single character distinguishes the series of the Aqulariees from that of the Thymelee; it is the

[^144][^145]number of the carpels of which the gynæcium is formed; one in the latter and two in the former. And even this character is not absolute. It is indeed exceptional that one cell and one ovule is observed in the Thymelec; ; but in certain species of Phalcria, a genus of Aquituriec, there is nearly as often one ovarian cell and one ovule as two. ${ }^{2}$

This last character shows us plainly enough that, if the affinities of this family with the Lauraces, Hemandiect, Protacea were alone perceived by early botanists, it is because they had to compare with them scarcely any but the Thymeleca-that is, types with unicarpellar gynæcium and parietal placentation; ${ }^{3}$ but we must now inquire to what families the Thymelacece ally themselves by their highest types, those whose gynæcium is formed of more than one leaf and contains two cells, complete or incomplete. These are the Pencacere, the Rhamnacere (especially the Colletices) and the Celustracce. The 'tube' of the flower, we have repeatedly said, appears to have the same morphological signification in the Thymelacere and in the plants of these families which lhave a perigynous andrecium. But in the Rhamnacea and in those of the Pencucee which have in each cell only two ovules, the latter are always ascending. Moreover, the Rhamnuces are distinguished by their oppositipetalous stamens, and the Penaacea, by the quite special organization ${ }^{4}$ of their ovarian partition. The Celastracee are generally hypogynous; and, in this case, they nearly approach, by their entire floral organization, one of the Thymelacece scarcely perigynous, such as Octolepis. But in those of

[^146][^147]the Celastracece whose ovules are descending, as is invariably the case in the Thymelucece, the mycropyle, exterior in the latter, is turned upwards and inwards. It would always be difficult, as we have elsewhere pointed out, ${ }^{1}$ not to find a striking resemblance between Octolepis ${ }^{2}$ and Geissoloma.

Uses. ${ }^{3}$-The Thymelere are acrid plants, often very dangerous, most parts, when introduced into the intestinal canal, producing a violent, sometimes mortal, irritation; in the mouth and throat, a burning sensation, followed by a change in the mucous membrane analogous to that produced on the skiu, and which is true blistering if the contact is sufficiently prolonged. This property has been attributed to daphnine, ${ }^{*}$ a principle often found in Daplune united with a green oil, which can be aualysed into glucose and daplmetine. Many European Daplues are employed as vesicants, chiefly Garou, D. luwreola and Bois-gentil (D. Mezereum). The bark and more rarely the seeds are used in medicine. Garou (or Sain-Bois ${ }^{5}$) is a small shrub from the south of Europe. Its bark, flexible and difficult to break, has a tenacious liber which might be textile if freed from the fine white silk which covers the extcrior, and which, entering the skin, produces a painful itching. It is acrid, nauseous, corrosive, and is used especially in prepariug blistering powders and ointments. The fresh bark itself has also been employed, in southern districts, to establish revulsion and issue. It is an active but dangerous emmenagogue, and also a powerful moderator of cutaneous affections. Bois-gentil ${ }^{6}$ (fig. 81-85) has quite

[^148] Lank. Fl. Fr. iii. 222.-Thymelaa Gnidium Alt. Fl. Pedem. i, 153 (Lin saurage ou bdtard, Trintanelle, Thymélée de Montpellier, Canélée noire, Bois d'oreilles).
${ }^{6}$ D. Mezereum L. Spec. 356.-Blackw. Herb. t. 582.-Nees, Ic, Fl. Germ. iii, t. 46.Reicur. Ic. Fl. Germ. t. 556.-Hayne, Arzn. Gerc. iii. t. 43. - Mérr, et Del. Dict. Mat. Méd. ii. 584.-Guib. loc. cit. 385.-Gren. et Godr. Fl. de Fr, iii. 57.-Rosentif. op. cit. 240. -Berg, et Scmm. Darst. Off. Gew. t. 12 b.-D. Liotardi Vill. Dauph. iii. 516.-Mezereum officinartm C. A. Mey. Beitr. v. n. 112.-Thymelaa Mezererm Scop. Fl. Cainiol. 279.-All. Fl. Pedem. 131 (Joli-bois, Faux-Garou, Lauréole fencelle ou gentille.).
the same properties, but is less used among us, except in rural districts. In Germany, the bark of the stems and of the roots is used as a vesicant. The taste, at first sweetish, speedily becomes extremely acrid. It produces vomiting, active purgation and inflammation of the urimary passages. Bois-gentil has been employed in the treatment of chronic cutaneous affections, paralysis of the organs of deglutition, and locally against dental decay. The workmen who pulverise this bark and that of Garou find much difficulty in protecting their eyes and respiratory passages from the penctration of this irritant powder. Persons who have taken this bark internally are often affected by a perspiration in the head and neck, after which remains a burning sensation in the throat. Laureola, ${ }^{1}$ and Daphne collinu, ${ }^{2}$ ulpinu, ${ }^{3}$ ponticu, ${ }^{*}$ ultuicu, ${ }^{5}$ Cneorum, ${ }^{6}$ oleoides, ${ }^{7}$ Bholuc, ${ }^{8}$ have, in various degrees, similar properties. The same is said of Dircu pulustris ${ }^{9}$ (fig. 79-80), employed as a purgative by the North Americaus, of Lagettu linteuriu, of Wikstramiu indice, ${ }^{10}$ of Duphnopsis Sworrtzii ${ }^{11}$ and tinifolia, ${ }^{12}$ of Thymelaea Tartonraira, ${ }^{13}$ and of many species of Gnidia. ${ }^{14}$ The action of the fruits and seeds

[^149] bark is used. The flowers are administered
is similar, though generally less marked. The pericarp of Boisgentil is said to be poisonous for all aumals except birds, which among us feed upon it. The seeds of Garou were formerly used in the South as a purgative, under the name of Greme gnittic or Cocca ynidu, whence is supposed to be derived the vulgar name Coquenuudier. Its leaves, as also those of Lawrola and Mezereum, are also employed in decoction and in powder in rural districts; they purge in a less violent manner. Daplue contains likewise a colouring matter. Garou is used in the south to dye wool yellow. A beautiful yellow lac is also extracted from D, alpina and Laurcola. Passerinu tinctoria also furnishes a dye of the same colour. ${ }^{1}$ As plants with a textile liber, the Thymeiece still play a certain part in practice. In Madagascar, cord and paper are made from the bark of Guidia duphnafoliu, ${ }^{2}$ and paper from that of G. mudagascuriensis. ${ }^{3}$ Daplune Bholua and prapyrucea ${ }^{4}$ in India, and D. camatbince and chrysunthe ${ }^{5}$ in China and Japan serve the same purpose. Hargusseria Lagetta ${ }^{6}$ and Lagettu culenaumut ${ }^{7}$ in Cuba have a reticulated tenaceous whitish liber resembling certain loose tissues; but the most beautiful and best known of these lace-woods is the liber of Lagette lintearia, ${ }^{8}$ which, prepared by maceration and compression, imitates net somewhat irregularly. Of it are made cuffs, collars and cockades resembling lace, fine mats, and whips used to chastise the negro slaves. In many of the Polynesian Isles, notably in the Sandwich, the clothes of the natives have for a long time consisted of the liber of Thymelere, chiefly of Wikstremie indica, separated into leaves beaten and compressed with special implements, then smoothed and painted, fairly imitating coarse lace. In Brazil Funiferc utilis ${ }^{9}$ is used to make mats and cordage.

[^150][^151]The Aquilurica present few useful species. The name comes, as is known, from that of Eaglewood or Aloes of which the genus Aquilaria furnished many commercial sorts. Among the odorous and resinous woods, formerly burnt in temples and palaces, and which in ancient therapeutics entered into a number of preparations, the best known, which Guibourt calls the ordinary Aloes wood of commerce, is probably the Guro of Rumpirus, the product of Aquilaria malacensis ${ }^{1}$ (fig. $07-69$) or secunduria; ${ }^{2}$ and the same author thinks that it is A. Agallocha ${ }^{3}$ of India which produces the Eaglewood or false Calambac. ${ }^{4}$ The Orientals highly esteem these Aloes woods which their sacred books extol as aromatic and of which many articles of cabinet work, chaplets and trinkets are made. The Agullochum spurium of Runphius ${ }^{5}$ is Gonistylus bancanus. ${ }^{6}$

The flowers of the Thymeluceer are often rery odorous. Those of D. odore, jupmict and Mezereum have a street and strong perfume perhaps not sufficiently utilised. The industrial uses of the stems are not numerous in Europe. In Switzerland, satin-like hats are twisted from the wood of Gerrou and Boisogentil, split into thin layers. In Grecee, brooms are made of the branches of Tirtonraira. Diren pulustris has a supple and fiexible wood; its bark is used to make baskets and cordage. The precocions flowers of certain species, notably those of Daphe Meareum, show themselves in the middle of winter. Many Chinese and Japanese Duphes flourish at the same seasou in our cool conservatories, where are cultivated a great number of Passcrince, Ginitite, Duis and the very beautiful Australian Pimelea.

[^152][^153]
GENERA.

I. AQUILARIEÆ.

1. Aquilaria Lank.-Flowers hermaphrodite regular; more or less long obconical. Sepals 5, or, more rarely 6, inserted in the throat, imbricate. Stamens 10 (or rarely 12), inserted in two series with the sepals, perigynous; filaments short or very short, sometimes longer subexserted or exserted; anthers basifixed, ovate or oblong, introrse, 2-rimose. Squamules equal in number to, and inserted alternately with the stamens, erect exserted pilose. Germen sessile to bottom of tube, free, enclosed, 2- or more rarely 3 -merous; style short or subuil, sometimes longer than and rising above the stamens, at apex dilated stigmatose more or less lobate ; cells in germen '2, 3, more or less complete, sometimes very incomplete, 1-locular ; ovule in cells 1 , descending ; micropyle extrorsely superior. Fruit drupaceous, finally capsular, girt at attenuate base with persistent calyx, obovate or oblong or obcordate, loculicidally 2,3 -valved; valves medially septiferous. Sceds 1-3, oftener 2 ; chalaza produced to a more or less spongy pilose cone; cotyledons of exalbuminous embryo fleshy plano-convex ; radicle short inferior.--Trees; leaves alternate shortly petiolate exstipulate entire penninerved; nerves close parallel ; flowers termiual, lateral or axillary subumbellate. (Trop. south-east. Asia, Malaya, Borneo.) See p. 102.
2. Gyrinops Gertn.-Flowers nearly of Aquilaria; calyx slender and long tubular, externally puberulous; limb imbricate. Stamens 5, oppositipetalous, inserted, with as many plane setulose squamules, in the throat ; anthers subsessile enclosed linear, introrsely 2-rimose. Germen inserted at bottom of perianth somewhat thickened and there furnished with unequal scarcely perceptible glands, long stipitate, attenuate at base and apex; style slender
erect, at apex stigmatose capitellate. Ovules in cells (2) solitary (of Aquiluria). Fruit, seeds and other characters of Aquiltriu; pericarp ovato-oblong or subovate.- A shrub; leaves alternate (of Aquilurite); flowers axillary and subterminal subumbellate, very shortly pedicellate. (Ceylon.) See p. 104.
3. Phaleria Jack.-Flowers hermaphrodite, 4-5-merous; receptacle long tubular (petaloid); sepals inserted in throat, imbricate. Disk very thin lining the tube, thickened above at the throat and there annular, subentire or 5 -crenate, sometimes produced to 4,5 scales alternating with the sepals and more or less prominent and thick. Stamens 8-10, inserted in two series under the throat; the oppositipetalous longer; filaments either very short enelosed, or more or less elongate and exserted ; authers basifixed introrse, $\underset{\text { arimose ; }}{ }$ all exserted or enclosed, or the oppositisepalous semi-exscrted. Germen subsessile, sometimes shortly attennate at base and there girt with liypogynous membranous disk, equal or unequal, subentire or lobate;
 elongate exserted, at apex stigmatose capitate subentire or more or less 2-lobed. Ovules in cells 1, descending; micropyle extrorsely, superior. Fruit bare drupaceous, indehiscent; sarcocarp oftener thin; putamen woody, 1-2-locular, 1-?-spermous ; embryo of exalbuminous descending seed fleshy; cotyledons thick plano-convex; radicle short superior. -Glabrous trees or shrubs; leaves oftener opposite and shortly petiolate exstipulate entire coriaceons peminerved; flowers in short or umbelliform spikes terminal or lateral; bracts imbricate forming involucre around flowers, caducous. (Southeast. Asia and north. trop. Oceania.) See p. 104.
4.? Gonistylus 'Texsm. and Binn. -_" Flowers hermaphrodite ; calyx short subsemiglobular ${ }^{2}$ coriaceous, deeply 5 -lobed ; lobes subvalvate, persistent. Scales numerous (35), inserted in one series in the throat, filiform. Stamens 10 ; filaments short, incurved in restivation; anthers oblong obtuse ; cells 2 , confluent above, longitudinally rimose. Germen subglobular, 45 -celled; ovules in cells solitary pendulous anatropous; style filiform very slender geniculately bent, apex small clavate 2 -lobed stigmatose. Berry ${ }^{3}$ subglobular;

[^154]mesocarp fibrous; cells 4,5 ; seeds affixed to vertex of central columella, oblong curved; embryo exalbuminous.-A lofty tree; leaves alternate petiolate sublanceolate entire coriaceous penninerved reticulate-veined, persistent; racemes terminating axillary fewflowered twigs; flowers fasciculate in dense hirsute tubercle. (Banca, Java, Sumatra. ${ }^{1}$)"
5. Octolepis Oliv. ${ }^{2}$-Flowers hermaphrodite; receptacle flat subcupular. Sepals 4, subperigynous, imbricate. Stamens 8, inserted in two series with the perianth; filaments free subulate; anthers ovate or ovately-cordate introrse; cells a, longitudinally rimose. Squamules 8 , inserted and alternating with the stamens, entire obtuse, pilose, valvate in the bud. Germen sessile ovoid hirsute, 4 -celled; style terminal short, at apex stigmatose dilated openly 4 -lobed; ovule in cells 1 , descending from top of internal angle. Fruit...? ${ }^{\text {" }} \mathrm{A}$ small tree; leaves alternate petiolate obovate-lanceolate apiculate, entire or widely denticulate membranous; flowers ${ }^{3}$ axillary fasciculate few pedicellate." (Trop. west. Africa.4)

II. THYMELE※.

6. Linostoma Wall.-Flowers hermaphrodite apetalous regular ; perianth tube (receptacle ?) obconical (coloured), deciduous ; lobes 5, equal, imbricate, finally patulous. Stamens 10 , inserted in throat, in 2 -series, 5 oppositipetalous, a little longer; filaments free exserted subulate; anthers oblong introrse obtuse, 2-rimose. Squamules 10, inserted in throat alternately with stamens, oblong-linear, attenuate at base, at apex subentire, obtuse or more or less incised, finally erect and exserted. Germen sessile in bottom of tube, girt at base by 10 minute hypogynous glandules opposite the stamens, ovoid hirsute 1-locular ; style terminal slender exserted, at apex stigmatose capitate ; ovule 1, parietally inserted, descending, anatropous; micropyle extrorsely superior. Fruit dly ("drupaceous") bare, indehiscent ; albumen of descending seed but slightly fleshy; radicle of somewhat thickened embryo superior.-Shrubs sometimes subscandent; leaves opposite entire penninerved exstipulate; floral

[^155]leaves submembranous diversiform ; flowers in terminal umbels (?). (India). See p. 105.
7. Lophostoma Meissn. ${ }^{1}$-Flowers nearly of Linostoma; calyx tubular, marcescent, persistent round fruit large membranous. Squamules 10, inserted in throat with as many longer stamens. Hypogynous disk 0. Fruit dry enclosed by calyx and basally seated in receptacle thickened to a ring, acuminate; pericarp smooth crustaceous, indehiscent. Seed . ..? Other characters of Linostomu. -Small trces or shrubs; leaves opposite or subopposite (of Linostoma) ; flowers in terminal corymbiform pedunculate racemose racemes; flowers ebracteate; pedicels very short persistent. ${ }^{2}$ (Northern Brazil. ${ }^{3}$)
8. Synaptolepis Oliv. ${ }^{4}$ - Flowers hermaphrodite (nearly of Lophostoma), 5 -merous; perianth long tubular-obconical, articulate at base; lobes $\check{5}$, imbricate ; the interior thicker. Squamules connate in slender erect subentire or shortly cremulate coronule of throat. Stamens 10, inserted at top of the tube under the coronule ; the 5 oppositisepalous higher than the others; filaments of all short; anthers enclosed introrse, 2 -rimose ; apicule somewhat obtuse from short connective. Germeu inserted at bottom of tube, free, at apex attenuated to a subulate style, dilated at stigmatose apex. Fruit enclosed by somewhat thickened base of perianth, finally subdry; seed...?-A glabrous slurub, sometimes subscandent; branches opposite divaricate more or less open terete (blackish); leaves opposite, shortly petiolate, ovately acute peuninerved; stipules 0 ; axillary buds conspicuons ; flowers axillary, oftener solitary, shortly petiolate. (Zanzibar. ${ }^{5}$)
9. Stephanodaphne H. Bn. ${ }^{6}$-Flowers hermaphrodite regular (nearly of Lophostoma), 5-merous; calyx hypocrateriform; tube elongate cylindrical ; lobes of limb 5, short, imbricate, open. Disk thick inserted in throat, annular continuous, finally at reflexed margin unequally fimbriate-lobed. Stamens 10 , inserted in ${ }^{2}$ series under the throat; anthers subsessile obtuse introrse. Germen sessile, without disk, perceptibly attenuated to a conical style stigmatose

[^156][^157]at obtuse apex, densely villoso-setose; ovule 1, descending. Fruit ... ?-Shrubs; leaves alternate, subsessile or very shortly petiolate, unequal or subequal at base, entire or widely crenulate, penninerved; nerves transverse or oblique; reins netlike or lineate; flowers in long-pedunculate spikes, erect or cernuous, lateral or supra-alate, clavate at apex, elongate or shortly subeapitate, articulate, deciduous. (Trop. east. Africa and islands. ${ }^{1}$)
10. Dicranolepis Pl. ${ }^{2}$-Flowers hermaphrodite, 5-merous ; tube of hypocrateriform calyx elongate, sometimes very slender; limb very imbricate, open. Squamules $10,{ }^{3}$ inserted in throat, alternating in pairs with, and equal to or longer than, the lobes of the calyx, widely petaloid. Stamens 10 inserted in throat, 2-seriate or spuriously 1 -seriate; filaments free short; anthers introrse; the longer exserted. Germen sessile or shortly stipitate, stipate at base to hypogynous thinly membranous, unequally crenate or dentate, either regular, or sometimes more evolved disk; ovule 1, descending ; style subterminal or lateral long, enclosed, at apex stigmatose clavate, capitate or orbicular. Fruit subdrupaceous (?) juiceless subglobular, cuclosed by persistent base of calyx, seed subglobular, cotyledons of exalbuminous embryo thick hemispherical ; radicle short superior. - Glabrous or oftener pilose shrubs; leaves alternate, 2-stichous, unequally oval or trapezoid; flowers subterminal or generally axillary, solitary or few glomerulate. (Tiop. west. Africa. ${ }^{4}$)
11. Gnidia L. ${ }^{5}$-Flowers hermaphrodite ; tube of infundibuliform or subhypocrateriform (coloured) calyx cylindrical, oftener circumscissus above the germen, deciduous; lobes 5 (Lasiosiphon ${ }^{6}$) or oftener 4 , imbricate, equally patent. Squamules 4, 5, petaloid, inserted in throat, alternating with and shorter than the lobes, either simple or 2 -fid or partite (more rarely very small and scarcely perceptible). Stamens 8-12, inserted in 2 -plicate series at

[^158][^159]top of the tube, subssessile, the 4,5 upper, oppositisepalous generally semi-exserted, sometimes abortive; the inferior same in number enclosed; anthers of all linear or oblong obtuse, introrse. Hypogynous disk short membranous or very short annular, often obsolete. Germen sessile; style lateral, equalling tube, at apex stigmatose capitate. Fruit nucular, enclosed by base of persistent calyx ; seed sparsely albuminous.-Shrubs or undershrubs, either ericoid, or furnished with herbaceous or sub-coriaccous leaves alternate or opposite; ${ }^{1}$ flowers ${ }^{2}$ terminal, shortly spiked or oftener capitate; receptacle often pedunculate sometimes hemispherical, often (Lasiosiphon) villose, involucrate with floral leaves (few or ∞) imbricate (sometimes larger). (India, south. and trop. east. and west. Africa and adjacent islands. ${ }^{3}$)
12. Lachnea Roy. ${ }^{4}$-Flowers hermaphrodite, 4-merous, regular or sometimes irregular ; tube of perianth straight or curved, slender or infundibuliform, sometimes suburceolate (Cyyptadema), ${ }^{5}$ narrowed above the germen and finally circumscissile deciduous ; lobes of limb equal or irregular in 2-labiate limb; the posterior lip smaller (1-lobed) ; the anterior larger open-recurved (3-lobed); imbricate in prefloration. Stamens 8 , inserted at top of tube, 2 -seriate ; the upper 4, oppositisepalous and exserted; filaments slender short, sometimes barbate ; anthers ovate or oblong obtuse. Squamules $8,{ }^{6}$ alternating with stamens, sometimes very small, either partially concealed in the hairs of the throat, or inserted at or below the middle of the tube (Cryptudeniu) and much lower than the anthers. Hypogynous disk 0 . Germen sessile; style lateral capillary, apex stigmatose capitate oftencr exserted. Fruit nucular, enclosed by persistent base of calyx ; seed oftener sparsely albuminous.-Shrubs or small shrubs often ericoid branched; branches slender ; leaves alternate or opposite, linear or acerose, glabrous or variously pilose ; flowers ${ }^{7}$ sometimes terminal solitary or oftener capitate involucrate or naked.-(Soulh. Africa. ${ }^{8}$)

[^160]13. Dais L. ${ }^{1}$-Flowers hermaphrodite, 3-mcrous (nearly of Gritiu); limb of infundibuliform (coloured) calyx patent; throat esquamate. Stamens 10, exserted ㄹ-seriately in throat; filaments setaceous rather longer, all or only the upper exserted ; anthers oblong obtuse. Germen girt at base with eup-shaped membranous disk ; style lateral, apex stigmatose capitate or subclavate truncate. Fruit baceate (sometimes dry ?), enclosed by persistent base of calyx.-Shrubs; leaves alternate or oppesite flat membranous rather large veined; flowers ${ }^{2}$ capitate terminal ; capitules solitary pelunculate, involucrate with 4, 2-cussately imbricate bracts. (IIculuguscer, South. Africu. ${ }^{3}$)

14? Coleophora Miers. ${ }^{4}$-" Flowers hermaphrodite, $4-5$-merous; calys coloured infundibuliform; tube contracted from base to middle and there hirsute within, above and externally glabrous; throat esquamate ; limb t-or more rarely 5 -fil ; lobes acute reflexed fimbriately ciliate. Stamens 8-10, inserted 2 -seriately iu throat exserted ; filaments short inflexed; anthers ovately rotundate subversatile; connective dorsal thick. Hypogynous cyathulus surrounding filiform stem of germen, springing from small glandular bed adnate to base of calyx, infundibuliform petaloid glabrous, equalling half of calyx, 4 -fill; lobes linear crect. Germen stipitate oblong gibbous pilose; ovule pendulous from apex of cell ; style terminal (?) filiform, equal in length to germen, enclosed glabrous ; stigma capitate. Fruit. . ? - A lofty tree; trunk gemmuliferons; gemmules aggregate, imbricately multibracteate; leaves...?; flowers racemose." (South. Brazil. ${ }^{5}$)
15. Lasiadenia Benth. ${ }^{6}$ - Flowers hermaphrodite, 5 -merous; tube of persistent green calyx cylindrical ; throat bare; lubes of limb 5, very imbricate, patent. Stamens 10, enclosed ; 5 supcrior, oppositipetalous inserted much higher than the rest and below the throat. Germen very hispid, girt at base with 5 squamules, minute

[^161][^162]long barbate; style eccentric thin, apex stigmatose thick ovoidcapitate obtuse, 10-costate. Fruit drupaceous, finally dry, enclosed by perianth; putamen osscous thin; seed exalbuminous. $-A$ low divaricate ramose sericeo pilose shrub; leaves alternate, ovate or ovato-lanceolate; flowers ${ }^{1}$ terminal few $(\underset{\sim}{2}-6)$ subeapitate at top of slender twig, ebracteate. (Guinmu, V'nezuelu, North. Bruäl. ${ }^{2}$)
16. Hargasseria A. Ricu. ${ }^{3}$-Flowers polygamous, 5 -merous (nearly of (Gnitiu); (alyx hypecrateriform, straight or incurved, throat esquamate. Stamens 10, exserted. Hypogyous squamules 5 , long sericeo-pilose. Fruit . . ?--Trees or shrubs; liber textile (of Luyettu) ; branches virgate ; leaves alternate ; flowers capitate, sometimes few ; capitules pedunculate arranged in terminal corymbose racemes, exinvolucrate ; receptacle discoid with long and dense white hairs. ${ }^{*}$ (Cubu. ${ }^{5}$)

17? Goodallia Bextr. ${ }^{6}$ - " Flowers diocious, 5-merous; calyx wide tubular ; tube villose within, 5 -fid; throat esquamate. Stamens (in female flower 0) inserted in throat; the oppositipetalous a little longer than the calyx; the 5 alternate shorter. Squamules 10 , perigynous near the base of the tube. linear glabrous. Germen (in male flower very small or 0), highly hirsute, girt at base with very small hypogynous long-haired scales; style short slender, apex stigmatose thick capitate ; ovule I, descending. Fruit ovoid hispid or fleshy, enclosed by somewhat enlarged calyx ; testa of exalbuminous seed crustaceous.- A divaricate much-brauched shrub; leaves alternate, clliptical, herbaceous, at base cuncate ur rotundate, glabrous, thinly and densely veined, very shortly petiolate; flowers in fewflowered sessile terminal capituliform spikes. (Guianu. ${ }^{7}$)

18? Daphnopsis Mart. and /occ. ${ }^{8}-$ Flowers dioceious; male calyx infundibulifurm or campannlate ; limb not separable, 4 -fid ; lobes im-

[^163][^164]brieate, generally puberulent within ; throat esquamate. Stamens $8,2-$ seriately subsessile to throat; anthers nvate or ellipsoid (in female flower effete or rudimentary, sometimes 0). Female calyx ${ }^{1}$ deciduons from base or persistent. Germen sessile (in male flower rudimentary or 0), girt at base with hypogynous membranous subentire or 4 -fid or partite disk; style very short terminal, apex stigmatose capitatc or subclavate. Fruit drupaceus (or sometimes baceate), slightly fleshy or fiually dry, naked or girt with calyx, l-spermous ; sced exalbuminous.-Trees or shrubs ; ${ }^{2}$ leaves alternate flat; inflorescence ${ }^{3}$ capitate or umbellate pedunculate, sometimes solitary, sometimes in ramose, 2-chotomous corymbs or cymes. (Both trop. Americas. ${ }^{4}$)
19. Lagetta J. ${ }^{5}$-Flowers (nearly of Lusiudeniu) hermaphrodite, 4-merous; tube (coloured) oroid-oblong, often finally above the germen, circumscissously decidnous, above at the throat narrow esquamate, but there ofteu furnished with a somewhat thickened disk linilig the tube, otherwise densely hirsute; lubes of limb 4 , valvate. Stamens 8, 见-seriate; four iuferior, alternating with the lobes; authers subsessile ovate, introrsely rimose. Germen sessile hirsute; ovule 1, desrending; style terminal, apex stigmatuse subelavate or capitate. ${ }^{6}$ Fruit clothed with the entire calyx, finally unequally divided, or by its persistent base, dry, externally very pilose ; embryo of externally somewhat fleshy sced thick fleshy ; albumen oftener scanty, sometimes wanting above.-A tree; branches alternate glabrous; liber (textile) reticulate ; leaves alternate, cordato-ovate, nitid retirulate ; flowers ${ }^{7}$ in terminal simple ebracteate few-flowerd spikes. (Antilles. ${ }^{.}$)
20. Funifera Leandr. ${ }^{9}$ - Flowers (ucarly of Lusimencir) polygamodioccius, 4 -merous; calyx tubular or campannlate, pubescent or

[^165]- With adherent glandular disk.
hirsute, persistent, 4 -fid ; lobes equal, imbricate ; throat esquamate. Stamens 8, 2-seriate; filaments short or very short; anthers erect oval enclosed (in female flower 0). Germen (in male flower rudimentary) hirsute ; ovule $1,{ }^{1}$ descending (of Lagettut) ; style terminal slender, in fruit persistent and finally lateral, apex stigmatose capitate. Hypogynous disk consisting of squamules generally 8, linear-setaccous and sericcous pilose intcrmixed. Drupe finally siceate, closely enclosed by increased coriaceous hirsute perianth; putamen fragile; seed exalbuminous.-Shrubs; liber tenacious; ${ }^{2}$ leaves herbacoons alteruate, opposite or subverticillate elongate; flowers terminal or axillary to uppermost leaves cymose; cymes pedunculate or sessile, sometimes few- or 1-flowered; pedicels very short bracteate. (Brazil. ${ }^{3}$)

21. Peddiea Harv. ${ }^{\ddagger}$-Flowers hermaphrodite; perianth (coloured) subcampanulate or cylindrical ; lobes of limb 4,5 , imbricate, revolute, esquamate at throat. ${ }^{5}$ Stamens 8-10; anthers enclosed, subsessile, inserted above the middle of the tube. Germen girt at base with cup-shaped membranous crenate disk; cell 1-ovulate; ${ }^{6}$ style sleuder, shorter than tube of perianth, deciduous, at apex stigmatose depressed capitate. Drupe naked, with 1 pyrena; seed exalbuminous.-Glabrous shrubs; branches oftener 2 -chotomous; bark thin; leaves altormate or approximate subopposite subsessile; flowers in terminal pedunculate umbels (?); pedicels articulate at base. (South. and trop. West. Africa. ${ }^{7}$)

2』. Dirca L. ${ }^{8}$-Flowers hermaphrodite; calyx obconico-campanulate glabrous, deciduous; limb obliquely cut above (hence slightly irregular) and there unequally crenulate or sometimes subentere.

[^166][^167]Stamens 8, of which 4 are longer, further exserted : filaments subulate, alternating at insertion with 5 minute (sometimes withered) teeth; anthers basifixed introrse oblong obtuse. Germen sessile (of Daplime) ; style scarcely lateral slender exserted, at apex stigmatose scarcely capitellate. Fruit naked "baccate;" seed thinly albumi-nous.-A glabrous shrub; branches virgate; bark thickened at nodes ; leaves alternate veined, deciduous; flowers ${ }^{1}$ axillary cymose few (2-4) or more rarely solitary. (North America. ${ }^{2}$)
23.-Daphne L. ${ }^{3}$-Flowers hermaphrodite, 4-merous; tube of tubular or subinfundibuliform, deciduous or sometimes persistent calyx not solute ; lobes of 4 -partite limb equal, alternately imbricate or more rarely tortuous; throat esquamate. Stamens 8 , inserted in 2 series under the throat, 4 of which are inferior, alternisepalous; anthers subsessile, enclosed or subenclosed, oblong or subsagittate, introrse, 己-rimose. ${ }^{*}$ Germen sessile or substipitate, girt at base with small or very small, often annular, disk ; ovule 1, descending ; micropyle extrorsely superior; ${ }^{5}$ style terminal enclosed, short or sulnil, sometimes rather longer (Ellyeworthio ${ }^{6}$), at apex stigmatose subelarate or oftener capitate. Fruit oftener naked or coriaceous, sometimes enclosed by calyx; testa of descending seed crustaceous; albumen little fleshy or 0 ; cotyledons of inverted embryo fleshy plano-convex ; radicle short superior. -Small trees or oftener shrubs ; ${ }^{7}$ leaves alternate or more rarely opposite, persistent or more rarely deciduous, oftener entire coriaceous penninersed; flowers " terminal or lateral capitate, sometimes more rarely lateral, sessile or pedunculate, sometimes involucrate; inflorescence rarely compound-

[^168][^169]ramose or axillary racemose. ${ }^{1}$ (Tcmp. Europe and Asia, North. Africa, Java. ${ }^{2}$)
24. Ovidia Meissv. ${ }^{3}$ - Flowers nearly of Duphue, 4 -merous, by abortion 1 -sexual diocious (?) ; throat of funnel-shaped, 4-lobed, calyx, esquamate. Stamens 8 , 2 -seriate, inserted in thoat; filaments slender; authers (in female flower rudimentary) ovate introrse. Germen (in male flower sterile rudimentary), girt with 4 hypogynous glandules; style lateral or subterminal exserted, apex stigmatose "apitate. Fruit "baccute piriform.""-Shrubs; leaves alternate subcoriaceous, inflorescence and other characters of Daplue ; flowers ${ }^{5}$ subumbellate at top of terminal or lateral peduncle, ebracteate. (Western South America. ${ }^{6}$)
25. Wikstrœmia Endl. ${ }^{7}$-Flowers (uearly of D(tphene) hermaphrolite, 4 -merous ; calyx tubular or funuel-shaped; throat naked; limb 4 -fid, oftener separable from tube and deciduous. Anthers 8 , 2 -seriate, enclosed. Scales of hypogynous disk 4, free or connate; germen 1-ovulate ; style terminal short or very short stigmatosecapitate. Fruit baceate or finally dry and other characters of Daplene.-Trees or shrubs; leaves opposite or alternate, foliaceous or subcoriaccous venose, deciduous; inflorescence capitate or um-

[^170][^171]bellate, ${ }^{1}$ axillary or terminal, solitary or more rarely corymbosoramose. (Trop. and subtrop. Asia, Oceania. ${ }^{2}$)
20. Stellera Gmel. ${ }^{3}$ - Flowers (nearly of Daphene) hermaphrodite, 4-6-merous ; calyx hypocrateriform, articulate above the germen, deciduous ; throat esquamate. Stamens 8-12, inserted in 2-series under the throat; anthers enclosed or superior semiexserted. Germen subsessile, barbate at apex, girt at base with aunular or cup-shaped membranous, sometimes oblique disk; style terminal or lateral, shorter than germen, and at apex stigmatose hispidulopapillose subovoia. Fruit nucular, loosely elothed with persistent tumescent base of calyx; pericarp thin crustaceous; seed scantily albuminous.-Small shrubs or perennial herbs; leaves alternate lanceolate; flowers ${ }^{4}$ terminal racemose, spicate or subcapitate. (West. Middle and North. Asia. ${ }^{5}$)
27. Thymelæa T. ${ }^{6} \rightarrow$-Fluwers (nearly of Stellerit or Duphene) hermaphrodite or sometimes 1-sexual ; calyx (coloured or herbaceous) infundibuliform or urceolate-tubular, persistent or tardily deciduous; throat esquamate. Stamens 8 , inserted in $\xlongequal[2]{ }$ series in the tube; the higher enclosed or exserted. Germen destitute of hypogynous disk; style terminal or oftener lateral very short, apex stigmatose capitate. Fruit nucular, naked or oftener enclosed by calyx ; seed but little or not at all albuminous.-Herbaceous subshrubby or oftener shrubby plants; leaves alternate; flowers ${ }^{7}$ axillary solitary or glomerate few, bracteolate. (Central and South. Europe, North Africa, North. and West. Asia. ${ }^{8}$)

[^172][^173]28. Arthrosolen C. A. Mer.-Flowers (nearly of Thymeleac) hermaphrodite, 4 -5-merous; limb of funnel-shaped (coloured) calyx regular, 4-5-partite, finally open; inferior part of tube articulate below middle persistent around fruit; throat esquamate. Stamens 8-10, 2-seriate, inserted in throat ; the upper semiexserted ; anthers subsessile, oblong or linear. Germen destitute of hypogynous disk; style lateral slender, longer than germen, enclosed, at apex stigmatose capitate, extending to the throat. Fruit nucular ovoid. —Shrubs or uulershrubs; leaves alteruate or opposite sessile; flowers either axillary solitary or very few, or terminal, capitate and involucrate. (South. or West. Afivicu. ${ }^{2}$)
29. Diarthron Tulec. ${ }^{3}$-Fluwers hermaphrodite; tube of glabrous calyx clongate, narrow (herbaceous), above the germen constricted articulate, below persistent around fruit, above deciduous; throat esquamate; limb (coloured) erect, 4 -fid. Stamens $4-8$, conclosed, inserted 1-2-seriately in throat; anthers subsessile oblong, introrely rimose. Germen girt with thin amular disk, glabrous, 1-ovulate; style subterminal or lateral, apex stigmatose slightly or not at all thickened obtuse. Nucule euclosed by calyx ; seed slightly albuminous.-Slender herbs; leaves alternate linear; flowers ${ }^{4}$ in very slender terminal and lateral spikes, ebracteate. (Central Asia. ${ }^{5}$)
30. Passerina L. ${ }^{6}$ - Flowers hermaphrodite (nearly of Thymeleca); tube of cup-shaped (coloured) calyx thin, narrowed above germen and there solute; limb t-partite patent deciduous; throat esqua-

[^174]20 (T'asserina).-Andr. Bot. Cab. t. 311 (Tas-serina).-Presl, Bot. Bem. 107.-Meissn. Linnea, xiv. 390, 396, 398 (Passerina).
${ }^{3}$ Bull. Mosc. (1832), v. 204 ; (1852), ii. 464, t. 11.-Endl. Gen. n. 2096 ; Suppl. ir. p. ii, n. 2099.-3IEISSN. Prodi. 558.
${ }^{4}$ Very small, purple or sometimes 2-coloured.
${ }^{5}$ Spec. 2. Ledeb. Fl. Ross. iii. t. 544.Fisch. et Mey. Bull. Mosc. (1839), 170.-Kar. et Kir. Einm. Pl. Alt. n. 801.-C. A. Mey. Bull. S.-P'elersb. iv. n. 4.-JAUB, et SPACH, Ill. I\%. Or. ii. t. 105.-Walp. Ann. i. 105.
${ }^{6}$ Mort. Cliff. 146, t. 11 ; Gen. (ed. 1), n. 856. -C. A. Mey. Bull S.-Pétersb. iv. n. 4.-Spach, Suit. à Buffon, x. 446.-Endl. Gen. Suppl. iv. p. ii. n, 2097.-Messsn, Prodr. 561.
mate. Stamens 8 , inserted 2 -seriately in throat; filaments subulate, often coherent at base, exserted at apex ; anthers ovate. Germen destitute of disk; style lateral, apex stigmatose semiexserted capitate. Fruit nucular, enclosed by persistent base of tube or sometimes finally uaked; pericarp crustaceous or sometimes slightly fleshy, very rarely (Chymococca ${ }^{1}$) baccate; seed albuminous.-Ericoid shrubs; twigs tomentose or lanate; leaves opposite, linear accrose, convex at back; flowers ${ }^{3}$ sessile in uppermost axils solitary or in terminal sometimes comose or short subeapitate spikes. (South Africa. ${ }^{3}$)
31. Struthiola L. ${ }^{4}$-Flowers hermaphrodite, 4 -merous (nearly of Gnidit; glandules of throat 4, or oftener 8-12, exserted, fleshy or horny; each densely setose at base and there oftener confluent in somewhat prominent ring. Stamens 4, alternating with lobes of calyx; anthers subsessile; cells linear, aduate within to connective produced beyond the cells. Germen sessile, destitute of hypogynous disk; style lateral, subequal to tube of calyx, at apex capitate stigmatose. Fruit nucular, enclosed by persistent base at calyx; seed albuminous.-Ericoid shrubs or undershrubs; branches generally straight slender; leaves opposite or sometimes alternate sessile, oftener linear ; flowers ${ }^{5}$ sessile in uppermost axils, solitary or binate ; calyx 2-bracteolate. (South Africa. ${ }^{6}$)

32 ? Kelleria Endl. ${ }^{7}$-Flowers hermaphrodite, 4-merous; calyx (coloured) funnel shaped, 4-fid ; squamules 4 ; inserted in throat, or 8 , oppositisepalous in pairs ; tube continuous. Stamens 4 , alternating with lobes; filaments inserted in throat subulate, exserted ; anthers ovate obtuse, 2 -rimose. Germen sessile, 1 -ovulate, destitute of hypogynous disk; style lateral or subterminal filiform exserted, at apex stigmatose capitate, deciduous. Fruit nucular ovoid, finally naked;

[^175][^176]seed copiously albuminous. - Dwarf cerspitose musciform shrubs or undershrubs; stems sometimes prostrate ramose; leaves opposite sessile small densely imbricate ; flowers ${ }^{1}$ terminal subcapitate few, pedunculate or subsessile, imbricate in unper leaves, involucrate. ${ }^{2}$ (New Zealand, Australia, Tasmania, Borneo. ${ }^{3}$)
33. Drapetes Lame. ${ }^{+}$-Flowers of Kelleriu; calyx funnel-shaped, 4 -fid ; throat esquamate ; limb articulate above germen, deciduous; persistent base surrounding fruit. Seed and other characters of Kolleriu.-A small dwarf undershrub; leaves small sessile decussate densely imbricate and inflorescuce ${ }^{5}$ of Kelleria. (South America, Magellanic continent and islands. ${ }^{6}$)

34 ? Schœnobiblus Mart. and Zucc. ${ }^{7}$-_ "Flowers diœcions, ${ }^{8}$ 4merous ; male calyx (corolline) 4 -partite ; tube very short fummelshaped, pilose at bottom ; throat esquamate; lobes patent linear, glabrous within. Hypogynous scales 0. Stamens t, exserted, opposite lobes of calyx and subequal and adnate to them below; filaments filiform; anthers oblong, dorsally affixed above base; rudiment of germen 0. Female flower...?-A tree or shrub; leaves few ; umbels terminal pedunculate. (North. Bruail. ${ }^{9}$)
35. Pimelea Banis and Soland. "—Flowers hermaphrodite or rarely polygamo-diœcious (nearly of Struthinth or Gnititi), 4-merous; tubular throat of (coloured) calyx esquamate; tube continuous or

[^177][^178]finally divided above germen ; limb patent or finally reflexed, imbricate. Stamens 2, inserted in throat and opposite exterior lobes of calyx; filaments generally evolute exserted; anthers introrse; Germen sessile; hypogynous disk minute or 0 ; style lateral, enclosed or exserted, apex stigmatose capitate. Fruit nucular, enclosed by persistent base of calyx; seed slightly albuminous.-Shrubs undershrubs or more rarely herbs; leaves opposite or sometimes alternate ; flowers ${ }^{1}$ capitate terminal, very rarely spicate or axillary few or solitary ; globular or hemispherical pubescent receptacle of capitules persistent, involucrate with larger imbricate floral leaves, 4 or ∞, sometimes coloured. (Australin, Tasmaina, Neun Zealund, Java. ${ }^{2}$)
t White, yellow or pink.

- Spec. about 90. R. Br. Prodr. Fl.N.-Holl. 359.-Sm. N.-Holl. i. 31.-Merssn. Pl. Preiss. i. 602 ; ii. 268.-Labile. Pl. N.-Holl. i. 10, t. 5 , 7.-Vahl. Enum. i. 305.-Ноок. F. Fl. Tasm. i. 332 ; Fl.N.-Zel.i. 220 ; Handb. N.-Zenl. Fl. 242 -F. Mivel. Fragm. v. 73,109 ; vi. 159 ; vii. 2.
-Benth. Fl. Autral. vi. 1.-Lodd. Bot. Cab. t. 540.-Sweet, Fl. Austral. t. 53.-Raoul, Choix de Pl. 42.-But. Reg. t. 1268, 1439, 1378, 1582, 1827 ; (1838), t. 24; (1839), Misc. 66 ; (1841), t. 33. - Bot. Reg. t. 891, 3270, 3276, $3281,3288,3330,3459,3721,3833,3950 .-$ Walp. Aun. i. 584.

L. ULMACEA.

I. ELM SERIES.

In this extensive family, each series of which, with many authors, constitutes a distinct family, we shall study first the Elms ${ }^{1}$ (fig. 89-

Ulmus campestris.

Fig. 89. Foliaceous branch ($\frac{2}{3}$).

Fig. 91. Flower (${ }^{4} 1$).

Fig. 92. Long. sect. of flower.
94) the flowers of which are hermaphrodite or polygamous. On its depressed or slightly concave receptacle is observed a gamosepalous calyx, often subcampanulate, and with five divisions more or less

[^179][^180]deep, imbricate in the bud, mareescent. The andrecium is composed of an equal number of superposed stamens. They are inserted at a greater or less height on the margin of the receptacular cup, ${ }^{1}$ and are formed each of a filament, erect in the bud, and a bilocular anther, exserted, extrorse, dorsifixed and dehiscing by two longitudinal clefts. ${ }^{2}$ The gynæcium, inserted in the centre of the receptacle, is composed of a sessile or stipitate ovary, sterile in the male flower, formed of two carpels, in such a manner that here and there it may have two uniovulate cells (fig. 92); it is surmounted by a style which divides above into two equal branches, furnished within with stigmatic papillæ. But, most frequently, only one of the cells is fertile, and the ovule which

Fig. 93. Fruit.

Fig. 94. Long. sect of fruit ($\frac{3}{2}$). it encloses, inserted near the top of the internal angle, is descending, anatropous, with the micropyle directed upwards and outwards. ${ }^{3}$ The fruit is a flattened samara, the entire margin of which is produced to a peripheric membrauous wing, ciliate or not at the edge, and its cavity, somewhat unsymmetrical, with reticulate partition, encloses a descending seed whose fleshy embryo is destitute of albuinen. Its flat cotyledons correspond to the faces of the fruit,

[^181]and its superior radicle is rectilinear. There are Ehns with flowers having six, seven or eight divisions. - They are trees or shrubs, ${ }^{1}$ of which some fifteen species are known, inhabiting the temperate regions of the northern hemisphere of both worlds. The branches are often suberose and sometimes alate. The leaves (fig. 89) are alteruate. distichous, simple, often serrate, penninerved, unsymmetrical at the base, ${ }^{3}$ accompanied with lateral stipules. The leaves almost always fall in winter, and it is before their development that the numerous, inconspicuous flowers ${ }^{4}$ show themselves emerging from axillary sealy buds, and arranged in cymes or glomerules more or less compound.

In India there is an Elm, Ulmus integrifolia, the sepals of which are free and its androcium diplostemonous. Its embryo instead of being flat has two conduplicate cotyledons. It has been made a genus under the name of IInloptelet. Another tree, growing in the marshes of North America, which the older botanists placed in the Ehm genus, has the flowers of this genus with the foliage of certain Hornbeams (Carpinus) ; but its dry indehiscent fruit has a thin mesocarp, dilated on every side into soft and papillose lamella or points ; characters which distinguish the gems P'lanera. Abelicea, formerly classed among the Elms, afterwards with Plunera, has its habit, foliage and flowers; but the fruit, at first drupaceous, then with mesocarp withered and thin, is of smooth surface. It terminates in a small recurved beak; which gives it some resemblance to a retort with a full body and very short neck. It is traversed on one side by a marginal crest, not very prominent in most species which are natives of Crete, the Cancasus, and Eastern Asia, but developed more to a wing in Z. Devillii, a tree of northern China, of which a genus has also been made under the name Itemiptelone

The Lotus trees (Celtis) constitute a distinct subseries, characterised chiefly by a drupacens fruit (fig. 97). That is the general charactor of a group which has been raised to the ramk of even a suborder (Cictlidece). Their flowers (fig. 95, 96) are polygamo-monocions

[^182]Hort. Berol. 295.-Michx. F\%. Bor. Amer. i. 172 —With. Arrang. ii. 275.- Roxb. Fl. Imd. ii. 67.-Nutt. Trans, Amer, Phil. Soc. n. ser. v. 169.-Sond. Regensb. Flora (1851), 43.-A Gray, Man. ed. 5, 442.-Chapm. F\%.S. Unit. St. 416. Gren. et Godr, Fl. de Fr. iii. 105.Walp. Ann. iii. 424.
${ }^{3}$ The internal half is the larger.
4 Green, yellowish or reddish.
and in structure nearly like those of the Elm. The pentamerous perianth is imbricated, and they have five stamens superposed to the sepals, with filaments inflexed in the bud but which straighten themselves, often elastically, at the time of anthesis. The stamens are primarily introrse. The unilocular ovary encloses one descending campylotropous ovule and is surmounted by a style with two stigmatiferous branches (fig. 95). 'The pufamen encloses one seed the embryo of which is accompanied by a little mucous albumen and has two conduplicate cotyledons.-Lotus (Celtis) consists of trees or shrubs of all warm and temperate regions of the globe. Their leaves are alternate and triplinerved at the base.

From the Lotus plants the following gencra are distinguished only by characters of rery small value. Girmmiern, Asiatic and Australian trees, ally themselves with Celtis by their flowers with imbricate sepals and leaves with independent stipules. But the fruit, surmmunted by a persistent style, with two branches not plumose, is accompanied at the base by the persistent calyx ; and the flowers are dicecious instead of being polygamo-monecious. Treme, natives of nearly all warm regions of the globe, have the free stipules and polygamodiœcious flowers of Celtis, with the persistent calyx at the base of the fruit like Giromicre; but the prefloration of the sepals is such that they are valvate-induplicate below and imbricate at the summit. Porusponim, inhabiting the same countries as Gironmiern, has the polygamo-monocions flowers and imbricate calyx of Celtis and the drupaceous fruit with persistent calyx at its base of Tirmu. But the style-branches are plumose, and the two stipules of the same leaf are united in a single concave axillary blade, like those oif the A'tocurpere. Aphemantle, trees of the same countries as Giromiert and Parusponiu, have the calyx imbricate and persistent,
and stigmata not plumose as in Giromiera, stipules united in pairs like those of Purusponit, but the flowers are moncecious and not diœcio-polygamous. The same is the ease with those of Aphumuthe, spinous trees of the Cape, with fruit accompanied at the base with the persistent calyx and filiform style-branches, but possessing a valvate-induplicate calyx and stipules united to each other in one large membranous axillary blade, which is early detached in one piece, nearly like those of Parasponia.

Ampelocera cannot, apparently to us, be removed from Celtis, to which, by its stamens 10 to 15 in number, it bears nearly the same relation as Hotoptelect to Ulmus. The gynacium is also quite that of a Lotus, and the fleshy fruit is monospermous. It comprises trees of tropical America, with alternate leaves and membranous caducous stipules.

II. MULBERRY SERIES.

In the Mulberry ${ }^{1}$ (fig. 98 101), the unisexual, monocions or

Fir. 98. Male floriferous branch.

Fig. 99. Male flower ($\left.\begin{array}{l}0 \\ 1\end{array}\right)$.

Fig. 100. Female inflorescence.
dioceious flowers are tetramerous, and the straight almost flat or, in the male flower, slightly depressed receptacle, bears four decussate

[^183]sepals, in prefloration alternately imbricate in the bud, and four superposed stamens, inserted under a slightly developed rudiment of the gynæcium. Wach of these is formed of a filament inflexed and incurved in prefloration, afterwards elastically straightened at the time of anthesis, and of a biloculir introrse anther dehiscing by two longitudinal clefts. The calyx of the female is similar to that of the male flower and surrounds ${ }^{1}$ a free gynecium, formed of a unilocular ovary ${ }^{2}$ surmounted by a style, soon divided into two divergent, subulate branches, covered interually with stigmatic papillæ. Under the summit of the cell is inserted a descending ovule, with micropyle directed upwards and outwards. ${ }^{3}$ The fruit becomes a drupe with sarcocarp of little thickness, especially along the faces of the depressed putamen. It is surrounded by persistent sepals, become fleshy and succulent, packed closely together. The descending seed encloses under its integuments a fleshy albumen which surrounds a recurved embryo, with oblong and fleshy cotyledons and incumbent radicle, at the summit directed upwards. The Mulberries are trees and shrubs, with milky or opal juice, inhabiting all the warm

Fig. 101. Compound fruit. regions of the globe. They have alternate, distichous, entire, dentate or lobed leares, with the petiole accompanied by two lateral caducous stipules. The flowers are axillary. The male inflorescence resembles a cylindrical or slightly compressed catkin. But following their development, as we have done, ${ }^{4}$ the axis of these apparent spikes is found to be a blade more or less elongate and flattened, bearing upon one part of its surface only, a very large number of small cymes or glomerules, whilst the remainder is bare. It is, therefore, a mixed inflorescence, and it is the same as what has been described as the female spike or catkin. Of Mulberrics a score of species ${ }^{5}$ have been described; the number ought to be reduced to about half-a-dozen.

[^184][^185]Morus Ampalis, a species from Madagascar and the Mascarene islands, has been distinguished with a generic title under the name of Ampalis, because its male calyx is less clearly imbricate than that of the Mulberries and because its fruit, arranged in a false spike much more elongate, encloses one seed with embryo destitute of albumen, fleshy plano-convex cotyledons and accumbent radicle. It is a genus of little value. The same may be said of Paratrophis, trees of New Zealand and the Pacific Ocean which have all the external characters and the diæcious inflorescence of Ampalis, but the sepals are not accrescent and do not become fleshy around the fruit, at the same time the embryo, almost totally destitute of albumen, has the radicle accumbent to the cotyledons, which are much larger and nearly foliaceous, unequal, conduplicate and longitudinally plicate, in such a manner that the largest envelopes the smallest in its concavity. Pseudomorus is equally oceanic and almost constantly diœcious. The leaves are accompanied by caducous amplexicaul stipules, and the flowers are nearly those of the preceding genera. The female calyx, like that of Paratrophis, persists without growing to the base of the drupaceous fruit. But the seed encloses an embryo destitute of albumen or nearly so, and the radicle is accumbent to the flat, thick and fleshy cotyledons.

In tropical America, the analogue of the preceding types is Trophis, which, with the same general characters, presents these two peculiarities: the female floral receptacle becomes more or less concave; which renders the unilocular and uniovulate ovary partly inferior, and the female (perigynous) calyx gamosepalous, in the form of a conical sac with superior dentate opening, closely surrounding the gynæcium and the fruit (Trophidece).

The Broussonetice are easily distinguished from the preceding genera by their female glomerules being collected on a spherical receptacle ${ }^{1}$ instead of grouped on a common axis more or less elongate and flattened (in general form of a spike). This can be easily

Arbor, et Fiut. Brit. iii. 1343.-H. B. K. Nov. Gerr, et Spec. ii. 33.-Miq. Pl. Jungh. 42; Fl. Ind.-Bat. Suppl. i. 415.-A. Gray, Man. ed. 5, 444.-Chapm. Fl. S. Unit. St. 415.-Benth. Fl. Mongk. 323.-Seem, Fl. Vit. 245.-Gren. et Godr. Fl. de Fr. iii, 102.
${ }^{1}$ This enables us to consider provisionally as an intermediate type between the two groups Mailliardia borboniea (Frapp, et Duchtre, Note

[^186]verified in Broussonctia, or the Paper-Mulberry (fig. 102-107), beautiful trees of temperate and tropical Asia, with leaves very variable in form, and diæcious tetramerous flowers. The male inflorescence is amentiform and analogous to that of the Mulberry. The female flowers have a gamophyllous urceolate perianth and a gynæcium analogous to that of Morus. but with a simple style,

Broussonetia papyrifera.

Fig. 102. Foliaceous branch ($\frac{1}{2}$).
filiform at its stişmatiferous extremity. The fruit is formed of a great number of stipitate drupes, collected on a spherical receptacle, and the fleshy mesocarp thickens only at the edges in a sort of forceps with elastic branches which drive and project the putamen as the seeds, analogous to those of the Mulberries, mature. Mruclure differs very little from Broussonetiu, of which it has the flower and male inflorescence. But the female flowers are destitute of a calyx with independent folioles, like that of the 10-2

Mulberries and are buried in the cavities hollowed in the common receptacle; so much so that the fruit which succeeds is

Broussonetia papyrifera.

Fig. 105. Female inflorescence.

Fig. 104. Male flower ($\frac{4}{1}$).

Fig. 106. Female flowers ($\frac{4}{2}$).
completely encased in this receptacle accrescent after fecundation. The style is single or formed of two very unequal branches. They are American trees. Beside Machura is placed Caturus, having the

Fig. 103. Male infloresence. same inflorescence, with the female flowers of Broussonetia, but the fruit, sessile on the common receptacle, is surrounded by the persistent urceolate calyx. The male flowers are generally trimerous; but in one species, of which a genus, Allcounthus, has been made, they are tetramerous and tetrandrous. They are unarmed trees and shrubs of tropical Asia and Oceania. With the fundamental organisation of flowers, andrœcium and gynæcium of the preceding gencra, Plecospermum and Cardiogyne are distinguished in that the inflorescence of both sexes has a spherical receptacle on which the glomerules are
arranged (Plecospermex). In Cardiogyne, the female calyces are independent of each other, and the seeds have a large embryo with foliaceous conduplicate and strongly plicate cotyledons, enveloping each other and covering the incumbent radicle. In Plecospermum, the female calyces are united externally and the style emerges by a small aperture at the summit. The embryo also has cotyledons incumbent to the radicle and enveloping each other; but they are thick, fleshy and not plicate. Cardiogyne, plants of Zanzibar, has globular and sessile female inflorescence. Plecospermum, like the preceding spinous, but natives of India, has the same pedunculate inflorescence.

Streblus, a small Asiatic and Australian tree, has given its name to a secondary group (Streblece), which differs from the preceding in the female flowers never being collected in spikes or capitules (of glomerules), but almost always solitary. ${ }^{1}$ The male inflorescence of Streblus is similar to that of Cardiogyne and Plecospermun. It is this which distinguishes it from Pseudostreblus, an Indian tree (?) with male flowers united in a compound cyme, on the multiple ramifications of which they are unilateral, and from Taxotrophis, a spinous shrub of Java, the male inflorescence of which is pedunculate catkins, covered with glomerules, analogous to those of Maclura. In Phyllochlamys, spinous shrubs, natives of the same countries as Streblus, the male flowers ${ }^{2}$ are collected in a sort of capitule with a thick and very short peduncle, and this capitule is surrounded by large accrescent bracts which form around it a foliaceous involucre. Finally Diplocos, a spinous shrub of Ceylon, the flowers of which are constructed like those of the preceding genera, has the amentiform and stipitate male inflorescence of Tuxotrophis, and female inflorescence compound and ramified (covered with glomerules), nearly like the male inflorescence of Pseudostreblus.

Dorstenia (fig. 108-113) has given its name to a small group (Dorstenieas) distinguished from all the preceding genera by the inflorescence including flowers of both sexes. This inflorescence, as in many preceding types, consists of glomerules either of male flowers

[^187]only, or of one female flower surrounded by male flowers. But these glomerules are united on a common receptacle or principal axis the form of which is extremely variable in Dorsteniu. It may be a circular platform, flat or slightly convex or concave (fig. 112), or a cup of round

Dorstenia multiformis.

Fig. 110. Male bud ($\frac{8}{1}$).

Fig. 108. Intlorescence. Fig. 109. Portion of inflorescence (3). Fig. 111. Male flower in bloom. or quadrilateral contour, or unequally divided into two (fig. 108), or into a greater number (fig. 11.3) of similar or dissimilar branches, the upper surface of which is surrounded by bracts forming a

Dorstenia brasiliensis.

Fig. 112. Long. sect. of inflorescence ($\frac{2}{1}$). slightly developed involucre. Most frequently the receptacle is depressed at the point of insertion of the female flower into a small hollow in which the latter is encased (fig. 109), whilst the surrounding male flowers are inserted near the margin. Dorstenius are found in all the tropical regions of Africa, of Asia and especially of America; they are shrubs and, more generally, perennial herbs, often with very short stem. The leaves are altcruate, entire or more or less deeply cut, and accompanied with lateral stipules, most frequently persistent and hardening on the stem. Futour, which closely resembles them in the organisation of its flowers, is an herb of eastern Asia and the warm parts of Oceania, having altogether the habit and foliage of a nettle, and the inflorescence formed of androgynous cymes. Instead of being sessile,
they are collected on the little developed but much branched axes of one or two axillary pedunculate cymes resembling at a distance a small capitule. In Bleekrodia, shrubs of Borneo and Madagascar, the flowers are also grouped in capituliform cymes, a female being central and terminal, surrounded by younger male flowers in considerable number. Both have a valvate calyx in the form of a gamophyllous sac in the female; and the embryo, destitute of albumen, has very unequal cotyledons. Sloetic, a Javan shrub, has an inflorescence, the elongate and flattened axis of which, covered with floral glomerules, has the general form of male inflorescence of the Mulberry and Maclura. But a single one or a very small number of the

Fig. 113. Long. sect. of inflorescence. glomerules (which are collected on one of the faces of this receptacle and on a portion of the other) bears in the centre a tetramerous female flower with sessile and prominent gynæcium. All the rest are formed of only male flowers, trimerous and triandrous, with valvate calyx. ${ }^{1}$

III. BREADFRUIT SERIES.

The Breadfruit trees ${ }^{2}$ (Artocarpus) (fig. 114-118) have given their name to this group, often raised to the rank of a family, but they are not the most complete type. They have monœcious flowers collected in great number on unisexual inflorescences. In the male flowers is observed a perianth formed of two or four calycinal

[^188]females have a superior ovary, surmounted by a style with two long revolute branchcs. (See p. 167, note 12).
${ }^{2}$ Artocarpus L. Syst. Veg. n. 1426.-J. Gen. 402.-Lamk. Dict. iii. 207 ; Suppl. iii. 130 ; Ill. t. 130.-Turp. Dict. Sc. Nat. Atl. t. 286.Spach, Suit. à Buffon, xi. 69.-Endl. Gen. n. 1868.-Tréc. Aun. Sc. Nat. sér. 3, viii. 109, t. 4, fig. 100-120.-Payer, Fain. Nat. 172.-H. Bn. Adansonia, iv. 79, t. 5.-Rima, Sonner. Foyag. 99. t. 57-60.-Sitodium Banks, Gartn. Fruet. i. 345.-Rademachia Thunb. Act. Holm. xxxvi. 252.-Polyphema Lour. Fl. Coch. (ed. 1790.), 546.
folioles, free from each other or united below to an extent generally inconsiderable and imbricate in prefloration. They surround an androcium rejresented by a single stamen. This is formed of a filament primarily straight, instead of curved in prefloration (and

Fig. 114. Floriferous and fructiferous branch ($\frac{1}{9}$).
this is the character to which the greatest importance has been attached in distinguishing this series from the preceding), and an auther with two cells, each dehiscing ly a longitudinal cleft. In the female flowers there is a concave receptacle, ordinarily very deep, hollowed in the form of pits in the substance of the floral receptacle itself, the margin of which supports a gamosepalous calys, ${ }^{1}$ perforated only at the summit. At the bottom of the hollows is a free gynacium, formed of a sessile or shortly stipitate ovary, surmounted by an eccentric style the stigmatiferous summit of which is entire, variable in form, or divided sometimes into two or three branches. At first, the dicarpellar gynæcium, ${ }^{2}$ like that of the

[^189]Mulberries, has two cells ; but one of them is early arrested in its development, ${ }^{1}$ whilst the other, alone fertile, presents, in its internal angle, a thick placenta, ${ }^{2}$ which supports a single descending anatropous ovule, with micropyle directed upwards and outwards, ${ }^{3}$ and ordinarily capped with an obturator proceeding from the placenta. The ovaries become achenes ${ }^{4}$ whose descending seeds enclose a curved embryo, destitute of albumen, with a short superior radicle and two fleshy cotyledons generally very unequal. All these fruits are im. bedded in the slightly fleshy and

Fig. 115. Male flower (${ }^{1} 1^{2}$). fecular substance of the common floral receptacle, on the surface of which are seen only the slightly prominent remains of the perianth. The whole therefore constitutes a compound fruit, often spherical or ovoid. Artocarpus consists of beautiful trees with soft wood, milky juice, alternate leaves, simple, entire or more or less deeply cut. They are accompanied by a very large supra-axillary blade, formed by the union of two lateral stipules, inserted a little higher than the leaf and for some time enveloping the summit of the branch with a cap in the form of an elongate cone; after this, they detach themselves at the base leaving on the branch, a little above the petiole, a nearly circular scar. The monœcious flowers are separated on distinct inflorescences the receptacle of which is spherical or more or less elongate.

Artocarpus integrifolia.

Fig. 117. Portion of female inflorescence.

They are in fact arranged in a great number of glomerules, with or without bracts and bracteoles with peltate summit. The males are

[^190]free on the surface of the receptacle, whilst the females are more or less deeply sunk in pitlike depressions (fig. 117) of which the gynæcium occupies the bottom without contracting any adherence with their integuments. Some twenty spe-

Artocarpus integrifolia.

Fig. 118. Long. sect. of young female flower. cies ${ }^{1}$ of Artocarpus have been distinguished, all natives of tropical Asia and Oceania.

Acanthinophyllum strepitans, a small Brazilian tree, with prickly leaves, like those of certain Sorocea, has nearly all the characters of Artocarpus; but its monandrous male flowers are said to be destitute of perianth and the female flowers are collected, though not mutually adherent, on the surface of the spherical receptacle. The fruit is surrounded by the perianth become pulpy and encloses a seed with straight embryo and plano-convex cotyledons. There appears to to be no perianth properly so called in the male flowers of Parartocarpus, a tree of Borneo, the spherical and pedunculate receptacle of which bears erect stamens separated from each other by bracts variable in number, free, obtuse or swollen at the summit and marginally contiguous. Below the receptacle, the summit of the peduncle is enlarged and bears a small involucre of unequal folioles. The female flowers of this genus are not known. The male inflorescence of Treculia has also a spherical receptacle; the stamens are two to four in number in each flower. The style is divided above into two thick stigmatiferous branches, and the fruit, imbedded in a large common spherical receptacle, encloses a seed the embryo of which has two very unequal cotyledons, the larger reflexed upon itself to envelop the smaller. Treculit comprises trees of tropical western Africa. The flowers are monocious or diœcious, and the receptacle which bears them is accompanied at the base by a small

[^191][^192]involucre formed of imbricate bracts, as in Parartocarpus. In the female inflorescence, the cavities in which the pistils are lodged are surrounded superiorly by a great number of male flowers the anthers of which appear sterile.

Bugusse in this group may be considered the analogue of Maclura in the Morus series. The male flowers are unknown, but the female flowers have a superior perianth, formed of four thick and fleshy sepals, contiguous without a true union in nearly the entire length of their margins and free only at their obtuse summit. They surround a free ovary, similar to that of Artocurpus and surmounted by an eccentric style with two unequal or nearly equal branches. The fruit encloses a seed the embryo of which, surrounded by an inconsiderable albumen, has oblong foliaceous cotyledons and a curved accumbent radicle, the summit of which is directed downwards. Bagussa consists of trees from Guyana with opposite leaves and very numerous female flowers sessile upon the entire surface of a common spherical receptacle. Cudrania is doubtless, on its side, the analogue of Plecospermum and Cardiogyne. It has their alternate leaves, spinous branches, globose inflorescence, and replicate embryo, with conduplicate cotyledons; but the stamens, generally four in number, instead of incurved, have rectilinear or even somewhat outwardly recurved filaments. The Cudranius are all Asiatic and Oceanic. Helienthostylis, a tree of northern Brazil, also much resembles Maclura in its external characters. The malo flowers are in spherical capitules on the surface of which they are inserted by a short pedicel. The gamosepalous calyx, in four divisions, surrounds four superposed stamens, with extrorse anthers, definitively exserted. The filaments are borne on the base of a long rudimentary gynæcium the ovary of which is stipitate, uniovulate, and the style long exserted. The fruit, globose and scabrous, encloses under a thin spherical pericarp one seed the embryo of which has two or three large thick and fleshy cotyledons.

Olmedia has given its name to a sub-series (Olmediexe) in which the receptacle of inflorescence has the form of a cup generally of little depth or even nearly plane the margin of which bears, as in a capitule of a composite, an involucre formed of several ranks of unequal, alternate imbricate bracts. In the male capitules, the flowers are indefinite in number. In the female inflorescence, there are often also a great number, more rarely a single one. In Olmedice
the flowers are diœcious; the males have a tetramerous calyx and

Fig. 121. Long. sect. of female Fig. 119. Floriforous branch. flower ($\frac{4}{2}$).

Fig. 120. Portion of male inflorescence ($\frac{6}{1}$).
four stamens superposed to its divisions; the females have a free
gynæcium, the ovary of which, surmounted by a style with two long stigmatiferous subulate branches, encloses a descending ovule and is surrounded by a gamosepalous calyx. Around and below this are the imbricate bracts of the involucre. Olmedia consists of trees of tropical South America. Beside it is ranged Antiaris (fig. 119-121) inhabiting the warmest regions of Asia and Oceania, which differs only in its ovary being inferior instead of superior, and in the parts of its female calyx being independent instead of being united to a variable extent below. The flowers are monœcious. Pseudolmedia, growing in the same countries as Olmediu, has the inferior ovary of Antiuris, with a descending or laterally attached ovule, and a lateral style emerging from an apical orifice in the floral envelope. The male flowers are destitute of perianth aud represented by a variable number of stamens inserted within the imbricate bracts of the involucre.

In most genera of Olmedice, the female flowers are numerous upon each capitule or which they are arranged in glomerules. In that only is Custilloa (fig. 122), a caoutchouc tree of central America, distinguished from Pseudolmedia. It has otherwise the aperianthous male flowers, the inferior ovary and the style with two stigmatiferous divisions of Pseudolmectio. Helicostylis, a genus from northern Brazil and Guyana, has the inflorescence and female flowers of Castilloot, but tetrandrous male flowers and a calyx of four sepals like Antiuris. This genus derives its name from the stylary branches being much spirally twisted; a tendency existing but in a much less degree in Custillou. Not only is the ovary inferior relatively to the perianth in the two preceding genera, but it is also adherent on one side to the cavities from which the receptacle of the inflorescence grows, like that of Artocarpus. The same is the case in Noyera, a tree of Guyana, the male flower of which is unknown, and the style proceeds from a simple apical opening in the epigynous perianth, as in Pseudomedia. In Naucleopsis, on the contrary, the inferior ovary is entirely buried in the receptacular tissue itself, to which it adheres in every part. It is a tree of northern Brazil. Maquira and Pereben, which belong to Guyana and Columbia, and have tetramerous and perianthous male flowers, differ from all the preceding genera in that their female flowers are simply placed upon the surface of the common receptacle,
without laterally adhering to it. They have a female calyx with four divisions more or less deep, relative to which the ovary is inferior in Maquirn and superior in Percbet. The former are therefore here the analogues of olmedin, whilst the latter nearly correspond to Pseudolnedia and Antiaris.

Fig. 122. Floriferous branch ($\frac{1}{2}$).
Now let there be, in a concave receptacle like that of the Antiaris, a female flower the ovary of which occupies the central cavity, and on the thickened margin of the receptacle let there be grouped glomerules of male flowers, inserted perigynously in relation to the gynrcium, and we shall have an inflorescence much resembling the flower of the Rose, with this difference that the stamens are replaced by male inflorescences. This happens in a small group to which the name of Brosimete has been given. Take, for example Lanessania (fig. 123), a tree of northern Brazil. The receptacle of its
inflorescence has the form of a reversed pyramid, growing from a long central cavity in the form of a deep pit. The ovary, imbedded in it, is otherwise organized like that of Olmedic, and the two long branches of the style which surmounts it emerge from the opening corresponding to the centre of the base of the pyramid. The entire surface of this base bears glomerules of male flowers, formed of a gamosepalous calyx and two or three stamens. Around the male flowers is found a crown of small bracts forming an involucre ; they are inserted on the circumference of the pyramidal base. Others are scattered in small number over its convex surface; others again are collected in a second involucre towards the summit of the pyramidthat is, above the axillary peduncle which supports it. In Scyphosyce, a shrub of western tropical Africa, the relative disposition of the various elements of the androgynous inflorescence is fundamentally the same, but the form of the parts is very different. The common receptacular cup is wider and less deep. The central female flower is consequently free, removed from the coats of the receptacle. Near the margin of the latter are also inserted perigynously the male flowers, furnished equally with a gamosepalous calyx. They have only one stamen, and the bracts of the involucre which are outside of them are highly developed and completely cover them by imbrication in the bud. The female flower is also surrounded by its own calyx.

Bosqucia, a shrub of Madagascar and the eastern coast of Africa, has the gynæcium of Lanessanic, with the involucre and monandrous flowers of Scyphosyce; but the monandrous flowers are not surrounded by a calyx, and the common receptacle of the inflorescence has an upper surface more or less oblique, according to the age of the flowers. In Piratincru (of which Brosimum forms part) belonging to tropical America, the recoptacle takes the form of a small sphere the entire surface of which is covered with monandrous male flowers, destitute of calyx and separated by bracts with peltate summit, and the female flower, most frequently single in the inflorescence, is found imbedded in the interior of the sphere.

Ficus Carica.

With a receptacle in form of a sac, like that of Lenessanio and the neighbouring genera, the Figs (Ficus) have given their name to a distinct group (Ficece), because this receptacular pouch, with orifice generally very narrow, and surrounded by a small involucre, encloses female flowers in great number instead of a sidgle one, with or without male flowers above them. All are likewise disposed in glomerules on the interior surface of the common receptacle
(fig. 124-126). There are Figs in all parts of the world, but especially in the tropical regions. Sparuttosyce, trees of New C'aledonia, derive their name from their common floral receptacle being finally divided and open, which is not the case in the Figs ; and from their female flowers, situated upon separate inflorescences, having a style emerging from the apical opening of the receptacle, that of the Figs remaining enclosed.

In the Soroceece, the flowers are in clusters or catkins composed of cymes or glomerules (as in the inflorescence of most Morete'). The Sorocece proper, shrubs of South America, have pedicellate flowers of both sexes. In Pseudosoroceu, plants of the same regions, they are sessile and disposed along the two margins of an elongate and flattened axis, resembling a spike, but which, like that of many Morece, has one or two faces without flowers and often reduced, at adult age, to simple longitudinal ridges. Finally, in Suhaguniu, likewise American, and one species inhabiting Mexico, not only does the male catkin present this peculiarity, but the male flowers, instead of being, as in the preceding genera, furnished with sepals and an equal number of superposed stamens, are represented only by bare stamens, disposed in great number and without apparent order on the common receptacle and intermixed with a variable number of bracts.

In one and the same genus, Pseudolncdia, according to the species, we have seen the ovule inserted more or less high on the wall of the ovarian cell, and also by an umbilicum more or less elongate; so that this ovule was

Fig. 127. Long. sect, of female fluwer $\binom{1}{1}$. in one case descending, and in another attached laterally to the ovary. It is this last arrangement which is presented in Pouroumu (fig. 127), trees of tropical America, which, by this character, serve as intermediaries between the genera which precede and those which follow, and of which the group Conocephatece has been formed. Pourouma has a free ovary, enclosed in a sac, through an opening in the summit of which passes the style afterwards dilated to a stigmatiferous head. The flowers are grouped in compound cymes with axes sometimes very short. In Conocephalus (fig. 128),

[^193]which belong to tropical Asia and Oceania, besides the ovule being erect and orthotropous, the flowers of both sexes are borne on spherical receptacles or nearly so, and the female calyx is widely cleft above into four lobes. Coussapoa, inhabiting tropical America, has the capituliform inflorescence of Conocephalus, with its basilar and erect ovule, and the female perianth of Pouroumce, provided at the summit with an opening which gives passage to the

Conoccphatus suareolens.

Fig. 128. Long. sect. of female flower (4). style. In Cecropia, beautiful American trees, with peltate-digitate leaves, the glomerules of flowers of both sexes are borne on long cylindrical and spikelike receptacles. Musanga has also digitate leaves ; but the male inflorescences are little spheres, like those of Conocephatus, and the female have a large obovate or piriform receptacle. The gamosepalous calyx, in both sexes, has a circular orifice at the summit, and the male flowers are monandrous. Musanga inhabits tropical western Africa. This is also the native country of Myrianthus and Dicranostaclys, which have simple pinnate or digitate leaves. The former has the same female inflorescence as Musanga, whilst the latter has female flowers disposed in stars on a small fewflowered capitule. Both have simple styles, and numerous small male flowers, arranged in close glomerules on the much-brauched and nearly cylindrical axes of an inflorescence resembling a compound spike.

IV. HEMP SERIES.

In the Hemp ${ }^{1}$ (fig. 129-136), the flowers are diœcious, regular and apetalous. The male flower is composed of five sepals, quincuncially imbricate in the bud and inserted on a small convex receptacle which also bears five stamens superposed to the sepals, each formed
${ }^{1}$ Camabis T. Inst. 635, t. 309.-L. Gen. 304. -Adane, Fam. des Pl. ii. 376.-J. Gen. 404.Gertn. Fruct. t. 75.- Lamk. Dict. i. 694; Suppl. ii. 191 ; 1ll. t. 814.-Schkuhr, Handb. t. 325.-Nees, Ic. Fl. Germ. ii. 30.-Schleid. Wiegm. Alch. v. Beitr. 40, t. 2, fig. 19.-Spach,

[^194]of a free erect filament and a bilocular anther, primarily introrse, ${ }^{1}$ dehiscing by two longitudinal clefts. The female flower is composed of a small gamosepalous calyx, ${ }^{2}$ in the form of a truncated membranous cup, and of a superior gynæcium. Its sessile ovary has

Fig. 132. Female flower enclosed in bract.

Fig. 129. Male inflorescence.

Fig. 135. Induviate fruit ($\binom{4}{1}$

Fig. 133. Female flower ($\frac{0}{1}$).

Fig. 136. Long. sect. of fruit.
primarily two cells of which only one remains at maturity, and it is surmounted by two stylary branches, articulate at their base, and clothed with stigmatic papillæ. On the side of the ovarian cell is a placenta bearing a single descending, anatropous ovule, with

[^195]Монц, Ann. Sc. Nat. sér. 2, iii, 313).
${ }^{2}$ It is often little developed, and it has been admitted that it may even be abortive.

$$
11-2
$$

micropyle directed upwards and outwards. ${ }^{1}$ The fruit is an achene, the descending seed of which encloses a fleshy embryo, without albumen; the incumbent radicle is folded upon the cotyledons and its summit turned upwards. The Hemps are annual herbs, of

Irumulus Lupubtes.

Fig. 137. Volubile foliaceous branch.

Fig. 141. Fructiferous branch.
which there is in reality only one species ;? it is supposed to be a native of central Asia. Its stem is erect, clothed with opposite leaves, often alternate in the upper part, palminerved, 7-9-sect, scabrous, with petiole accompanied by two free and persistent stipules. The whole plant has a strong odour and contains an aqueous juice. The male flowers are in axillary and terminal clusters of compound eymes which become in part uniparous and are partially destitute of bracts. The female flowers are also in

[^196]cymes or glomerules, and are situated in the axils of the foliaceous bracts. Each is accompanied by a bracteole, a small gamosepalous calyx and a unilocular and uniovulate ovary, surmounted by two equal branches of a long developed, oval-lanccolate style, veluto-

Humzulus Lupulus.

Fig. 138. Female inflorescence (${ }^{\frac{4}{1}}$).

Fig. 139. Female flower ($\frac{9}{2}$).

Fig. 140. Long. sect. of female flower.

Fig. 142. Compound fruit (cone).

Fig. 144. Achene and induvium ($\frac{4}{2}$).

Fig. 143. Winged induvium.

Fig. 145. Long. sect. of induviate achene.
glandular without and considered as formed of two connate stipules. It persists around the fruit which it totally envelopes and extends even a little beyond.

The $H_{o p, s}{ }^{1}$ (fig. 137-145) are also diœcious, and their male and female flowers are constructed like those of the Hemp. But their staminal filaments, instead of remaining erect, become very slender and pendent, and the female floral bracts, as also the bracteoles,

[^197]considered as connate stipules, enveloping the flower, are more or less elongate around the fruit (fig. 143). The latter (fig. 144, 145) is an achene ${ }^{1}$ of which the descending seed contains under its coats an embryo destitute of albumen, with radicle ascending and incumbent upon the cotyledons highly developed and spirally rolled one upon the other (fig. 145). The two or three species of this genus known ${ }^{2}$ are herbaceous evergreen plants, with annual and volubile branches, opposite $3-7$-fid leaves, accompanied by interpetiolate and comnate stipules. All the parts are rough, seabrous, odorous. The male flowers are in rough clusters of cymes, and the female flowers as well as the fruit (cones) collected in pedunculate capitules, with numerous bracts closely imbricate, in the axil of which the flowers are germinated (fig. 138, 142). The Hop, now cultivated in both worlds, ${ }^{3}$ is a native of Europe and temperate Asia.

The family of Ulmaceer is of modern creation: B.-Mirbel ${ }^{\text {* }}$ distinguished it in 1815. Those genera comprised in it which were known to Adinson, ${ }^{5}$ such as Cumabis, Morms, Fieus, Dorstenia, Cecropite (Ambuiba), Tiophis (Bucephaton), ('eltis and Utmus, were placed by him in section III. of his family of Castuneae, with Uitica, that is, in the group of Scubridece of Linneos, ${ }^{6}$ plants to which $J u s s^{2}{ }^{i}$ afterwards gave the name Urticer. R. Brown, ${ }^{5}$ in 1818 , scparated from the Urticece a group of Artoctipeet, and was therein followed by Bartling and by Dumortier ${ }^{9}$ who detached from the Urticce the families Ficineer, Cannabinew, ILumulinea, etc. Endlicher, ${ }^{10}$ in 1833, and, after him, Meissner ${ }^{11}$ distinguished from them an Order Morect. All these groups were differentiated from the Urticacce,, either by the organisation of the gynæcium, in which some character, gencrally casily verified, varied, as the mode of placentation, the direction of the ovules, their anatropy, or the number of styles, or by the mode of insertion of the stipules or the presence of a milky juice. Later a reaction set in against this

[^198]extreme division which the Prodromus of De Candolle ${ }^{1}$ still completely maintains. The principal leaders of this movement were Payer ${ }^{2}$ and Seenann ${ }^{3}$ who reunited, under the name of Artocarpece nearly all the genera we have just passed in review, but who have recently been surpassed in this respect by Bentham ${ }^{4}$ with whom the limits of the Urticece have returned very nearly to what they were in the time of Jussieu. In 1847 Treecul 5 published an important memoir on the family of Artocarpece, in which he enumerates (with the description of a hundred species) all the genera, to the number of forty, recognised in it ; ${ }^{6}$ he adds the six genera Cudrania, Dicranostachys, Helicostylis, Noyera, Pseudolmedia, Treculia and the new genus of Morece, Plecospermum. J. E. Planchon, in 1848^{7} and in 1873, ${ }^{8}$ made a monographic study of the Ulmacece, among which, to the genera known before his labours, Ulmus, Celtis, Trema (Sponia), Gironnierc, Planera, Abelicea (Zelkova) and Parasponia, he added the three types Holoptelea, Aphananthe, and Chattacme. ${ }^{9}$ The genus Ampelocera, proposed by Klotzscif in 1843, ought, in our opinion, to be placed beside the preceding. In 1873 E. Bureau wrote for the Prodromus a complete description of the group of the Morece ${ }^{10}$ and a sketch of that of the Artocarpece. ${ }^{11}$ In the former he describes twenty-four genera, ${ }^{12}$ comprising about ninety species, and in the latter, he enumerates twenty-nine genera, with approximately seven hundred and fifty species. The new genera of Morea established by him in this work, and which we have retained, are six in number, viz.: Diplocos, Phyllochlamys, Pseudo-

[^199][^200]streblus, Cardiogyne, Uromorus and Psculomorus. Among the Aitocurpece, he established the new genera Ogcodeia and Sparattosyce, and admitted the genera posterior to the work of Trecul described by Miquel under the name of Nuucleopsis, by Liebiann under that of Sahuymia, and by F. Allemao under those of Soaresia and Actuthinophyllum. He likewise reincludes in this group the older genera Butyasine, Muquira of Aublet, and Myrianthus of Palisot de Beauvors, with Bosqucia which remained long unpublished in the herbarium of Dupetir-Thouars, and which, in our opinion, ${ }^{1}$ could not be separated from this family in which we have just ${ }^{2}$ established the five genera Parartocarpus, Helianthostylis, Scyphosyce, Lanessania, and Pseudosorocea. Finally, the Camubinea comprising the two genera Cannabis and Humulus, with three or four species only, and the number of genera we preserve in the other scries, being eleven for Ulmece, twenty for Morece, and thirty-two for Artocorpece, we arrive at a total for the entire family of Ulmacee, of sixty-five genera comprising about a thousand species.

They are distributed over a considerable extent of the globe. Cellis and Ficus, for example, belong to all parts of the world; Tremu and J/orus to most warm regions; Ulmus to all parts of the northern hemisphere. Three other genera, Dorstenia, Trymatococous, and Itumulus, ${ }^{3}$ are common to both worlds. To America belong the twenty-three gencra Planera, Ampelocert, Muchura (?), Trophis, Cecropin, Coussapor, Pouroumn, Bagassu, Olmedia, Pseudolmedia, Acanthinophyllum, Noyera, Perebea, Mutuira, Castilloa, Naucleopsis, IIelicostylis, Helianthostylis, Lanessmiu, Piratinera, Suhagumia, Soroccu, and Pseudosoroceu. The remaining thirty-five belong to the old world. Some of them are found only in Afriea; Chetacme grows at the Cape of Good Hope; Muillurdir, Cterdingyne, Ampulis, Bosqueit, belong to the continent or eastern isles; Scyphosyce, Tieculie, Musungu, Myprienthus, and Dicrunostachys, are observed only on the tropical western coast. The other types are most numerous in Tropical Asia and Australia on the one hand, and on the other in tropical South America. To the formor belong exclusively Giromiera, Perresponie, Aphrmenthe, Holoptelee, Diplocos, Phyllochlemys, Streblus,

[^201]Pseudostreblus, Cuturus, Plecospermum, Uiomorus, Pseudomorus, Fatoun, Sloetiu, Conocephutus, Cudiania, Artosarpus, Purartocarpus, Anticris and Sparattosyce, that is, twenty genera. Brazil possesses an equal number of which two-thirds are peculiar to it. Ficus, the ouly genus observed spontaneous in all parts of the world, is rare in Europe and exists only in the south where it is represented by a single species, F. Carict. ${ }^{1}$ In Africa it extends to the Cape, and in Asia ascends to Japan. In the two Americas its geographical range is over 60 degrees, and in the Old World nearly 80 . The other Artocarpea are confined to the more tropical regions. Culrania and Conocephalus extend to the Asiatic temperate zone, and in the warmest parts of Mexico are found, besides Figs, a Sahagmia and a Cecropia. The Morce extend further both north and south, for Broussonetic reaches the north of China; Maclura inhabits the United States, and both endure the open climate of our country, as also many Mulberries. Paratrophis heterophylla is a native of New Zealand. Morus alba grows wild in Mongolia, and M. rubra as far as Canada. The genera of this family which include the wildest species belong to the Ulmece series. There are species of Celtis as far as the north of China and Japan. ${ }^{2}$ The Elms have the most northern range whether in America ${ }^{3}$ or in Asia and Europe. ${ }^{4}$ In this last part of the world, besides Figs, we meet with the genera Ulmus, Celtis, Abelicea, and Humulus in the wild state, and introduced, the genera Morus, Broussonetia, Machura, Cudrania, Planera, and Camabis thought to be of Asiatic origin. ${ }^{5}$

The series which we admit in this family are distinguished from one-another by the following characters:

[^202]Europe 20 degrees of cold, C. canina grows in the State of New York, as well as C. crassifolia. This genus is also represented in La Plata by Momisia.
${ }^{3}$ Where Ulmus americana grows spontaneously in Canada to $48^{\circ} 20^{\prime}$ lat. N.
${ }^{4} U$. pedunculata is found in Sweden and Russia higher than U. campestris. The latter grows in Scotland. U. jumila inhabits the transbaical region of Siberia. U. Montana is found in Sweden, in Scotland, and as far as the river Amour ; U. Fulra, in Canada.
${ }^{5}$ A. DC. Géogr. Bot. Rais. 833, 986.
I. Ulief.e. - Flowers polygamo-diœcious; more rarely hermaphrodite, isostemonous, or more rarely 2-3-plostemonous. Staminal filaments straight or incurved in prefloration. Ovule descending. Fruit dry and often winged (true Ulmece), or drupaccous, without wings (Celtitece).--Trees or shrubs, with juice not milky, distichous leaves, accompanied by lateral stipules either intra-axillary and independent or united, flowers in loose or contracted cymes.- 11 genera.
II. More ${ }^{2}$ - -Flowers monœcious or diœcious, ordinarily tetramerous. Stamens in number less than or equal to the sepals, filaments inflexed in prefloration and elastically straightened at the period of anthesis, anthers introrse after anthesis. Ovule descending, anatropous or campylotropous. Fruit generally drupaceous, indehiscent.-Trees or shrubs, rarely evergreen herbs, ${ }^{3}$ juice generally ${ }^{4}$ milky or opaline, leaves alternate, often distichous, stipules lateral persistent or caducous, leaving on the branches transverse but rarely annular scars. Inflorescence mixed, formed of cymes or oftener glomerules grouped on a spike-like capituliform rarely racemiform receptacle.-20 genera.
III. Artocarpece. ${ }^{5}$-Flowers monœcious or diœcious, similar to those of the Moree, except that the staminal filaments are straight in prefloration and at every age. Ovule descending or more rarely (Conocephatece) ascending (and in this case completely or incompletely orthotropous), with micropyle always superior.-Trees or shrubs, with juice generally milky or opaline, leaves alternate rarely opposite convolute in estivation, stipules ordinarily amplexicaul, leaving annular scars on the axes. - 32 genera.
IV. Cannabinef. ${ }^{6}$-Flowers diœcious, isostemonous. Staminal

1 Ulmacee Mirb. Elém. (1815), 90 万.-Lindl. Veg. Kingd. (1846), 580, Ord. 221.-ENdL. Gen. 275, Ord. 90.-Pl. Prodr. xvii. 151, Ord. 183.Celtidece L. C. Rich. ex Gaudich. I'oy. Freycin. Dot. (1826), 507 (this name, proposed by L. C. Richard, would doubtless have priority, but appears not to have been published by him).Endi. loc. cit. 276, Ord. 91.-Lindl. loc. cit. 580, Ord. 221.
${ }^{2}$ Mforece Meisen. Gen. 261. (part.).-Endl. Gen. 277, Ord. 92 (part.).-Moracea Lindi. Veg. Kingd. 266, Ord. 87 (part.),-Bur. Prodr. xvii. 211, Ord. 183 bis.-Broussonetice, Chlorophorea, Ficez, Dorsteniece Gaudich, Voy, Freycin.

[^203]filaments short and straight. Female calyx gamophyllous, cupuliform. Ovule campylotropous. Fruit dry induviate and in. dehiscent. Seeds without albumen, embryo recurved.-Odorous herbs, annual and erect or evergreen and climbing, with aqueous juice, leaves opposite (at least in the lower part of the stem), scabrous, palminerved, often lobate, stipules persistent, inflorescence in cymes.-2 genera.

A family thus constituted, "by concatenatiou," has manifold affinities. Lindley has placed the Ulmece in his Alliance of Rhamnales, between the Aquilariec, which belong to the Thymelacere, and the Chuilletia, which we include in the Euphorbiaceca. We are not unmindful of their affinity to the Urticere. Now, although the Artocarpere and the Morece have been more or less widely separated from the Urticece on account of the constitution of their dicarpellar gynæcium with ovules oftener descending and anatropous, and although we ourselves have formerly admitted this separation, the study of a large number of genera of the small group of Conoceplatere, in which the ovule is more or less distinctly ascending and orthotropous, we are convinced that this disjunction cannot be maintained and that the opinion of Mr. Benthan, restoring to the older Family of Urticece its unity and integrity, ought now to be fully adopted. We perhaps go still further than he does in leaving the Ulmear and Artocarpere in one and the same natural group; but the Celtidece, on the one hand, could not be disjoined from the Elms, the fruit of Planerece being intermediate between the drupes of Celtis and the samare of Ulmus; and, on the other hand, they could not be separated from Morece and Artocarpece by any truly absolute character, neither by the nature of their juice, nor by the characters of their stipules, stamens, gynæcium and fruit; and if the differenees which have been put forward for this purpose really exist, there is not one which, in every case, can be considered constant. On the other hand, the family we are now studying approaches, as we shall presently see, very near to the Castaneacere and, consequently, to the Humamelidex and Platanew.

Uses.-The milky or opaline juice found in a great number of Artocarpere give them very characteristic properties, ${ }^{1}$ analogous to

[^204]those of the Euphorbiacee with similar properties. Their latex ${ }^{1}$ is rich, either in caoutchouc, which is extracted for industrial purposes, or in a deleterious principle which renders these plants extremely dangerous. The most celebrated of the latter class is unquestionably Antieris toxicaria ${ }^{2}$ (fig. 119-121), a terrible poison with which the natives of Java formerly rubbed their weapons of war and chase, and the inoculation of which was said to be mortal. Moreover, contact with or even the neighbourhood of this tree was, according to report, fatal to man. Fugitive slaves perished under its branches in the forests where they took refuge, and the ground was strewed with corpses in the valleys of death where this terrible tree grew, under which the birds could not fly without perishing. Rompirus, then Leschenallit, have made us better acquainted with what is true in all these traditions. The latter received the milky juice which flows from incisions in this tree upon different parts of the body without inconvenience; but he also has seen accidents produced by contact of the latex with the skin or the eyes. Many of the Javans who cut the tree experience pains, nausea, vomiting, and rertigo. ${ }^{3}$ The action of this juice is more energetic when inoculated than when taken internally, and, in the latter case, it does not act with the same intensity on mau as on other animals. We are assured that animals killed by this poison may be caten without inconvenience.

1 The reservoirs of this juice have been studied occasionally by authors who have examined this family anatomically, the principal of whom are:-Mia. Observ. sur le Canal. Médull. et les Diaphr. du Trone de Cecropia Bull. sc. Phys. Nêerland. (1838), 29-31, 168-172, Mraヶt. Fl. Bras. Urtic. 140)--C. H. Schultz, D. Cyhlose (Nov. Act. Nat. Cur. (1841), xviii. Suppl. ii. t. 13.-Karst. Nov. Aet. (1854), xxiv. 79.-Morus; Garbich. Toy. Bon. Bot. Atl. t. 132, f. 14, 15. M. David attributes to the reservoirs of the latex of the Morce the same origin and the same constitution as to those of the Euphorbiacea (sce vol. v. 159, note 5). -The same applies to Ficus Carica: Meyen, Phytot. (1830), t. 10. f. 5, 6 ;-E. clastica, Link. Ic. Anat. Bot. (1837), fasc. ii. xiv. 1-:-Dưchtre, Elêm. fig 25, 26. Trécul has marked as an exception (Compt. Rend. Ixvi. 575) Conocephalus naveleiforus, which does "not enclose vessels with a millsy juice, but cellules of gum in the youngest part of the branches and lacunes or canals full of grom in the older parts."

[^205]The jnice of Antiuris toxicuriu has been proposed as a curative; it is an energetic evacuant, but probably very dangerous. Beside this species some are mentioned as not injurious, as A. imoxite ${ }^{1}$ and A. Bennetti, ${ }^{2}$ which have various uses in the Viti isles, principally to prepare and dye the barks of which the natives make their coarse garments. In Ceylon, A. succiloru ${ }^{3}$ is employed to make tissues and especially sacks, the foundation of which is a thin round of wood the only portion preserved of an entire \log chosen of the height desired for the sack; the coats of this are formed of the cylinder of bark separated by beating and finally turned. Other drtoctorpece have an acrid and caustic juice, notably Piretinert spuria, ${ }^{4}$ of the Antilles and many species of Artoctipus. In singular contrast to these qualities of their latex, diametrically opposite qualities apparently are ascribed to that of the famous Cow tree of South America, Piratinera utilis, ${ }^{5}$ which constitutes a true vegetable milk analogous, it is said, in its physical properties and alimentary value, to the milk of the cow; ${ }^{6}$ although it has been more recently remarked that great abatement must be made from the value attributed to this aliment ${ }^{7}$ which is obtained in abundance from incisions made in the bark. A thick and viscous gummy milk is also extracted from the bark of Piratinera Alicastrum, ${ }^{8}$ a Jamaican species and its young

[^206]
Abstract

to contain a fatty matter soluble at 40°, which, united with an albuminoid substance, salts, etc., would constitute a complete aliment. But there is great difference as to the proportions of these useful ingredients between observers who have treated of this juice. The fruit is said to be edible but viscous.

7 Marcoy (Tour du Monde, xii. 167, 216) says that this milk, at first very sweet to the palate soon leaves in the mouth a bitter and disagreeable taste, that its daily use as an alimentary substance, would soon produce serious disorders in the animal cconomy, and that the natives taste it partly from want of occupation, partly to assuage their thirst, partly to show the curious that a small dose of this liquid may be taken without danger; but that they do not make their nourishment of it ; that they use it mixed with soot to call their vessels, also as an astringent in cases of tenesmus and dysentery. ${ }^{3}$ Brosimum Alicastrun Sw. Fl. Ind. Occ. i. 17, t. 1, fig. 1.-'Iuss. Journ. Bot. 1. 202, t. 7.Rosenth. op. cit: 196.-Alicastrum arboreum fol. Ovat. Alt. Fruct. Solitariis P. Br. Jam. 372 (Bread Nut).

leaves are employed in this country for feeding small cattle, but they are said to be injurious and aging. The seeds are edible, as are likewise those of the Cow tree, but they are roasted before boing used. Those of Musungu Smithii, ${ }^{1}$ a fine African tree, and of many species of Artocarpus, are equally edible. A. integrifolia ${ }^{2}$ (fig. 115-118), in the wild state, has no other part useful. But culture has modified this species and still more A. incisu ${ }^{3}$ (fig. 114), which is the Bread tree proper of Asia and tropical Occania, in greatly reducing the volume of the fruit (with the seed they enclose), or even in making them entirely disappear, while the receptacle has assumed as much greater a development and is filled with a larger quantity of fecula. They are cut in slices and eaten fresh, boiled, roasted or grilled, but may be preserved after having been dried in the oven. In Otaheite scarcely any other species is now met with than the variety called "seedless," which grows abundantly also in the Frieudly archipelago, the Sandwich Isles, New Hebrides, the Mariame and especially the Society islands. The fruit of three trees is said to be sufficient to nourish a man for a year. The flowers are used to prepare a sourish conserve. Dried, they form a sort of tinder. The thickened latex becomes birdlime for the use of the fowler. If to this we add that the wood, though but slightly resistent, may be employed in the construction of huts and that the bark and leaves serve for making mats, roofs, tissues, the statement that the Bread tree alone supplies all the material wants of this little-civilized people will be justified, and we shall understand the superstitious legends which claim a celestial origin for this precious vegetable. There are other species of Artocurpus useful to man, though less appreciated than the preceding. A. heterophylla, ${ }^{+}$an Indian species cultivated also in the Mascarene isles,

[^207][^208]has edible seeds; its root is astringent, as is also that of Λ. integrifolia, and is employed against diarrhœa and scabby affections. The juice of the fruit has been extolled for maladies of the cyes, and the wood and bark have served to prepare astringent gargles. The bark of A. Lakoocha ${ }^{1}$ in India supplies an astringent medicine, as also that of A. pubescens, ${ }^{2}$ an Indian species the bark of which is used as an antidiarrhoctic and administcred in cases of pain, stiffness of limbs, contusions aud tumours. In Java and Malabar A. Blumei ${ }^{3}$ has the same reputation. From its buds and leaves is prepared an ointment which is applied to sores and hemorrhoidal tumours. Its fruit, prescribed against diarrhoea, contains an oil employed for culinary purposes. It is edible, as is also that of another Javan species, A. Kertar. ${ }^{4}$ In Cochin China is eaten that of A. Polyphema, ${ }^{5}$ and in the East Indies those of A. imperialis Roxb., parvifulia Wight, clastica Reinw., lonyifolia H. Cels, lavis Hasse, and rigida Bl. ${ }^{6}$ The following are also reported as Artocarpere with edible fruit: in central America Trophis Americana L. ; in Guyana, Bagassa guiancnsis Aubl. ; in Brazil, Pourouma acuminatu, ${ }^{7}$ bicolor ${ }^{8}$ and cecropiay $o l i a,{ }^{9}$ and many Cecropice. These are almost always astringent plants. ${ }^{10} \quad C$. peltata ${ }^{11}$ is much employed in the Antilles and central America for various purposes. Its caustic latex is used to destroy warts, corns and scabs. Its leaves and inner bark are very astringent, antidiarrhoetic and antigonorrhoetic. Of its hollow stems and branches the

[^209][^210]Caribs formerly made trumpets with which they called the people to war and to religious ceremonies. Now water conduits and gutters are made of it. The wood is light and soft. By brisk rubbing, with the aid of a pointed piece of hard wood sunk in its tissues and caused to rotate rapidly by means of a cord or strap, fire is produced, and other species of the same genus, ambuiba, ${ }^{1}$ are used by the natives of Brazil for the same purpose. The wood of the root is generally preferred to that of the stem. The young branches of many species furnish a fibre of which very stout fabrics are woven and made into hammocks and vestments. But the most useful industrial product of the Artocarpea is probably the caontchouc extracted from their latex. All the caoutchoue gathered in southern Mexico, Panama, Honduras, Nicaraqua, San-Salvador, Costa-Rica, Guatemala, the Antilles, Columbia, Equador and Peru, that is to say, in the west of America between 2.5° N. lat. and about $25^{\circ} \mathrm{S}$. lat. is the product almost exclusively of Custillou elasticu² (fig. 122). In Nicaragua the juice is collected at all seasons, but not so much in the rainy, when it is much less abundant. ${ }^{3}$ Incisions are made in the trunk in two different modes. Sometimes a long vertical cut is made intersected by oblique ones; sometimes, as in Nicaragua, the incision is in the form of a continuous spiral, with an inclination to the horizon of 45°; and if the tree is large, another spiral incision is made in a contrary direction to the former; but this double incision is very injurious to the plant. An iron gutter placed at the foot of the tree conducts the juice to buckets of the same metal, and in the evening it is strained; after this, it is treated

[^211][^212]with juice prepared from certain plants ${ }^{1}$ which coagulate the caoutchouc. The latter becomes a floating mass in a brown liquor of a cheesy odour; the mass is subjected to an iron press and then dried. ${ }^{2}$ In tropical Asia, in Australia and perhaps also in Angola and Benguela, on the coast of Africa, there are other Artocarpece which produce the greater part of the caoutchoue exported. They belong to the genus Ficus and, among a great number of species imperfectly defined, ${ }^{3}$ are especially mentioned F. elestica, ${ }^{4}$ laccifera ${ }^{5}$ and religiosa ${ }^{6}$ in Asia, macroplyylla ${ }^{7}$ and rubiginost ${ }^{8}$ in Australia. In the province of Assam the furmer of these is chiefly employed; incisions are made in the trunk and acrial portions of the roots with a peculiar knife (rlaos). The juire flows into troughs dug in the ground, or into channels formed by the leaves; it is richer in caoutchouc during the cold season. It is treated with warm water till it coagulates; after which it is pressed and dried in the sun. In Java the juice is allowed to dry upon the tree itself. Generally the caoutchone of Ficus is impure. Even when it contains no bark or earth, it is of less value than the American produce. Besides this substance, now so serviceable in industry domestic economy and medicine, the products of the Fig trees are so mumerous and so various that it is almost impossible to enumerate all. The common Fig ${ }^{9}$ (fig. 124-12(i) is especially known for the quality of

[^213]hohlehlet in Java).
${ }^{5}$ Roxb. Fl. Ind. iii. 545. Wight, Icon. t. 656. -Uiostigma lacciferum Miq. Fl. Ind.-Bat. i. p. ii. 575.-Tww, Enum, Pl. Zeyl. 265 (But).
${ }^{6}$ W. Spec. iv. 1134.-Roxb. Fl. Ind. iii, 547. -Urostigna religiosum Gasp.-Arcalu Reeed. Hort. Malab. i. t. 27 (Aswat, Bogala, Pippa, Rai, Figuier des Pagodes).

7 Desf. ex Pers. Symops, ii. 609.-Benth. Fl. Austral. vi. $570 .-F$. Huegelii K. (ex Mia.).Urostigna macrophyllum Miq. Hook. Lond. Journ. vi. 560.
${ }^{8}$ Desf, ex Vent. Mramais. t. 114.-Benth. Fl. Austral. vi. 16S.-Bot. Mag. t. 2939.-F. Australis W. Spece iv. 1138.-Urostigma mbigbosum Gasparr, N. gen. Fic. 7 ; Ric. Caprif. 82, t. 7, fig. 6-13.
${ }^{9}$ Ficus Carica L. Spee. 1513.-W. Spec. iv. 1131.-Roxb. Fl. Ind. iii. 528.-Guib. op. cit. ii. 317. - Endr. Enchirid. 166 -Mér. et Del. Dict. Mfat. Méd. iii. 254.-Lindl. Fl. Méd. 298.-Gren, et Godr. Flo de Fr. iii. 103.-Berg et Schm, Darst. Off. Gew. t. 19 a.-Flueck. et Hanb. Pharmacogr.487. (Boz, Arbre à cariques).
its fruit. Figs are caten dry, and, in that case, not only the fruit proper (which are drupes with a sarcocarp of little thickness, except at the edge.'), but also the receptacle which cuvelopes it and into which has passed a certain quantity of saccharine matter, is eaten; or fresh, and then generally the receptacle, insipid or of a disagrecable flavour, is rejected, ${ }^{1}$ and only the drupes are taken of which the flesh and foot only are succulent and of an agreeable taste, constituting a wholesome aliment for man and also for certain animals which are fattened on figs where they are very abundant. They are sometimes used, especially in the south-west of Europe, to make alcohol. They are a pectoral fruit. ${ }^{2}$ From them are prepared sweet beverages and soft poultices. The latex contains caoutchouc ; but it is not certain that it is extracted. This acrid purgative juice serves to destroy warts. It has been employed as a sympathetic ink and also, in the time of the Romans, for making a kind of stucco. The wood is porous and of little solidity; that of old trunks has always been used in the south of Europe for making strews of presses. Younger it is seamed with hard concretions similar to the cystoliths of the leaves, and may replace emery for polishing. The leaves have also been used to produce a reddish yellow dye. The other useful Fig trees are very numerous and have very various properties. ${ }^{3}$. heterophyllu L. F. serves as an astringent in India. F. Sycomorus L. (Sycomorus antiquorum Gasp.), a noted species on the banks of the Nile, has edible fruit. Its wood was formerly used to make coffins and mummy cases, and also for the carved figures, sometimes so remarkable, which extend back to the remotest period of ancient Egyptian civilization. F. hispmite L. (F. Dumomum Roxbs.), the juice of which is very poisonous, is used against aphto, and angina. F. cmmbinensis Kostl., of the Moluceas, passes as an astringent and febrifuge. Its root serves to intoxirate fish. F. lovicuriet I. (F. L'ellum Boma.) has a juice rich in caoutchouc and very poisonoms. Likewise fresptich Rumph., which, in the Moluceas, is employed as a vermifuge and also, we are assured, as a blister. F. cello BL., fullect Reinw., and nivec BL. are fodder for hurses in Java. F. Altimerudo Roxb, is considered an aperient in the Philippines; it is employed as a sauce for fish. The

[^214]leaves of F. polycarpa Roxb. (F. copinsa Steud.) are taken mixed with opium. F. penificu Det., or Chnedto of Abyssinia, has au internal bark which is used for bread by the natives. They also eat the fruit of F. Schimperiuna (F. vallis Del.). F. courtullensis (Covellia courtallensis Mir.) has heen described by Rieede, under the name of Valli Teregam, as a very useful tree in India, its fruit being used in the treatment of stomatitis, its bark as a cure for leprosy, and its leaves for polishing wood and metal. In the Moluccas, F. Wessa Roxb. (Caprificus aspera Runpu.) is used in dressing viands ; its bark is antidysenteric, and from its fruit is prepared a mixture supposed to facilitate parturition. In Malabar F. parasiticu Koen. is sought as an antidysenteric, and its acrid latex is supposed to cure chronic affections of the liver. F. unduluth Hamil., of the same country, serves for the treatment of aphto, tumours, ringworm ; F. scaberrima Bl., of Java, for pains. F. septice is a drastic, a vermifuge, and an energetic blister; the Javans consider it a violent poison. r. benjamina L. (U.ostignne benjaminum MIre.) scrves for the local treatment of sores produced by poisoned arrows; the chewed leaves and brauches are applied to the point wounded. F. benghelensis L. (Urostigme bonylulense Gasp.) has a tonic root, and cedible fruit and leaves. F herrel (F. indica Lamk.), one of the eaoutchone species, is employed as a tonic and for toothache. As astringents and resolutives are sought in tropical Asia and preseribed for a multitude of maladies of the liver, of the skin, of the mouth, ete., F. imherı L. (Urostigmu Tjülle Mio.), nitilde Thunb., infectoria Roxb. (F. renose Ait.), Ràmphiii BL., racemosa L. ete. F. Demonum Vahl is considered a terrible poison. On the contrary, the fruit of F. glomeralu Roxis, F. amboinchsis Kost. (Cocellia rucemifeon Mro.), mollis (C. mollis Mre.), uspere Fonst., Granatum Fonst., ('humes Fonst. of Polynesia, and that of F^{\prime}. pemilu Thunbs, of China, and of F. Johennis Bols'., of the East, are edible. Several species are used to dye yellow, notably F. tinctoria Fonst., a tree of Tahiti. F. Aimpelos Bura. and politoric Lamk, are used in Java to polish wooden vases. The properties of the American Figs are analogous to those of the Old-world species. In Brazil F. anthelminthiere ${ }^{1}$ is extolled as very efficacious in the

[^215]treatment of verminal affections. F. atrox ${ }^{1}$ is one of the plants from which the Indians of Rio-Negro prepare the curara, and the juice of F. doliuria, ${ }^{2}$ which derives its name from the employment of its light wood for the fabrication of large vases for domestic use, is also considered very acrid. The juice of F. rudullu ${ }^{3}$ is also a vermifuge and rich in caoutchouc, as likewise that of F. vermifuga. ${ }^{4} \quad F$. gummifera, prinoiles and cllipticu K. are also reported as caoutchouc species in Columbia. Gum lac is a product of several Figs. Its formation is attributed to the Coccus Lacca, a hemipterous insect, the females of which, living in great numbers on the branches of the Ficus indica and religiosa, ${ }^{5}$ produce thereon a sort of continuous crust from the resinous matter which exudes from their bodies. Imbedded in this reddish matter are found, not only the dead bodies of the females, but also eggs which, later on, are hatched and give birth to insects before the issue of which it is preferable to collect the lac. ${ }^{6}$ 'This latter, formed into sticks, grains, or plates, is used in India for dyeing stuffs. When burnt it emits an agreeable odour, and colours the saliva when it has been masticated for some time. It is used to make varnish for fine cabinet work, and is especially prized among us for bead-work, for making sealing-wax and for the construction of some physical instruments. In medicine, it is employed as a tunic, as an astringent, and forms a constituent of several medicinal dentrifices.

Contrayerva, ${ }^{7}$ belonging also to this family, consists of evergreen herbs and derives its name from the property attributed to it in central America as an antidote to the bite of venomous snakes. Drake root, brought from Peru by the celebrated navigator of that name at the end of the 16 th century, and described by Clusius in $1605,{ }^{8}$ was a blackish rhizome, clothed with adventitious roots and leaf-scars, attributed to Dor'stenia Houstoni. ${ }^{9}$ Linneevs thought that

[^216]the true Contrayerca would prove to be the species of Dorstenia to which he had applied this sperific name ; ${ }^{1}$ but this is Mexican, and the true C. of commeree, or Ceta-apia of Marcgraff and of Pison, ${ }^{2}$ is a Brazilian species, either D. Cayapiu, ${ }^{3}$ or D. multiformis ${ }^{4}$ (fig. 105111), which has exactly the same properties. D. tubicina ${ }^{5}$ and D. Furica ${ }^{6}$ are also employed as alexipharmics in the same region. They are reputed as anti-dysenterics. Their rhizomes are aromatic, tonic, and astringent. The same is true of certain African species, such as D. radiata, ${ }^{7}$ used in Abyssinia in the treatment of cutancous affections. The most active of the American Contraycreas is probably D. brasilicnsis ${ }^{8}$ (fig. 112), the mixed inflorescence of which is in the form of a circular disk, and its reddish stock has a feeble aromatic odour and a taste finally very acrid. It is stimulant and provokes perspiration; which doubtless explains the alexipharmic properties attributed to it, now quite forgotten. Like Dorstenia, Sticblus, belonging to the Morece series, has been used in medicine in its native country, tropical Asia. ${ }^{9}$ Many parts of the Mulberries are also useful. The black Mulberry, ${ }^{10}$ a tree probably of Asiatic

[^217]Lodd. (Tusilla in Venezuela).
${ }^{6}$ Paiv. ex Spreng. Syst. iii. 777. - Miq. Mart. Fl. Bras. Uitic. 168.
7 Lamk. Dict. ji. 318.-Bur, Prodr. n. 58.Fosaria Forskhalii Gmel. (Kosar of the Abyssinians). - D. chinensis Lour., a stimulant aromatic plant is not, it is thought, of this family (Bur.).
${ }^{3}$ Lamri, Dict. ii. 317,-Bur. Prodr. n. 6.loc. cit. 315.-Lindl. Fl. Med. 300.-Mart. Fl. Bras. Urtic. 215,-D. placentoides Cosmers.D. tomentosa Frsch, -D. montevidensis Gards. These plants contain a bitter principle and a warm diuretic and diaphoretic essence (Mart.).
${ }^{3}$ S. asper Lour. (p. 195, note 5) is recommended in Java for epilepsy, rheumatic affections, gout, and after childbirth (Amplas, Sakhotuka, Barinka). S. macrophyllus BL. (Diplocos? macrophylla Bur. Prodi. xvii. 216) it used to make pestles for pounding rice (Tamboin of the Javans).
${ }^{10}$ Mrorus Nigra L. Spec. 1398.-Duham. Arbr. fruit. ii. 42, t. 8 ; Arbr. (éd. 2), iv. 90, t. 22.Ser. Miur. 220, t. 6, fig. 1, t. 19.-Bur. Prodr. xvii. 238, n. 1.-Lindl. Fl. Med. 300.-Guib. loc. cit. 322, fig. 438.-Gren, et Godr. Fl. de Fr. iii. 103.-CAz. Pl. Mréd. Ind. éd. 3, 671,Flueck. et Hanb. Fhcrmacogr. 489.
origin, ${ }^{1}$ is especially cultivated for its fruit (fig. 101). It is a tolerably agrecable aliment, and at the same time a refreshing medicine, slightly astringent and acidulous. Its leaves, also employed in medicine, are used to feed silkworms. But for this purpose, preference is justly given to the white Mulberry ${ }^{2}$ (fig. 98-100) which, introduced from China into India, thence into Persia, was brought to Constantinople at the time of the Lower Empire, and passed thence to Sicily and Italy, whence the French brought it after the conquest of Naples in 1494 . Its compound fruit is edible, like that of the black Mulborry. Both have a bitter purgative bark formerly extolled as at vermifuge. The wood, as also that of the red Mulberry, ${ }^{3}$ an American species, is solid, proof against the attacks of insects, susceptible of a fine polish and is used for making furniture and various utensils. The cortical fibres might, in case of need, be employed for textile purposes, but in this respect it is far surpassed by the paper Mulberry, ${ }^{4}$ (fig. 102-107), a Chinese tree, now introduced in Europe, Oceania and Ancrica, and used to make paper and stuffs. Its wood is pale, porous, light and does not polish well. Mfechera has a wood comparable to that of the preceding trees. That of M. aurantiaca, ${ }^{5}$ or the () agge Orange, was used to make bows. The Indians of North America used to dye their faces with the yellow and fetid juice of its large round fruit, to frighten their enemies. The entire plant contains a coluring matter, much more developed in M. tinctoria. ${ }^{6}$
${ }^{1}$ A. DC. Geogr. Bot. 856, 981, 986.
${ }^{2}$ M. Albr L. Spec. 1308.-Lamk. Dict. iv. 373 ; Ill. t. 762, fig. 2.-Locd. Arboret. iii. 1398.-Ser. Descr. Mhêr. 191.-Endl. Enchivid. 165.-TOSENTH. op. cit. 191.-Bur. Irodr. xvii. 238, n. 2.-M. macrophylla Monet.-M. Mcrettimna JACQ.-M. tatarica L.-M. ronstantinopolitana Potr. Dict. iv. 381. - M. byzantina Siebr-Mr. Indica L_-M. cuspirata WalloM. rebra Lour. (not L.).-M. iatifolia Poiramulticaulis Perr.-M. cucullata Bonaf.-M. bullata Balb.-Mr. chinemis Lodd.
${ }^{3}$ L. Spec. 1399. - Pork. Dict. iv. 377.Miсих. Fl. Bor-Amer. ii. 179; Arbr. for. iii. 232, c. ic.-Duham. Arbr. éd. 2, iv. t. 23.-Ser. Mûr. 223, t. 20.-Bur. Prodr. n. 3.-M. canadensis Lamk.-M. pensyluanica Nois.-M. missouriensis Audrr.

- Broussonetia papyrifera Vent. Tabl. iii. 547. -Bur. Prodr. xvii. 224, n. 2.-Morus papyrifera L. Spec, 1399.-Praypius japonica Poir. Dict. V. 3.-Papyrus legitima Kлempr. Aman. Fixt. 471. is. (IIon, Tchory of the Chinese, Ri,

[^218]The latter has astringent fruit used in medicine, like the Mulberries, a fine wood which might be employed with advantage in cabinet work, a resinoid juice, called the marrow of Cuba, ${ }^{1}$ proposed for the treatment of seurf, and a colouring matter highly prized for dyeing in the New World. There are also yellow dye woods in Brazil from trees of the genus MHelurit; and the Bagussu wood of Guyana which is that of Bayusset yumenensis, ${ }^{3}$ has analogous properties and might equally be employed in cabinet work.

The most useful woods of this family are the Elins. The common Elm ${ }^{4}$ (fig. 81-94), excellent as fuel, is good for making a great variety of articles; it is used by tumers, joiners, cabinet makers and builders. Of its knobs are made trunks and articles of furniture. The bark is used for tanning skins, to make mats, cords, string, paper, and to dye yellow; it has been much used in medicine as a tonic, astringent, for ringworm and intermittent fever. Its young leaves are given to beasts, and its fruit has served as an aliment to man, being eaten green as a salad in some countries. Ulmus culate, ${ }^{5}$ americance ${ }^{6}$ and fulut ${ }^{7}$ have analogous uses in the United States. The wood is much used in building. The bark is emollient, used as poultice, and is said to be edible. From that of U. clatur decoctions are prepared and applied as lotions to chaps, chilblains and gunshot wounds, and are taken internally for cough and dysentery. U. parvifolia ${ }^{\circ}$ was celebrated at a certain cpoch under the name of The de l'abbé Gulvis. Its leaves sometimes bear a gall which the Chinese use to dye and tan skins. ${ }^{9}$ Pleneru rqueticu ${ }^{10}$ furnishes a wood employed in the south of the United States. Aluclicea cretica, ${ }^{11}$ or

[^219][^220]False-Sumlal of Crete, has a reddish odorous wood, said to be astringent and detersive. A. crenata ${ }^{1}$ has a solid wood for carpentry and cabinet work. The Dates are also useful trees. That of Provence ${ }^{2}$ (fig. 95-97) serves to make a great number of domestic articles ${ }^{3}$ and musical instruments; productive hedges of it are planted in the South. Its leaves feed cattle, and its seed pressed furnishes an oil for burning. The Dute of the West, ${ }^{\text {' a a species from }}$ the United States, has also a useful wood employed by carvers and musical instrument makers. Its astringent bark is used for taming, and also as a febrifuge. Its leaves are said to strengthen and fatten horses. Celtis Tournefortii ${ }^{5}$ and crassifolie, ${ }^{6}$ oriental species, are also astringent plants, prescribed for various kinds of flux. Tiema orientalis, ${ }^{7}$ a beautiful tree of tropical Asia, introduced into the Mascarene isles, is reputed a remedy for epilepsy; and T. micrunthe, ${ }^{8}$ a Central American species, has a textile liber of which cord and stuffs are made in the Antilles.

The textile qualities of the bark are common, therefore, in this family, to a number of Llmeer and Morere. But they find their greatest development in the Cunnobinere, and principally in the cultivated Hemp ${ }^{3}$ (fig. 129-131i), an herb of Asiatic origin and sought everywhere for the textile fibres of its liber. Their arrangement in parallel longitudinal bundles, separated from each other by similarly longitudinal zones of cellular tissue, renders them easily separable by soaking and heating, as is usual in plants eminently textile. ${ }^{10} \mathrm{It}$ is unnecessary to speak of the stuffs, cordage and various articles prepared from the hemp, its tow and its fibre. These substances are also used to make paper. ${ }^{11}$ Much has been said of the

[^221]particular intoxication produced by emanations from the hemp fields. The leaves of the cultivated hemp have quite a peculiar action on the system which they appear to owe to two volatile essential oils ; ${ }^{1}$ these are most abundant in the Indian Hemp, from which the haschisch of the Orientals is prepared, a substance considered by them exhilarating and aphrodisiacal, which produces a delirious intoxication, much studied by physiologists and physicians. ${ }^{3}$ As a medicine, the Hemps, after producing a passing excitement of the nervous centres, finally become sedative and stupefying.* The fruit of the Ifemp or hempseed is especially valued for the oil it contains which renders it edible, especially for birds and small cattle This oil is used for burning, to make soap and paint, and the cake is employed to feed and fatten animals. ${ }^{5}$ The ancients ate torrefied hempseed to stimulate the stomach. The Π op ${ }^{6}$ (fig. 137-145) is quite as widely celebrated. Its young shoots (hop sprouts) are eaten in the north like asparagus. They, as well as the roots and multiple fruit (cones), are used in medicine as tonics, bitters, purifiers and diaphoretics. The cones are employed principally to aromatise beer, and the intensity of its action depends upon its richness in lupulin. ${ }^{7}$ This is also a narcotic and sedative. The leaves of the Hop have been used for dyeing, and its annual branches ${ }^{8}$ have a textile bark used to make bands, coarse threads, and cordage. The climbing branches of the Hop are very ornamental. Under this head, this family does not present many choice plants, beyond the fine trees

[^222]which, in our plantations, are derived from the genera of the Elm, Date, Mulberry, Broussonetic, and the beautiful species of Ficus which are grown in our gardens and houses as foliage plants. ${ }^{1}$ There are but few American and Asiatic Figs the wood of which is of any utility, as it is generally soft and brittle; mention is made, however, in India, of Ficus religiosn, from which idols are sculptured; in Tahiti, of F. tinetoriu Forst., of which some domestic utensils are made; in Abyssinia, of F. penificu, Mia., employed for the same purpose, the specific name of which is derived from the natives eating the inner bark as bread; in Java, of F. albu Bl. and fulca Reivw., Maclura javonica Bl. and Cultames amboinensis of Runphites, the woods of which are coloured yellow. The Letter or Snute wood of Guyana is attributed to plants of this family. Piratinera guiunensis is the best known. The negroes make rice-pestles and canes of it ; and the Galibis their bows and traps (boutous). The spotted kind of commerce comes, it is said, from Brosimum guiunense, a species of the same genus, as well as, very probably, from Ferolut guiunensis of Aublet, which produces the Bois satiné, or Ferole, an excellent red essence, streaked with yellow, heavy, compact and susceptible of a fine polish.

Abstract

${ }^{1}$ Machera and Abelicea are more rarely cultivated in the open ground and in our conservatories, Dorstenia, curious for the varied form of the receptacle of its inflorescence, Conocophatus and Artocarpus for the beauty of their foliage, and Treculia africana and an Antiaris. Many useful products have necessarily been omitted in the enumeration we have just made. Calizs lactescens Blavco (p. 164, note 12) has an edible fruit and a milky juice, but it is not poisonous, for small cattle feed on its leaves when other forage fails. Friction with the macerated bark is said to cure the bite of venomous snakes. Getah-lahoe, a kind of vegetable

wax of Sumatra, attributed to Ficus cerifera Bu. to Bleekrodea, and to certain Sapotacec, appears to render great service in surgery as a local agclutinative medicine (Vanhenael), and also internally as an antidiarrhoctic. This substance might also be employed for making tapers (Bleekrode, Am. Sc. Nat. sér. 4. iii. 330, t. 11), Many fossil plants belonging to this family enter into the constitution of certain lands. Unger (Chlor. Protog. t. 24-26) has described Ulmites and Ulminium. There are Elms and Figs in the tertiary strata (Sar. Ann. Sc. Nat. sér. 4, xix. 112 ; sér. 5 , xviii. 39 , etc.).

GENERA.

I. ULMEE.

1. Jlmus T.-Flowers hermaphrodite or more rarely polygamous; receptacle short generally rather concave. Calyx marcescent, 5-8lobed, imbricate. Stamens equal in number and opposite to lobes ; filaments inserted more or less deeply in the cupule of the receptacle (hence slightly perigynous) free exserted ; anthers in æstivation erect extrorse ; cells 2, longitudinally rimose. Germen (sometimes in male flower effete) 2-carpellar, 2-locular; the second cell abortive effete (or more rarely fertile); style short, 2-fid at apex; lobes densely papillose-stigmatose within. Ovules descending anatropous ; micropyle extrorsely superior. Fruit samaroid, clothed at base with cupule of receptacle and often stipitate, surrounded by a marginal wing entire or more or less ciliate; cell eccentric compressed reticulately veined, sometimes longitndinally nerved, 1 -spermous. Seed descending ; coat membranous, 2-plicate ; cotyledons of exalbuminous embryo plane or plano-convex rather fleshy; radicle superior straight.-Trees or shrubs, not milky ; branches sumetimes suberose ; leaves alternate, ilstichous, serrate peuninerved, unequal at base; stipules lateral free ; flowers early or rarely late, breaking from perulate buds, collected in loose shortly stipitate compound cymes; pedicels articulate, bractcolate. (Temp. and sub-frigied regions of the north. hemisphere of loth worlds.) See p. 140.

2? Holoptelea Pl.1-Flowers (nearly of Ulmus) polygamomonœcious, 4 -8-merous; stamens rarely free from sepals equal in

[^223]number, oftener $8-16$. Fruit samaroid peripterous ; wing subentire or marginately excised, glabrous or softly pubescent. Seed exalbuminous; cotyledons of somewhat fleshy embryo deeply 2 -lobed, conduplicate to medial nerve; radicle subclavate incurved. Other characters of Ulmus.-A tree; leaves 2-stichous entire; flowers early compound cymose ; cymes spriuging from the naked twigs of the past year, ebracteate. (East Indies. ${ }^{1}$)
3. Planera Grel.2-Flowers (nearly of Ulmus) polygamo-monocious, 4 -5-merous; stamens 4,5 , alternate with lobes of perianth exserted. Germen (in male flower effete) and other characters of Ulmus ; ovule descending amphitropous. Fruit dry (utricular) crustaceous fragile, shortly stipitate and there girt with emarcid perianth, the whole exterior cristate with complanate unequal lamelle or prickles, apiculate with indurated base of style, indehiscent. Seed descending, obliquely ovoid; hilum linear; cotyledons of exalbuminous embryo unequal; the one larger enfolding the other.-A tree; ${ }^{3}$ branches distichous; ${ }^{4}$ leaves alternate 2 -stichous, ovately oblong, unequal at base, unequally crenate or serrate; stipules lateral free, caducous; flowers ${ }^{5}$ early, breaking from perulate buds, shortly compound cymose or glomerulate. (North Americt. ${ }^{6}$)
4. Abelicea Belli. ${ }^{7}$-Flowers (nearly of Ulmus) hermaphrodite or oftener polygamo-monœcious, $4-5$-merous ; perianth subcampanulate. Stamens equal in number and opposite to lobes of perianth and other characters of Ulmus (or Plunera). Fruit (utricular) ovoideogibbous, hence produced to a short keel (Zelliova) or sometimes to a narrow wing (Hemiptelec, ${ }^{8}$) laterally beaked at apex with base of style; exocarp thin, finally dry; putamen rugose. Secd suspended from apex of cell subamphitropous; cotyledons of exalbuminous embryo plano-convex corrugate, at apex and base 2 -fid or 2 -lobed; radicle superior rather long.-Trees; branches

[^224][^225]2-stichous, sometimes spinescent; leaves ${ }^{1}$ alternate, 2 -stichous, crenato-serrate and other characters of Plancra; buds perulate; flowers ${ }^{2}$ coetancous; the male in crowded cymes; the female few or solitary axillary. ${ }^{3}$ (Crete, Caucasian region, temp. cast. Asia, north. China. ${ }^{4}$)
5. Celtis T. ${ }^{5}$-Flowers polygamo-monœcious, 2 -morphous. Sepals 5, or rarely 4 , much imbricated, in female or hermaphrodite flower deciduous. Stamens same in number opposite; filaments free (longer in male flower), incurved in restivation and more or less clearly elastically dissilient and at anthesis rigidly divergent; anthers introrse, before anthesis connivent in centre of flower; cells sometimes swollen at base, longitudinally rimose. Germen (in male flower rudimentary or 0) girt at base with pilose annular disk, 1-locular; style branches 2, thickly subulate wide recurved, entire or at apex emarginate or dilately 2 -lobed (Solenostigma ${ }^{6}$); lobes linear (Momisia ${ }^{7}$) or sometimes (Momisiopsis ${ }^{5}$) 2-fid, densely stigmatose within; ovule inserted under apex of cell descending amphitropous; micropyle extrorsely superior. Fruit drupaceous naked, oftener globose ; flesh generally scanty; putamen more or less rugose, 1 -spermous. Seed descending amphitropous ; coat thin ; cotyledons of much incurved embryo foliaceous wide unequally conduplicate cucullately replicate and corrugate; one enfolding the other, enclosing the incumbent and ascending radicle; albumen slight between the folds of the cotyledons mucous or 0.Trees or shrubs, unarmed or spinous; leaves alternate, 2 -stichous, persistent or caducous in winter, oftener unequal-sided at base, entire or dentate, $3-p l i n e r v e d ;$ stipules free; flowers ${ }^{9}$ axillary

[^226]in new branches or to leaves or bracts of the past year, solitary, cymose or racemose-cymose. ${ }^{1}$ (All warm and temp. regions. ${ }^{2}$)
6. Gironniera Gaudich. ${ }^{3}$ - Flowers diœcious (nearly of Celtis), 4-5-merons; sepals imbricate, persistent under the fruit, scarcely accrescent. Stamens 4,5 (in female flower 0) ; filaments incurved inserted under pilose rudiment of synecium. Germen 1-ovulate (of Celtis) ; style branches sometimes free to base filiform elongately subulate, deusely papillose, not plumose. Fruit drupaceous com-pressed-lenticular ; exocarp scarcely fleshy; putamen crustaceous brittle, sometimes rugose without.-Trees or shrubs unarmed strigose; leaves 2 -stichous, entire or serrulate penninerved ; stipules subintra-axillary free rather wide couvolute, closely enfolding the twig, afterwards caducous and after their fall leaving annular scars; flowers in loose or close sometimes spike-like cymes; the male often glomerulately spicate or densely crowded. (Trop. Asit, Mulaya, Pacific Islands. ${ }^{4}$).
7. Trema Lour. ${ }^{5}$ - Flowers (nearly of Celtis) polygamo-monœcious; sepals 5, in æestivation induplicate-valvate below, more or less imbricate above, in female flower generally unequal and oftener quincuncially imbricate at base. Stamens 5, inserted under pilose hypogynous disk; filaments subulate; anthers introrse. Germen (in male flower rudimentary), ovule and other characters of Celtis;

[^227][^228]style branches free to base elongate stigmatose-plumose. Fruit drupaccous minute, clothed at base with persistent calyx, generally crowned with plumose emareid style; putamen rugose or pitted. Seed nearly of Celtis; albumen slightly fleshy; cotyledons of curved embryo searecly or not at all corrugate.-Unarmed trees; leaves alternate (evergreen), 3-plinerved, often tomentose; stipules free; flowers ${ }^{1}$ in axillary cymes, 1 - or 2 -sexual. (All worm regions. ${ }^{2}$)

8? Parasponia Mie. ${ }^{3}$-Flowers polygamo-diocious (nearly of Treme or Celtis); scpals 5, imbricate, persistent around fruit. Stamens gynecium and other ebaracters of Trema. Fruit, drupaceous, crowned with plumose stigmata; cotyledons of curved embryo linear accumbent. ${ }^{\dagger}$-Trees or shrubs; ${ }^{5}$ leaves 2 -stichous, 3-plinerved ; stipules intra-axillary, united in one 2 -carinate, 2 -fid; flowers axillary cymose. ${ }^{6}$ (Indian Arechipelago, Pacific Islands. ${ }^{\circ}$)
9. Aphananthe Pl. ${ }^{8}$-Flowers (nearly of Celtis) monocious; sepals 4-6, imbricate, more or less persistent under fruit indurate, not accrescent. Stamens 4-6, inserted under rudiment of gynæcium (in female flower rudimentary or 0); filaments straight or scarcely incurved in the bud ; anthers introrse oscillating, 2-rimose. Germen and ovulum of Trema (or Celtis) ; style afterwards 2-fid; branches subulate, longer than the germen, ${ }^{9}$ velutinous within. Fruit drupaceous, sparsely fleshy; putamen crustaccous, somewhat rugose without; seed amphitropous; cotyledons of exalbuminous embryo spirally convolute; radicle superior somewhat incurved.-Unarmed (evergreen) trees; leaves $\stackrel{\sim}{2}$-stichous, mequal at base, entire or
${ }_{1}$ Minute, greenish cr Jellowish.
2 Spec. about 25. Burv. Amer. Icon. 206, fig. 2 (MLuntingia).-Sloane, Jam. ii. 80 (Loti arhor...).-Plus. Gen. 41 (Muntingia).-L. Spec. 280 ; Ancе. v. 395 (Rhamnus); Fl. zevl. 176 (Celtis).-Sw. Prodr. 33 ; Fl. Ind.-Occ. 157 (Celtis).-l'one, Dict Suppl. iii, 689 (Celtis). -W. Spec. iv. 996 (Celtis).-H. B. K. Nov. Gen. et Spec. ii. (Celtis)-Roxn, Fl. Ind. ii. 66 (Celtis).-Ad. Br. Duperr. Foy. Bot. 212, t. 47. 215 (Celtis).-BL. Bijdr. 486 (Celtis).Schum. et Thöns. Beskr. 160 (Spmina).Blanco, Fl. de Filip. ed. 2. 139 (Celtis).Носнst. Flora (1845), 87 (Sponia).-Wight, Icon. t. 1971 (Sponia).-Benth. Fl. Hongk. 324 (Sponia.) -Miq. Fl. Ind,-Bat. i. p. ii. 215 (Śponia).-Tнw. Enum. Pl. Zeyl. 267 (Sponia).-Seem. Foy. Herald, Bot. i. 413; Fl.

Vit. 235 (Sponia.)-Solms, Schweinf. Ltthiop 192 (Sponia).
${ }^{3}$ In Plant. Junghun. 68; Anal. Bot. Ind. 31. -Pl. Prodr. Ivii. 194.

4 "Not conduplicate."
${ }^{5}$ Inconspicuous minute.
${ }^{6}$ A genus very near to Trema, but sufficiently distinct by the plane imbricate astivation of the male flower and intra-axillary concrescent stipules P_{L}.
7 Spec. 2. Pu. Amn. Sc. Nat. sér. 3, x, 336 (Sponia anom.)-BL. Mus. Lugd.-Bat. ii, 65, t. 36.-Seem. Bomplandia (1861), 259 (Sponia).Miq. Fl. Ind.-Bat. i. p. ii. 218, t. 16.
${ }^{8}$ Aur\&o Sc. Nat. sér. 3, x. 265 ; Prodr. xvii. 265.-Homoiceltis BL, Afus, Lugd.-Bat. ii. 64.Galumpita BL. loc. cit. 73.
${ }^{9}$ Shorter than in Gironniera.
widely serrate, penninerved or 3 -plinerved at base; stipules rarely subfree, oftener growing into one, intra-axillary not enfolding, caducous; male flowers cymose in lower part of the branches; 1 or a few female sometimes intermixed; females solitary in axils of upper leaves. (Trop. Asia, Indiun Archipelugo, Australia. ${ }^{1}$)
10. Chætacme Pl. ${ }^{2}$-Flowers monocious (nearly of Celtis); sepals 5 , induplicate-valvate, marcescent under fruit. Stamens 5 , inserted under thin pilose disk; filaments erect subulate in bud; anthers at estivation 2-rimose introrse, not inverted ; cells at base shortly 2-saccate, longitudinally dehiscent. Germen (in male flower rudimentary) girt at base with pilose disk, l-ovulate; style branches 2, filiform elongate densely papillose-stigmatose. Fruit drupaceous (juiceless ?) ; seed... ?-An evergreen tree, ${ }^{3}$ unarmed or armed with axillary spines (abortive branches); leaves distichous elongate, at apex often setiform mucromulate, entire or spinously dentate, coriaceous penninerved, finally glabrous; petiole short; stipules connate in one wide intra-axillary enfolding the convolute leaf-bud, caducous; male flowers cymose springing either from naked base of new branches, or from perulate leaf-buds; female flowers solitary in axils of upper leaves; pedicels 1-2-bracteolate. ${ }^{4}$ (South Africa. ${ }^{5}$)
11. Ampelocera Kı. ${ }^{6}$ - Flowers hermaphrodite or polygamomonœcious; calyx gamophyllous cup-shaped, unequally 5 -fid, imbricate. Stamens $10-1.5$; filaments comnate at base with perianth filiform, long exserted (sometimes short in female flower) ; anthers ovately oblong apiculate, introrse, 2-rimose. Germen (in male flower rudimentary or 0) free, unequally ovate, 1-locular; style erect, afterwards $\ddot{\sim}$-partite; lacinix clongately subulate divaricate, papillose within. Ovule 1, inserted under apex of cell peritropous descending; micropyle superior, protected by small obturator. Fruit baceate compressed-ovate; embryo of descending seed...?-
${ }^{1}$ Spec. 4. Kempr. Aman. Exot. 799 (Muk. no-ti).-Thunb. Fl. Jap. 201 (Prumus).-Siels. et Zucc. in Abhandl. Münch. Atad. iii. 223 (Sponia).-Sieb. Synops. 28 (Celtis),-BL. Bijdr. 599 (Cyclostemon),-Miq. Fl. Ind.-Bat, i. p. ii. 224 (Galumpita).
${ }^{\text {E. Ann. Sc. Nat. sér. 3, x. } 340 \text {; Prodr. xvii. }}$ 209.

3"With habit of Bumelia or Maclura" closely connecting the Ulmee with this and other Morere.)

[^229]Trees; leaves alternate, widely serrate; stipules lanceolate membranous, deciduous; flowers in ramose glomeruliferous spikes. ${ }^{1}$ (Feru, Cuba. ${ }^{2}$)

II. MOREA.

12. Morus T. - Flowers monœcious or diœcious, 4-merous. Sepals 4, decussately imbricate, persistent and accrescent around fruit, closely connivent and finally succulent. Stamens 4, opposite sepals (in female flower rudimentary or generally 0 ; ; filaments inserted under short thick rudiment of gynæcium, free, inflexed in bud, finally straight or recurved ; anthers introrse ; cells :2, reniform, rimose. Germen (in male flower rudimentary) sessile, 1-locular; style terminal short, afterwards divided into 2 subulate papilliferous branches ; ovule in cell 1, inserted under apex, descending, campylotropous; micropyle extrorsely superior. Fruit drupaceous, enclosed by succulent sepals ; exocarp thin, thicker at margin ; putamen testaceous. Seed descending; testa brittle ; albumen fleshy; cotyledons of incurved embryo oblong ; radicle ascending long cylindrico-conical.-Trees or shrubs; juice milky or opal ; leaves alternate, 2 -stichons, entire or dentate or lobed, unequal at base; stipules lateral free, caducous ; flowers axillary or subaxillary; inflorescence solitary stipitate; receptacle in males elongate subcylindrical, on one or both sides somewhat compressed longitudinally; glomerules crowded, more numerous at margin and wanting on one or both surfaces (hence naked sulciform) ; female receptacle shorter ovate or oblong, also glomeruliferous; drupes with succulent calyces finally united in syncarpia. (All trop. and sultrop. regions.) See p. 144.
13. Ampalis Bos. ${ }^{3}$-Flowers nearly of Morus, 4-merous ; perianth in male flower subvalvate, but in female decussately imbricate, persistent and growing succulent in syncarpia around fruit and stamens involute (of Morus). Germen compressed ovate; placenta thin or sometimes (Pachytrophe ${ }^{4}$) thicker and more or less prominent, 1-ovulate. Fruit drupaceous; flesh scanty; albumen of
[^230][^231]descending seed very scanty or 0 ; cotyledons of curved embryo fleshy plano-convex, or sometimes (Pachytrophe) thinner subrotund and more or less plicate ; radicle accumbent or more or less incumbent ascending.-Trees or shrubs ; juice opaline; leaves alternate petiolate entire coriaceous, oftener rough beneath ; stipules more or less coalescent in one semiamplexicaul, deciduous; inflorescence axillary pedunculate; receptacle very elongate spikelike marginally glomeruliferous on both sides, each surface longitudinally sulciform and destitute of flowers ; bracts crowded oftener peltate. ${ }^{1}$ (Madugascar, Mascarene islands. ${ }^{2}$)

14? Paratrophis Bl. ${ }^{3}$ - Flowers (nearly of Morus or Ampalis) dioccious; male sepals valvate or slightly induplicate or imbricate. Female sepals 4, herbaceous, scarcely or not at all growing around fruit, not fleshy. Germen and other characters of Morus (or Amperlis). Fruit drupaceous slightly fleshy ; albumen of descending seed thin, generally thicker between the folds of the embryo. Embryo incurved; radicle ascouding incumbent; cotyledons equal plicate and conduplicate, parallel or sometimes (Uromorus ${ }^{4}$) not parallel and unequally lobed.-Milky trees; alternate leaves and inflorescence of Ampulis; recoptacles amentiform solitary or 2-nate, subcylindrical or sometimes (U'omorus) very long, ${ }^{5}$ densely glomerulate. (New Zealand, Pacific Islands. ${ }^{6}$)

15? Pseudomorus Bur. ${ }^{7}$-Flowers (nearly of Paratrophis or Ampotis) ; sepals 4, imbricate, not accrescent, persistent around base of fruit. Gynæcium and other characters of Morus (or Ampalis). Fruit drupaceous ; pericarp thin slightly fleshy ; embryo of descending subglobose seed thick compressed subglobose; radicle ascending accumbent; cotyledons fleshy hemispherical; albumen scanty and well conspicuous only aronud radicle.-A lactifluous tree;

[^232][^233]leaves alternate, entire or rarely lobate, stipules, diœcious and amentous, hence glomerulate flowers and other characters of Morus or Ampalis. ${ }^{1}$ (Australia, Polynesia. ${ }^{2}$)

1n. Trophis P. Br. ${ }^{3}$-Flowers diœcious; male calyx 4-partite or 1 -fid, valvate. Stamens 4 (of Morus), inserted under obpyramidal rudiment of gynecium. Female calyx perigynous, inserted in margin of concave cupular-saclike receptacle subovoid and gamophyllous, at contracted apex 4-lobed or 4-dentate. Germen semi-inferior ; style, cell and descending ovule of Morus (or Amputis). Fruit semi-inferior or inferior, crowned with persistent calyx, drupaceous; putamen thin parchment-like. Seed sub-globular; cotyledons of exalbuminous embryo hemispherical fleshy; radicle conical very small superior.-Lactescent unarmed trees or shrubs; leaves alternate, 2 -stichous, petiolate; stipules lateral small, caducous; flowers glomerulate; inflorescence spikelike or racemiform glomerulate ; racemes (spurious) simple or compound. (Both trop. Americas. ${ }^{4}$)
17. Broussonetia Vent. ${ }^{\text {² }}$-Flowers diœcious (nearly of Morus) ; male sepals 4 , free or comnate at hase, valvate. Stamens 4; filaments elastically exsilient ; anthers short introrse. ${ }^{6}$ Female calys membranous obconico-urceolate, denticulate at apex. Germen stipitate, 1-locular; style lateral to apex subulate-filiform exserted stigmatose; micropyle of descending ovule extrorsely superior. Fruit stipitate to elongate gynophore girt at base with persistent calyx, drupaceous; mesocarp very thin at both faces, at base and margins on both sides thick fleshy ; putamen crustaceous or osseous, finally free from exocarp; ${ }^{7}$ testa of descending seed thin ; cotyledons

[^234]Wright. Mem. Amer. Acad. sér. 8 (1860), 173; F\%. Brit. W.-Ind. 153; Cat. IM. Cub. 58.Schlit, Limeat, vi. 357. - Liebm. Vidensk. Selfshr, Kjoben. (1851), ii. 315, 335 (Sorocea).Seem. Bonplandia, v. 74.
${ }^{3}$ Tabl. iii. 547.-Spach, Suit. à Bufforı, xi. 49. -Endl. Gen. n. 1858.-Payer, Fam. Nat. 172.-Bur. Prodr. xvii. 223.-Papyrius Polr. Dict. ₹. 3.-Lamk.Ill. t. 762.-Stromadendrun Pav. Herb. ex Bur. Adansonia, x. 734.
${ }^{6}$ Pollen granular in B. papyrifera spherical with 2 thick polar papillæ. (H. Moнl. Ann. Sc. Nat. sér. 2, iii, 313.

7 And by the elasticity of the fork formed from the thick margins of the sarcocarp after the rupture of its surfaces projected to a less or greater distance. (Cfr. H. Bn. Compt. Rend lii. 19 ; Adansonia, i. 226, t. S.
incurved embryo subequal oblong; radicle accumbent ascending; allumen fleshy thicker between fulds of embryo. Other characters of Morus.-Trees ; with milky or opaline juice ; leaves alternate, ${ }^{1}$ 2-stichous, caducous, often polymorphous; stipules lateral membradous, caducous; inflorescence axillary pedunculate solitary; the male amentiform (glomerulate); the female densely glomerulate on spherical receptacle; bracts interposed, truncate at clavate apex. (South east. trop. and subtrop. Asiu. ${ }^{2}$)
18. Maclura Nutr. ${ }^{3}$-Flowers diæcions (nearly of Mons or Broussonetic); male sepals 4, free or connate below. Stamens 4 ; filaments clastically exsilient, finally long exserted. Female sepals 4, free, thick, imbricate and angular by mutual compression, thicker at obtuse apex. Germen compressed sessile; ${ }^{4}$ style simply filiform or 2 -partite; the second branch very short subulate enclosed. Fruit drupaccous (mesocarp slightly fleshy), collected and enclosed in globular fleshy syncarp formed of the accrescent mutually compressed and closely approximate or coadunate calyces; putamen coriaceous or subcrustaneous ; albuminous seed and embryo nearly of Broussonetia. -Spinous trees and shrubs; wood yellow; juice milky; leaves alterwate petiolate, entire, scrrate or rarely lobed; stipules lateral, caducons; male flowers on anentiform receptacle (partly naked) glomerulate or sometimes cymose ; female capitate ; other characters of Broussonetia. ${ }^{5}$ (Both Americas warm and temp. ${ }^{6}$)
19. Caturus Lour. ${ }^{7}$-Flowers diwcious (nearly of Broussonetia or Maclu'i() ; male calyx 3 -fid or more rarely (Allowanthus ${ }^{8}$) 4 -fid, im-

[^235]mose pedicellate.
${ }_{6}$ Spec. 4 [of which 1 is African, viz. : M. f excelsa Bur. (Morus excelsa Welw.) apparently of another genus]. H, B, K. Nov. Gen. et Spec. ii. 32 (Broussonetia),-Mart. Herb. Fl. Bras. 249 (Broussonetia).-Sloane, Jam. i. p. ii. 2 (Morus)-JACQ. Stirp. Select. 247 (Morus).Ser. Descr. et Cult. des Mûr. 231, t. 27.-R.Del. Bull. Soc. Agr. Hérault, jun. 183ō, c. tab. - Bl. Mus. Lugd.=Bat. ii. 81,-Miq. Mart. Fl. Bras. Untic. 153, t. 51-54.

7 Fl. Cochinch. (ed. 1790), 612 (not L.).Seem. Fl. Yit. 254.-Malaria Blanco, Fl. d. Filip. (ed. 1837), 789; (ed. 1845), 543.-PL. in Am. Sc. Nat. sér. 4, iii, 293.-Bur. Prodr. xvii. 221.-Dumartroya Gaudich. Joy. Bonite, Bot. t. 97.-Cephalotrophis Be. Mrus. Lugd.-Bat. ii. $75, \mathrm{t} .27$.

8 Thw. Hook, Journ. Bot. vi. 302; Enum. Pl. Zeyl. 263,
bricate or sub-valvate. Stamens 3,4 ; anthers short introrse; cells subglobular rimose. Female calyx urceolate, at apex shortly or very shortly 4 -dentate, sometimes hence fissous. Gynæcium sessile; germen l-ovulate; style erect, presently divided into 2 branches, equal or unequal (Allocanthus), filiform papillose. Fruit sessile, enclosed by calyx, coriaceous fleshy; albumen 0 or scanty mucous; cotyledons of fleshy embryo equal or unequal ; radicle various.Trees or shrubs, often climbing, lactescent; leaves petiolate, 2stichous, entire or serrate ; stipules lateral, deciduous ; inflorescence axillary pedunculate, solitary or 2 -nate, sometimes more; the male spikelike glomerulate; female flowers capitate; bracteate. ${ }^{1}$ (Trop. Asia and Oceania. ${ }^{2}$)

20? Cardiogyne Bur. ${ }^{3}$-Flowers diœerious (nearly of Broussonetio or Muclurit); calyx 4 -fid, in female flower oftener thicker, imbricate. ${ }^{4}$ Stamens 4, germen and other characters of Caturus; style simple very long, long-filiform and stigmatose above. Fruit collected on globular syncarp; drupes ∞, nidulant; exocarp thin; putamen crustaceous fragile. Seed exalbuminous; coat thin membranous; cotyledons of incurved embryo foliaceous wide much corrugate-conduplicate, one enveloping the other; radicle incumbent on cotyledons thick conical, slightly curved, ascending.-A spinous shrub; leaves alternate petiolate entire penninerved; inflorescence of both sexes axillary "-nate, shortly pedunculate or sessile ; receptacle glubose glomerulate ; flowers alternately free and bracteate clavate rather thick, at apex truncately peltate, intermixed. ${ }^{5}$ (Zanzibur. ${ }^{6}$,

21? Plecospermum Trec. ${ }^{7}$-Flowers diœcious (of Cardioy! me oi Broussonetia), 4-merous; male calyx 4-fill, imbricate; female pierced at apex with very small aperture 4-denticulate. Syncarp globose fleshy enclosing free fertile and sterile achenes; embryo of exalbuminous seed fleshy; cotyledons conduplicate coveriug ascending radicle. Other characters of Broussonetia (or Mfuclura).-A spinous

[^236][^237]shrub ; branches diffuse ; leares alternate petiolate entire ; inflorescence of both sexes globose glomerulate, axillary, 2 -nate or more rarely solitary, pedunculate; female flowers connate with each other at base. ${ }^{1}$ (India. ${ }^{2}$)
22. Streblus Lour. ${ }^{3}$-Flowers diœcious * (nearly of Plecospermum or Cardiogyne) ; the males axillary glomerulate, 4 -merous; stamens finally long open; the females solitary or very rarely $2-4$-nate; branches of terminal style 2, long filiform. Fruit globose ; calyx accrescent involucrate; pericarp parchment-like; embryo of exalbuminous seed globose; cotyledons very unequal; one enfolding the other with superior radicle.-An unarmed tree or shrub; twigs and leaves 2-stichous; leaves petiolate coriaceous; stipules lateral small, caducous; male flowers collected in axillary pedunculate glomerules, 2 -bracteate; the female axillary, long pedunculate. (East Indies, Java. ${ }^{5}$)

23? Pseudostreblus Bur. ${ }^{6}$-Flowers monœcious (of Streblus); males in axillary ramose 1 -laterally cymiferous (spurious) racemes, 2 bracteate at base, 5 -merous, sepals 5 , ovate concave, imbricate; females solitary. Fruit . . . ? Other characters of Streblus.-A tree or shrub (?); leaves petiolate, 2-stichous, entire coriaceous; stipules lateral small, caducous; inflorescence axillary; the males longer with petiole. ${ }^{7}$ (East Indies. ${ }^{8}$)

24? Taxotrophis Br. ${ }^{9}$--Flowers diœcious (of Streblus), 4-merous; the males in pedunculate shortly spikelike or capituliform glomeruliferous catkins; the females solitary. Fruit longer than slightly increased and persistent calys; mesocarp here rather thick, thence laterally thin ; embryo of exalbuminous seed subglobose ; cotyledons subhemispherical fleshy; radicle very short superior.-A spinous

[^238][^239]milky shrub; spines axillary (ramules); leaves 2 -stichous, shortly petiolate; stipules lateral small, not caducons ; male inflorescence shortly stipitate; female flowers solitary, long pedunculate. ${ }^{1}$ (.Java. ${ }^{.}$)

20 ? Phyllochlamys Bur. ${ }^{3}$-Flowers diœcious (nearly of Tarotrophis or Streblus), 4 -mcrous; males ${ }^{4}$ in subsessile capituliform involucrate inflorescences; anthers 4, introrse subglobose. Scales of involucre ovate concave, dry, dark-coloured. Female flower, gynæcium and other characters of Streblus. Fruit drupaceous, involucrate by accrescent perianth; albumen of descending laterally affixed seed pulpy, sometimes very thin; cotyledons of somewhat fleshy embryo very unequal ; one conduplicate lobate enfolding the other much smaller.-A spinous shrub; ; leaves alternate, very shortly petiolate; stipules small, 2-nate; male capitules axillary sessile glomerate $2-5$; female flowers axillary solitary long-pedunculate. ${ }^{6}$ (East Indies, Java. ${ }^{7}$)
26. Diplocos Bur. ${ }^{8}$-Flowers diœcious (nearly of Strellus. 4-merous; male calyx valvate ; anthers subglobose intruse ; female calyx imbricate, not involucrate. Fruit in part drupaceous; putamen parchment-like; seed sometimes pulpy albuminous ; embryo placed at top of albumen, cotyledons equal broad complanate, cordate at base, conduplicate; radicle long curved turned to hilum and enfolded in base of cotyledous. Other characters of Streblus. - A branched shrub somewhat spinous; leaves alternate subelliptic membranous, shortly petiolate; stipules small, serrate above, caducous; male flowers ${ }^{9}$ in broken cymiferous catkins, bracteate; female in axillary (spurious) racemes, shorter than the leaf, cymosely subcorymbiform ebracteate. (Ceylon. ${ }^{10}$)
27. Dorstenia Pldar. ${ }^{11}$-Flowers monœcious; male oftener 2-

[^240][^241]merous; spepals free or connate to a greater or less height, at apex often unequally denticulate. Stamens $\stackrel{2}{ }$, or more rarely 1 , 3 ; filaments inflectedly incurved, finally exsilient exserted; anthers introrse subglobose, 2-rimose. Calyx of female flower small, very small (or 0), inserted (perigynously) at mouth of receptacular cavity and clusing it, with small aperture at apex. Germen (relatively to perianth quite inferior) inserted at bottom of cavity, sessile or shortly stipitate, compressed ; style under apex lateral, apex exserted beyond aperture of perianth and there \gtrsim-fid ; lacinix subulate stigmatose. Ovale inserted under apex of cell and under base of style, descending, more or less campylotropal; micropyle extrorsely superior. Fruit drupaceous fivally exserted from folds of receptacle ; exocarp fleshy, thicker at margin, and at maturity projecting elastically beyond the crustaceous free putamen. ${ }^{1}$ Seed exalbuminous; cotyleduns of somewhat fieshy embryo subequal, unequally plicate or conduplicate enfolding the incumbent radicle.-Small shrubs or oftener peremnial herbs; juice milky or opaline; rhizome often tuberous, marked with scars of leaves and thickened stipules, or more rarely with erect stem; leaves alternate various; stipules lateral, generally persistent or indurated; receptacle of axillary solitary pedunculate iuflorescence dilated very various in form, either entire shortly clavato-ovoil or orbicularly peltate, sometimes unequally quadrate, obeonical or shortly infundibuliform, or linear and furcate; branches oftener ${ }^{2}$, more rarely $3-5$, equal or very unequal (2 being longer) ; bracts ∞, umequal, imbricate, inserted at margin of receptacle, 1- or co-seriate; upper surface of receptacle florifrrous; female flowers scattered and inserted in lowest folds of receptacle; the male more numerous perigynous as regards a central female and glomerulate around mouth of foveole ; many glomerules (especially the peripherical) entirely male. (Tiop. America, Asia and Africa. ${ }^{2}$)
28. Fatoua Gaddich. ${ }^{3}$-Flowers monœcious, 4 -merous; calyx
209.-Lamk. Dict. ii. 516; Suppl. ii, 517 ; Ill. t. 83.-spach, suit. à Buffon, xi. 61.-Turp. Dict. Sc. Nat. Atl. t. 284.-Endl. Gen. n. 1860. -Bur, Prodr, xvii. 258.-Sychinium Desvx. Mem. Soc. Linn. Iar. iv. 216.-Kosaria L. Syst. ii. p. i. 71.-F'orsк. Fl. Eg.-Arab. 164; Ic. t. 20.
${ }^{1}$ Cfr. H. Bn. Compt. Rend. Ac. Sc. Par. 1xx. 799 ; Adansonia, ix. 318.
${ }^{2}$ Spec. about 45. L. Spec, ed. 3. i. 176.-W. Spec. i. p. ii. 682.-JACQ. Ic. Rar. iii. 18. t. 614.Wendi. lium. Arch. i. 51.-Rum, et. Sch.

Syst. iii. 472 ; Mantiss. iii. 316.-Spreng. Syst. iii. 777.-Griseb. Fl. Brit. W.-Ind. 153.Moric. Il. Nouv. Amer. 90. t. 58.-Thw. Eirum. Pl. Zeyl. 264.-Miq. Mrart. Fl. Bras. Urtic. 159. t. 55́-61.-Hocast. Flora (1844), 108.-WIGHT, Icon. vi. n. 1964.-Ноок. F. Bot. Mag.t. 5908.-Welw. Trans, Linn. Soc. xxvii. 70.-Schweinf, Bot. Zeit. xxix, 332.Walp. AMn: i. 732. Bot. Mag. t. $5795,5908$.
${ }^{3}$ Freycin. V'oy. Bot. 509 ; Toy. Bonite. Bot. t. 84.-Endl. Gen. 278.--Bul, Prodr. xvii. 255.

4-fid, valvate. Stumens 4 ; filaments inflexed in bud finally erect; anthers introrse rotundate, 2-rimose. Germen very shortly stipitate; style lateral very short, afterwards 2 -fid; lobes pilose very unequal; one very long filiform; the other (superposed to cell) very short subulate; ovule in cell 1, descending and inserted under the apex; micropyle extrorsely superior. Fruit clothed at base with persistent calyx, drupaccous ; putamen chartaceous ; exocarp laterally and below much thicker and finally free from putamen. Sced descending ; testa membranous; albumen fleshy; cotyledons of central embryo flat, curved at base; radicle accumbent ascending and subequal to cotyledons.-An herb, ${ }^{1}$ sometimes shrubby at base; ${ }^{2}$ stem simple or branched from base; branches diffuse or ascending; leaves alternate petiolate ; stipules lateral ; flowers axillary ; inflorescence androgynous pedunculate cymose-capitate solitary or 2-nate; female flowers terminal and dichotomous. (Japan, trop. and subtrop. Oceania. ${ }^{3}$)
29. Bleekrodea BL. ${ }^{4}$-Flowers monœcious (nearly of Fatouu), 4 -乞̆-merous; male calyx valvate, 4 -乞-fid. Stamens $4-5$; filaments incurved at æstivation, inserted under rudiment of gynæcium; anthers introrse, 2-dymous. Female calyx urceolate or tubular, 4 -dentate. Germen l-ovulate ; style lateral ; branches \gtrsim, very loug setaceous stigmatose, equal or somewhat unequal. Fruit drupaccous, enclosed by urceolate calyx; exocarp unequal, thick below and laterally hence to style; putamen chartaceous. Sced subglobose, sometimes flattened above; cotyledons of exallouminous embryo very unequal ; one very small squamiform ; radigle small incumbent. -Unarmed lactescent shrubs ; leaves alternate, very shortly petiolate, entire or dentate, sometimes lobed, penninerved veined; stipules lateral ; flowers in axillary 1-2-sexual cymes ; the female solitary in dichotomy of ramules ; the male numerous. (Borneo, Madagascur. ${ }^{5}$)
30. Sloetia Teysm. and Binn. ${ }^{6}$-Flowers munœcious (nearly of Blcekrodea); male 3-merous; calyx valvate. Sepals of female calyx

[^242][^243]4, decussately imbricate. Gynæcium of Bleetioded ; style branches very long filiform. Fruit of Blectrodea, enclosed by calyx ; embryo of exalbuminous (?) seed fleshy; cotyledons unequal submemhranous thin ; radicle rather long thick ascending.-A lactescent tree; leaves alternate entire; stipules amplexicaul ; ${ }^{1}$ infloreseence 2-sexual ; receptacle long amentiform flat linear; one surface naked; the other bearing very crowded (minute-flowered) male glomerules; one female here and there in very few glomerules (or 1) central and exserted. (Java. ${ }^{2}$)

31? Trymatococcus Pepp. and Endl. ${ }^{3}$-Flowers monœcious ; male calyx 3 4-fid. Stamens 3, 4, enclosed; filaments membranous dilated connate at base, at æativation inflexed or sometimes suberect; anthers shurt ; cells small subglobose, laterally or introrsely rimose. Gynecium nearly of Shotite (or Dorstenin); calyx 0 ; germen imbedded within central cavity of obcampanulate or urceolate receptacle, relative to glomerules of male flowers inferior. Fructiferous receptacle crowned at apex with the persistent remains of the male flowers and covering the fruit below adnate to itself within, externally slightly hirsute. Seed descending glohose ; cotyledons of exalbuminous embryo very unequal ; one very small nearly flat ; the other very large and thick subglubose ; radicle short superior.-Trees or shrubs; ${ }^{4}$ leaves distichous rugulose, unequal at base, shortly petiolate; stipules lateral small free comnivent, caducous; sear linear trausverse ; capitules axillary pedunculate, solitary or 2-6, ovoid-globose or turbinate-subcampanulate, perforated at apex, scabrid without, enclosing single central female flower withiu; male flowers inserted in crowded bracteate glomerules around the mouth of the receptacle and finally persistent to top of fructiferons receptacle. ${ }^{5}$ (North. Brazil, trop. west. Africa. ${ }^{6}$)

III. ARTOCARPE

33. Artocarpus L.-Flowers monœcious ; male calyx 2-4-fid or sometimes partite, imbricate. Stamen 1 ; filament central erect;

[^244]anther erect, 2-locular, 2-rimose. Female flowers imbedded in long tubular foveoles of receptacle; calyx short, inserted (perigynously) at top of margin of tube, gamophyllous, perforated at apex. Germen inserted at bottom of tube, sessile or shortly stipitate, free, 1-locular (or more rarely 2-3-locular); style lateral ventral erect, at apex enclosed or exserted, apex simple or $2-3$-lobed stigmatose. Ovule in cells 1, inserted under the (sometimes free) apex of erect placenta, descending, anatropous; micropyle extrorsely superior, sometimes closed by short process of placenta. Syncarp spherical or oblong, and consisting of the more or less increased fleshy farinose receptacle enclosing true (sometimes abortive) fruit. Fruit drupaceous very slightly fleshy, finally dry, oftener l-spermous; coat of descending seed thin; cotyledons of incurved exalbuminous embryo unequal; radicle short superior. -- Lactifluous trees; wood soft; leaves alternate, cntire or variously incised; stipules a, lateral connate in one supra-axillary enfolding the top of the branch deciduous ; scar linear annular; flowers on distinct glomerulate receptacles ; receptacle of males spikelike cylindrical or clavate, bearing externally sessile flowers intermixed with crowded bracts and bracteoles, peltate at apex (or 0) ; receptacle of females and fruit enfolding carpels in tubular radiating foveoles, externally rugulose with projecting ealyces perforated at apex. (Trop. Asia and Oceania.) See p. 151.

33? Acanthinophyllum Allem. ${ }^{1}$ - Flowers diœcious, male naked, 1 -androus; stamens intermixed with peltate bracts. Female calyx urceolate, perforated at apex. Germen in early age superior, l-locular; style thick enclosed, at apex stigmatose divaricately 2 lobed; ovule 1, descending anatropous, micropyle extrorsely superior. Syucarp enmposed of enclosed fleshy semi-inferior fruits and persistent perianths. Seeds cxalbuminous; cotyledons of straight fleshy embryo thick equal ; radicle short superior. ${ }^{2}$ - A lactifluous tree ; leaves alternate spinosely dentate ; stipules and other characters of Artocarpus; receptacles of male flowers amentiform cylindrical ; of the female (glomeruliferous?) and fruit spherical. ${ }^{3}$ (Brazil. ${ }^{4}$)

[^245]34. Parartocarpus H. Bn. ${ }^{1}$-Flowers diœcious (nearly of Artocarpus) ; male inflorescence axillary glubose pedunculate; bracts few, inserted at top of peduncle, unequal short and forming a small involucre under the base of the receptacle. Flowers crowded naked, 1 -androus, intermixed with bracts thickened at apex; filament short erect ; anther sub-basifixed, ¿-locular. Female flower...?-A tree; leaves alternate petiolate; stipules 2, lateral, very caducous ; ${ }^{2}$ other characters of Artocarpus. ${ }^{3}$ (Borneo. ${ }^{4}$)
35. Treculia Dene. ${ }^{5}$-Flowers polygamo-diœcious, ${ }^{6}$ capitate in globose 1-or sometimes 2-sexual receptacles. Male calyx gamophyllous, tubular or obconico-campanulate. Stamens д (Pseudotreculia ${ }^{7}$) or 3,4 ; filaments erect, sometimes dilate (P^{\prime} seudotreculia), inserted around small (or 0) rudiment of gynæcium; anthers introrse or extrorso. ${ }^{8}$ Female calyx ${ }^{2}-4$-phyllous, sometimes small (or 0); germeu imbedded in foveoles of receptacle, 1-ovulate; branches of erect 2 -fid style stigmatose thick subulate recurved. Syncarp globose (sometimes wide) enclosing numerous carpels; embryo of exalbuminous seed fleshy thick; cotyledons unequal; one much larger incurved enfolding the other smaller straight; radicle superior short ascending. ${ }^{9}$-Trees ; alternate leaves and other characters of Artocarpus; capitules axillary, solitary or 2 -nate; flowers as in Atrocaipus inserted and intermixed with bracts apically peltate or glandular-fimbriate. (Trop. west. Africa. ${ }^{10}$)

36? Bagassa Aubl. ${ }^{11}$-Flowers diœcious; male...? Female calyx subeylindrical ; sepals 4 , thickly fleshy, valvate and counivent in tube, obtuse at apex. Germen substipitate (of Artocarpus) ; style lateral, afterwards 2 -fid ; lacinie subequal or unequal linear-subulate erect euclosed. Orule descending anatropous ; micropyle extrorsely superior. Fruit ${ }^{12}$ shortly stipitate obovately oblong drupacoous; pulp

Adansonia, xi. 294.
${ }^{2}$ Scars certainly not annular.
${ }^{3}$ A genus of uncertain place, from its female flower being unknown, certainly very near $A r-$ tocarpus, but quite distinct by its defect of male perianth and involucre.
${ }^{4}$ Spec. 1. P. Bercariamus H. Bn. loc. cit.
${ }^{5}$ Tréc. Ann. Sc. Nat. sér. 3, viii. 108, t. 3, fig. 86-99.-Bur, Prodr. xvii, 285.-Meyropelt is Welw. Herb. (Hook.).
${ }^{6}$ Improperly said to be monocious by Decaisne (loc. cit. not.) because some sterile male flowers were intermixed with the germens in the female syncarp and imperfectly dissected by him.

[^246]scanty; putamen thin fragile. Seed descending ; albumen scanty; cotyledons of curved embryo oblong-elliptical subfoliaceous; radicle accumbent descending.-Lofty trees; leaves opposite wide, 3-lobed; stipules 2 on each side, interpetiolate, deciduous; syncarps globose axillary. ${ }^{1}$ (Guiana. ${ }^{\circ}$)
37. Cudrania Tréc. ${ }^{3}$-Flowers diœcious; sepals 4, free, imbricate. Stamens 4, opposite, sometimes at base coherent with sepals, inserted around acute rudiment of gynæcium. Germen and other characters of Artocarpus ; style branches 2, very unequal ; one very short denticuliform ; the other slender elongate, at apex filiform stigmatose. Syncarp globose, composed of crustaceous, ovately lenticular, 2 -valvate capsules, with persistent stipate sepals; testa of amphitropous seeds thin; albumen fleshy; cotyledons of plicate embryo rather thick contortuplicate subequal ; radicle superior long. Spinous shrubs, oftener climbing; leaves alternate entire petiolate, oblong or obovate, acuminate or mucronate; stipules 2 axillary, connate at base, deciduous; flowers capitate; capitules globose (glomeruliferous) pedunculate axillary, 2-nate. (South cast. Asia, Malaya, Australia, NewCaledonia. ${ }^{4}$)
38. Helianthostylis H. BN. ${ }^{5}$-Flowers diœcious (or monœcious?) male calyx obconical membranous, imbricate, 4 -fid. Stamens 4, opposite lobes of calyx; filaments short erect, finally elongately exserted, at base connate with each other and with stipes of gynæcium ; anthers short, extrorsely rimose; connective suborbicular. ${ }^{6}$ Germeu sterile effete, produced upwards to a style very long exserted accrescent and very slender somewhat hispid. Female flower...? Fruit globose ; pericarp thin fragile, externally scabrid? testa of subglobose seed thin; cotyledons of straight exalbuminous embryo 2, plano-convex or sometimes 3, equi-angular fleshy; radicle superior very short.-A tree (?) ; leaves alternate (2-stichous?) petiolate; stipules small connivent; ${ }^{7}$ flowers axillary capitate; capitules globose, shortly pedunculate, involucrate with few bracts ${ }^{8}$ at base. (North. Brazil. ${ }^{9}$)

[^247]39. Olmedia R. and Pav. ${ }^{10}$ - Flowers diœcions; male calyx more or less deeply 4 -fid; lobes valvate or slightly imbricate. Stamens same in number opposite; filaments central or inserted around minute rudiment of gynecium, free, straight or incurved at apex ; anthers incumbent, fimally introrse, ᄅ-locular, ᄅ-rimose. Female flower in polyphyllous involucre sulitary frec; bracts of involucere unequal, imbricate in many series. Calyx conical gamophyllous, prolonged upwards to a tubular neck, 4 -dentate at apex. Germen free sessile unequal, prolonged at apex to a narrow slender style, afterwards 2 -fid; lacinic lincar elongate recurved, papillose at subulate apex. Fruit dry, indehiscent, covered with fleshy perianth; seed...?-Lactescent trees; leaves alternate petiolate, entire or remotely dentate or simuate, sometimes somewhat rough or pubescent ; stipules 2, amplexicaul oblong imbricate sericcous ; flowers axillary ; the males ∞ on a small flat or slightly convex receptacle; bracts of involucre ∞, pluriseriate at margin, imbricate; the females solitary in their own involucre. (Trop. America. ${ }^{1}$)
40. Antiaris Lesch. ${ }^{2}$ - Flowers monœecious; male calyx 4 . phyllous; ${ }^{3}$ folioles subspathulate, dilate at apex. decussately imbricate. Stamens equal in number and opposite to sepals; filaments short erect free; anthers erect oblong, extrorsely :-rimose. Female Hower destitute of proper calyx ; germen l-locular ; ovule inserted under apex descending; style branches 2 , equal subulate recurved, stigmatose at attenuate apex. Fruit drupaceous, adnate within to accrete receptacle ; embryo of descending seed exalbuminous ; cotyledons thick plano-convex ; radicle short superior.--Lactescent trees or shrubs; leaves alternate, 2 -stichous, penninerved, oftener serrate petiolate; stipules lateral subaxillary, free, not amplexicaul; flowers axillary; receptacle of males a-nate or more orbiculardisciform stipitate, glomeruliferous above and involucrate with crowded short marginally imbricate bracts; of females oftener
n. $1863 .-T r e ́ c . ~ A m$. Sc. Nat. sér. 3, viii. 127 (part.), t. 2, fig. 69, 72-75.-Payer, Fam. Nat. 172.-Bur. Prodr. xvii. 285.
${ }^{1}$ Pers. Enchirid. ii. 612.-Spreng. Syst. iii. 903.-Peepp. et Endl. Nov. Gen. et Spec. ii. 30, t. 143, 144, 146.-Kı. Linncea, xx. 523.-Miq. Mart. Fl. Bras. Urtic. 113 (part.).

- Ann. Mus. xvi. 470, t. 22.-R. Br. Gen. Rem. 70 ; Flind. Voy. ii. 602, t. 5 ; Misc. Works

[^248]solitary subsessile piriform, adnate to middle of germen in central cavity, and finaily covering fruit, externally above the middle surrounded by alternate imbricate bracts. (Tropical Asia and Occania. ${ }^{1}$)
41. Pseudolmedia Tréc. ${ }^{2}$-Flowers monœcious or diœcious; males composed of ∞ stamens inserted in an orbicular discoid or rather concave involucrate receptacle; filaments free; anthers oblong, sometimes penicillate at apex, subsagittate at base. Female flowers solitary central in polyphyllous involucre ; calyx tubular or ovoid, perforated only at apex and there entire or shortly denticulate. Germen in part inferior and adnate to a greater or less height to the calys, free at conical apex; style lateral erect enclosed or passing through the mouth of the calyx, entire or bifid; legs stigmatose. Ovule 1 , inserted under apex of cell, descending, anatropous; micropyle extrorsely superior; or more rarely inserted laterally to linear hilum; micropyle superior. ${ }^{3}$ Fruit enclosed by calyx, indehiscent; seed descending or long adnate laterally to pericarp; cotyledons of 目eshy embryo very unequal; one very small ; radicle short superior.-Trees or shrubs, often pubescent or hirsute; leaves petiolate or subsessile distichous; stipules lateral connivently imbricate amplexicaul; scar linear transverse; inflorescence axillary, solitary or fasciculate; bracts of male involucre ∞, imbricate, subspathulate unequal ; the interior longer and narrower; stamens intermixed with bracts sometimes setaceous hirsute ; bracts of female involucre same in form or shorter. (Trop. central and south America. ${ }^{4}$)
42. Castilloa Cervant. ${ }^{5}$-Flowers monœcious (nearly of Pseudolmediu), collected in distinct subplane or induplicate reniform receptacles, involucrate with crowded imbricate bracts ; the males consisting of eo stamens, destitute of perianth. The female flowers closely glomerulate on common receptacle; calyx 4-phyllous. Germen semi-inferior, l-ovulate; style thin cylindrical, 2 -fid at apex ; legs

[^249][^250]linear subulate compressed, somewhat spirally twisted, stigmatose. Fruit drupaceous, finally sub-dry, sometimes adnate with calyx; seed exalbuminous; cotyledons of subglobose embryo thick sub. equal ; radicle short superior.-Lactescent trees generally pubescent ; leaves distichous, unequal at base; stipules connate in one supraaxillary oblong-acute; inflorescences axillary stipitate, fasciculate or rarely few or solitary, 1 -sexual. (Central America, Cuba. ${ }^{1}$)

43? Helicostylis Tréc.?-- Flowers diœcious (nearly of Castilloa); the males crowded in polyphyllous involucre sessile; the females ∞ on common receptacle. Male calyx 4-phyllous. Stamens 4, oppositipetalous; anthers extrorse. Female calyx 4 -phyllous. Germen relative to calyx inferior and hence adnate to foveoles of receptacle ; ovule, etc., of Castillou; style branches 2 , linear subulate, compressed, much twisted spirally. - A lofty tree; leaves distichous; stipules 2, axillary acuminate subamplexicaul; inflorescences, etc., of Castilloa; ${ }^{3}$ folioles of involucre close deltoid, in many places imbricate. (Guiana, north. Brazil. ${ }^{4}$)

44? Noyera Tréc. ${ }^{5}$-Flowers diœcious (nearly of Castilloa); males . . ? Female flowers ∞ ($15-30$), collected on a common subplane receptacle involucrate with imbricate pluriseriate bracts, imbedded in its foveoles; calyx urceolate, with small perforation at apex. Germen semi-inferior, 1-locular ; ovule inserted a little below apex of cell, descending; micropyle extrorsely superior; style branches ${ }^{2}$, filiform subulate. Fruit, ete., of Castilloa; coat of descending seed membranous (fuseate); cotyledons of subglobose exalbuminous embryo thick hemispherical subequal ; radicle very short superior.-A ferruginous tomentose tree ; leaves distichous; stipules axillary opposite amplexicaul ; scars annular ; female iuflorescences axillary solitary subsessile. ${ }^{6}$ (French Guiana. ${ }^{7}$)
45. Naucleopsis Mie. ${ }^{8}$ - Flowers diœcious (nearly of Castillou);

[^251][^252]males. . .? Female flowers ${ }^{1}$ crowdel on convex receptacle pluriseriately imbricate at base, the outermost impoverished. Calyx tubularly urceolate thickly coriaceons, at month 4-5- or more rarely 6-dentate; teeth reflexed. Germen quite inferior completely imbedded in and in every part alnate to foveoles of receptacle; stigmatose branches of enclosed style 2, filiform elongate exserted; ovule inserted near apex of cell descending anatropous; micropyle extrorsely superior. Fruit . . ? - A tree ; leaves distichous costate; stipules axillary, 2-nate, carlucons; fenale receptacles axillary solitary subsessile. ${ }^{2}$ (North. Brazil. ${ }^{3}$)
46. Maquira Aubl. ${ }^{4}$ - Flowers diweions (nearly of ('ustillone); male calyx t-pleyllous; fulioles decussately imbricate. Stamens 4, opposite; filaments free, erect before anthesis; anthers introrse, 2 rimose. Female flowers crowded, placed (not imbedded) on common receptacle; germen inferior relatively to gamophyllous 4-lobed calyx; lobes of thick style short stigmatose. Other characters of Castilloct. Fruit composed of free capitate drupes attenuate at base; seed...? - A moderate-sized tree; leaves distichous coriaceous, unequal at base, shortly putiolate; stipules minute, 3 -angular; receptacles axillary; males disciform, slightly depressed above, involucrate with crowded pluriseriate imbricate bracts; the fructiferous capitate. (Guiana. ${ }^{5}$)
47. Perebea Aubl."-Flowers diocious (uearly of Mequir(t); receptacle suborbicular, at first slightly concave, afterwards plane and reflexed, convex above; bracts of involucre ∞, inserted at margin of receptacle and imbricate in many places. C'alyx tubular, at base sometimes compressed and 4 -dentate at apex. Gynecium free; germen (as regards gamophyllous calyx superior) 1-ovulate; lobes of style 2, short and other characters of Marnira.-..Trees; leaves distichous; Howers of both sexes on broad patulous receptacle not imbedded. (Central America, Guiana. ${ }^{7}$)

[^253]${ }^{3}$ Spec. 1. N. macrophylla MIq. loc, cit.
${ }^{4}$ Guian. Suppl.36. t. 389.-Bur. Prodr. xvii. 286.
${ }^{5}$ Spee. 1. Mr. griancrrsis Aubl. loc. cit.Perebea laurifolia Tréc. Alm. Se. Nat. sér. 3. viii. 133, t. 5, fig. 136-138.-Mrq. Mart. Fl. Bras. Urtic. 117, n. 2.-? Olmedia? grandifolia Tréc. loc. cit. 128 (Bur.).
${ }^{6}$ Guian. ii. 952 , t. 361 .-J. Gen. 402.-Enne. Gen. n. 1874.-Tréc. Ann. Sc. Nat. sér 3, viii 132 (part.).-Bur. I'vodr. vii. 286.
i Spec. 2, of which 1 is Panaman (Bur.).
48. Lanessania II. Bx. ${ }^{1}$-Flowers monecinus collected on unequally obpyramidal angular receptacle; males crowded in glomerules on the nearly flat upper base of the receptacle. Female flower 1 central ; germen inferior, adnate within to centre of receptacle; style apical within central vertical canal erect and free, afterwards 2 -fid in subulate laciniee exserted beyond male flowers; ovule l, subapical in cell descending ; micropyle extrorsely superior. Fruit...?-A tree (?); leaves alternate petiolate; stipules lateral free unequally 3 -angular; inflorescence axillary pedunculate. Bracts ∞, unequal, imbrieate around upper orbicular base of receptacle in many cases as an involucre ; fewer inserted around apex of receptacle below; a few interposed remotely alternate very unequal and inserted hore and there on the slightly prominent longitudinal walls of the receptacle. (North. Brazil. ${ }^{2}$)
49. Scyphosyce II. Bx. ${ }^{3}$ - Flowers moncecious, crowded in androgynous inflorescences; female 1 , central; males ∞, perigynously inserted in throat of regalarly obcampanulate poculiform receptacle, sub-1-seriate; lobes of involucre few ($4-5$) broad obtuse membranous, imbricate, finally (calyx-like) expanded. Male calyx long obconically tubular, at base long attemuated and shortly stipitate, above fimally subentire truncate. Stameu 1 ; filament central, inserted at bottom of calyx, erect and exserted; authers basifixed oblong, 2 -rimose. ${ }^{4}$ Female calyx (?) 2-phyllous; ${ }^{5}$ folioles sessile, imbricate. Germen inserted at bottom of receptacle sessile, oblong-conical, l-lucular ; ovule 1 , inserted under apex of cell descending; micropyle extrorsely superior ; style terminal erect, 2-fid at apex ; lobes subulate rewurved stigmatose. Fruit...?-A glabrous shrub (?) ; leaves alternate (2-stichous?), at hase longnarrow, shortly petiolate, cblong-subspathulate acuminate crenate peminerved, unerqual at lase; stipules (equal to or longer than petiole) acute, imbricate; infloresectece axnllary pedunculate. (Torp). west. Africa. ${ }^{6}$)
50. Bosqueia Dur.-Tu. ${ }^{\text {- FFlowers monocions ; receptaches ob- }}$ liquely ohemieal; males crowded, inserted on oblique upper base; stamens intermixed with unequal imbricate bracts; the exterior

[^254]wider involucrate; filaments free; anthers introrse, $\underset{\sim}{l}$-rimose. Germen inferior subeentral, eutircly adnate to receptacle; style erect, somewhat dilated at hase, e-fid above; branches linear, stigmatose within; orule l, inserted undex apex of eell, deseending ; micropyle extrorsely superior. Fruit inferior, externally surrounded by adnate urceolate receptacle, at apex crowned with remains of bracteoles and stamens; albumen of descending seed copiously fleshy; embryo subapical very small (?).-Trees or shrubs; leaves alteruate petiolate, oftener entire coriaccous penninerved glabrous; stipules intra-axillary amplexicaul, caduceus; inflorescences axillary solitary pedumculate, in early age budlike and perulate, more or less lateral, fimally subterminal. (Trop. cetst. littoral and insular Africa. ${ }^{2}$)
51. Piratinera Aubl. ${ }^{3}$ - Flowers monecious; males crowded entirely covering common globose receptacle; female 1 (or very rarely 2) adnate within to top of receptacle. Stamens ∞, destitute of calyx, intermixed with peltate bracts ; filaments filiform erect; anthers dorsifixed to thick connective; cells 2, lateral, rimose, or peltate and dehiscent all round an annular cleft. Germen partly inferior, more or less aduate to foveole of receptacle ; orule descending campylotropous; style terminal, 2-lobed at stigmatose apex. Fruit "baceate," finally sub-siccate, cluthed with receptacle covered with peltate seales; testa of descending seed thin; cotyledons of exalbiminous embryo thick unequal ; radicle superior incumbent.Lactifluent trees or shrubs; leaves distichous petiolate, generally entire ; stipules axillury, 2-nate, semiamplexicaul, deciduous; infloreseences axillary, ofteuer 2 -uate or in racemes sometimes very compound. (Trop. central and south. America. ${ }^{4}$)
52. Ficus T. ${ }^{5}$-Flowers 1 -sexual, enclosed in utriculose oftener

[^255]Gen. n. 1861.-Tréc. Ann. Se. Nat. sér. 3, viii. 138, t. 6, fig. 163-181.-Bur. Prodr. xvii. 288. -Galaetodendron H. B. K. Nov. Gen. et Spec. vii. 163
${ }^{4}$ Spec. 7, 8, Tuss. Journ. de Bot. 1. 202, t. S; Fl. Méd. Ant. t. 9 (Brosimum).-Spreng. Syst. i. 22 ; iv. 403 (Brosimam).-Kı. Linuca, xx. 522 (Brosimum).-Hook. Bot. MFag. t. 3723 , 3724 (Galactodendron).-Miq. Mart. Fl. Bras. Utric. 108, t. 32, 33.-Griseb. Fl. Brit. W.Ind. 152 (Brosimun).
${ }^{5}$ Inst. 662, t. 420.-I. Ficus. Upsal (1786) ;
14-2
ghobose or pear-shaped receptacle, more or less open at apex and there bracteate, androgynus or female; males and females golomorate, intermixed on the same receptacle or oftener separate. Calyx 2-6-phyllous, often incrassate or fleshy. Stamens 1 (V orstigmet ${ }^{1}$), 2 (Phurbmensyreen 2), or 4-6, oppositisepalous; filaments free or connate at base; anthers introrse, 2-rimose. Germen sessile. or stipitate, oftencr 1-locular; "style lateral, at apex simple, subulate, oltuse, eapitate, infundibulifirm or 2 -fid stigmatose, enclosed within receptacle ; orule descending, anatropous or campylntropons; mieropyle extronsely superior. Fruit drupaceous enclosed in receptacle not fissus nor expander ; stipes with thicker fleshy angles; mesocarp at both surfaces thin membranous, generally at last evanescent; putamen crustaceous or fragile, l-spermous. Seed descending ; testa membranous; albumen flesliy; cotyledons of incurved embryo rather flat, sometimes unequal; radicle superior incumbent. --Trees, sometimes lufty, or shrubs, sometimes climbing, lactescent; leaves gencrally alternate, sometimes more rarely opposite, entire or lolate, persistent or deciduous; stipules large couvolute enclosing terminal bud of brituchlet, deciduous or more rarely persistent; inflorescences axillary, solitary or fasciculate, sometimes more rarely in a spike or terminal raceme; receptacle oftener bracteate at base ; male glomerules superiw in androgynous receptacle; flowers sessile or pedicillate, bracteate or ebracteate. (All limp. (und temp. reyimes. ${ }^{\text {. }}$)

Gen. n. 1168.-Adans, Fom. des Pl. ii. 377.--J. Gen. 400.-G.iertw. Firuce. ii. 66, t. 91.Lamk. Dict. ii. 489 ; Suppl. ii. 648 ; Ill. t. 861. -Turp. Dict. Sc. Nat. Atl. t. 285.-Spach, Suit. \& Buffirr, xi. 54.-Endl. Gen. n. 1859.Gasparir. Nov. Gen. quce sup. nomull. Fici syec. ...(1844) ; Ric. senat. d. Fico ed. Caprifico (184i)) ; Nov. vic. s. alc, munt...doct\%: d. Fico e de Capri-fico.-Tréc, Am. Sc. Nat. sér. 3, viii. 137.Payer, Organog. 285, t. 61 ; Fam. Nat. 170.-Bur. Prodr. xvii. 287 (incl.: Bosscheria De Vhiese et Teysm. (Bur.)-Carica Mrq. (a part of which is Caprificus Gasp. Nou. Gen. 6 ; Rie. 79, t. 1-3. Didymophora Miq. Eriosycea Miq. Kiesosycra Mie. Leiosycca Mre. Nematosycca Miq. Podosycer Mre. Trematonycea Mira.).-Corellia Gabr. Nov. Gen. 10; Ric. 85, t. 8, fig. 36-42 (Sycomorphe Mir. Ann. Sic. Nat. sér. 3, 1, 35).-Erosma Bотн. Cat. 113. - Erythrogyne Vis. (Aasp. Ric. 86.-Plagiostigma Zucc. Abh. Ak. Munch. iv. 64 (Tenarea Gaspriz.).-Prgonotrophe Me. Hook. Journ. vii. 72.-Syycomorus Gasp. Ric. 78.-Miq. Honk. Loud. Journ. vii. 109.-Synecia Min. How, Lond. Journ. vii. 469.

[^256]53.) Sparattosyce Bur. ${ }^{1}$-Fluwers dicerious (of Fiens) sepals of male calyx: $;-6$, auriculate at base, imbricate. Fruit stipate with persistent calyx drupaceons; flesh scauty; putamen osseous. Seed descending; cotyledons of exalbuminous cmbryo broad conduplicateinvolute and corrugate. Stamens in male flower 3-6, opposite sepals; anthers short extrorse; cells subglobose extrorsely rimose. Sepals of female flower 6-10, imbricate. Germen sessile ; ovule, etc., of Ficus; styles exserted in mouth at top of female receptacle.-Trees; leaves alternate entire; stipules amplexicaul closely covering tho terminal bud, deciduous ; inflorescences of Ficus; receptacles of both sexes finally laterally divided and expanded. (Nem Culedonia. ${ }^{2}$)
54. Sorocea A. S. II. ${ }^{3}$-Flowers dinerious; male calyx 4 -fid or 4-partite, imbricate. Stamens 4 , opposite; filaments sometimes linear; anthers ovate, extrorsely 2-rimose. Calyx of female flower superior perigynous, tubular or conical; mouth narrow subentire. Germen inferior l-ovulate; style short thick, ᄅ-lobed at apex; lobes stigmatose short divaricate exserted. Fruit baccate with receptacle sometimes muricate, 1 -spermons; cotyledons of exalhuminous cmbryo ᄅ; one large conduplicate enfolding the other very small and superior short radicle.-Trees (1r shrubs ; leaves distichous, subentire, serrate or spiuoso-dentate; stipules axillary, 2-nate; flowers in axillary (spurious ${ }^{4}$) racemes, intermixed with peltate remotely seattered bracts; females inserted in hollowed apices of brauches; mature fruit sustained by swollen ramule (lobe) of ramiform receptacle. (Brazil. ${ }^{5}$)
5.) ? Pseudosorocea II. Bx. ${ }^{6}$ - Flowers diœcious (nearly of Sorocea); male calyx t-partite; lobes concave, decussately imbricate. Stamens equal in number and opposite to sepals; filaments very short inserted around vacant centre of receptacle, counate at base and there oftener dilated sometimes broadly subpetaloid; anthers short, oftencr subovate, adnate extrorse, longitudinally 2 -rimose. Female calyx somisuperior urccolate ; style branches 2 ,

[^257]subfasciate not regularly racemose.
${ }^{5}$ Spec. 3, 4, Gaudich. Voy. Bomite, Bot. t. 71-74.-H. Bn. Adansonia, i. 212, t. 6.TVawra. Pr. Maxim. Ergebn. Bol. 130.-Mic. Mart. Flo Bras. Untic. 112. t. 34.-Walp. Ann. i. 667.
II. Br. Adlunsonia, xi. 296.
etc., of Sorocen.-Shrubs or trees (?) ; halit and leaves of Sorocen; ${ }^{1}$ limb entire, widely or coarsely spinoso-dentate, penninerved venose ; costa and primary nerves anastomose at margin and somewhat prominent beneath ; but flowers of both swes inserted singly at amentiform margins of dongated receptacle and there glomerate sessile ; both faces naked sulciform. (Trop, und subtron). South Americti ${ }^{2}$)

50? Sahagunia Lamem. ${ }^{3}$-Flowers diocious; males densely congregated on spikelike branched receptacle (naked along longitudinal furrow), destitute of perianth and consisting of very crowded stamens, intermixed with cuneate cucullate-capitate bracts ; filanents subulate; anthers's subbasifixed; cells sub-ㄹ-dymous subopposite, rimose. Female flower and fruit...?-A moderate-sized tree; leaves alternate, shortly petiolate, oblong pemiucrved; stipules 2, convolute, decidunus; male inflorescences racemose or fasciculate on naked or more rarely foliate branchlet. ${ }^{1}$ (Mcxico, ${ }^{5}$ Bictail?)
57. Pourouma Aubl. ${ }^{6}$-Flowers dinceious; male calyx 4-merous; fulioles free or more or less highly commate, sometimes almost to apex. Stamens 4, oppositisepaluus; filaments free or comnate at base, straight or slightly incurved; authers short, introrsely rimose. ('alyx of female flower gammhyllous, ovoidly or conically tubular, thickened at base to a more or less prominent cupule, entire at apex and perforated at very small month. Germen sessile free, l-locular, couical and attenuate above to style with more or less stigmatose apex, sometimes very discoidly peltate, entire or unequally lobed, vary papillose. Ovule in ecll 1 , sessile, inserted laterally to linear parictal hilum hemitropous; chalaza inferior, sub-contiguous to base of cell ; micropyle free extrorsely superior. Fruit enclosed by fleshy culyx, ligneo-crustaceous, finally 2 -valved. Seed sometimes laterally adnate to pericarp by linear hilum, ovoid ; testa membranous ; coty-

[^258]ledons of straight exalbuminous embryo thick; radicle short superior. -Lactifluous trees; branches marked with linear scars of fullen stipules; leaves alternate, entire, lobed or digitately divided, glabrous or clothed with varions indumeutum, costulately venose and venulate ; stipules comate in one clothing the top of the ramule; scars lincarly annular; flowers collected in compound or decompound cymes on peduncle oftener ㅇ-nate; males small. (Trop. South Americu. ${ }^{1}$)
58. Conocephalus Bl. ${ }^{2}$-Flowers diocious; male calyx tubular or turbinate, 4 -dentate or 4 -fid or more rarely unequally or subequally 2 -partite, valrate or at apex slightly imbricate. Stamens 4 , or very rarely 2 , oppositisepalous; filaments crect in bud, subequal to calyx, complanate, centrally inserted around rudiment of gynacium; anthers short exserted ; cells oftener free at base, introrsely, laterally or extrorsely promiscuously rimose. Female calyx tubular, 4-fid. Germen free; style terminal, apex capitate, or laterally oblong stigmatose; ovule basilar erect orthotropous or suborthotropous; micropgle supcrior. Fruit enclosed by persistent calyx, dry chartaceous, longitudinally $\ddot{2}$-valved. Seed ovoid; hilum hasilar or sublateral ; testa membranous ; cotyledons of straight exalbuminous cmbryo fleshy plano-convex; radicle superior-Climbing shrubs; leaves alternate, entire, long-petiolate ; stipules axillary connate in one semiamplexicaul, deciduous ; scars amular; flowers axillary capitate ; capitule (glomeruliferous) compound cymose ; females oftener solitary. (Trop. south. Asia and Oceania. ${ }^{3}$)
59. Coussapoa Acbl.t - Fluwers diœcious (nearly of Concecpheches); male calyx gamophyllous, subcylindrical or turbinate, imbricate; mouth $2-3$-fid or dentate, sometimes partite. Stamens 2 , central; filaments free or comate in erect filiform or complanate column ; anthers free, extrorse, 2 -rimose or connate in one 4 -locular and terminal ; cells longitudinally rimose. Female flower, ete., of

[^259]1203.-Gaudicy. Toy. Bonite Bot. t. 96.-Mio. Pl. Jungh. 43 ; Fl. Ind.-Eat. i. p. ii. 283 ; Suppl. i. 171, 416, 417.-Tersm. et Binn. in Nat. Tijdschr. xxvii. 26.-Walp. Aim. i. 654.
${ }^{4}$ Guian. ii. 955, t. 362, 363.-J. Gen. 406.Lamk. Dict. ii. 160--Benn. Horsf. Pl. Juv. Rar. 49.-Endl. Gen. a. 1866.-Tréc. Ann. Sc. Not. séx. 3, viii. 92, t. 1, fig. 23-40.-Bur. Prodr. xvii. 284.

Conocephutus; perianth tubular, eylindrical, ovoid or urceolate, sometimes obovoid, membranous or rather thick fleshy, apex either entire and sometimes perforated with a very small aperture, or more rarely 1-3-dentate. Germen free ; ovule either quite basilar or orthotropous, or somewhat laterally inserted; micropyle always apical. Fruit drupaceons, enclosed by persistent and enlarged calyx, closely packed or adnate at base. Seed erect or ascending; hilum basilar or somewhat lateral; cotyledons of straight exalbuminous embryo plano-convex subequal; radicle superior short.--Trees or shrubs, sometimes climbing, lactescent; leaves alternate simple (of Pourount), ovate or cordate or obovate, glabrous or pubescent, petiolate; stipules axillary connate in one obliquely amplexicaul, caducous; inflorescences axillary capitate ; capitules glomeruliferous; peduncles oftener 2 -nate, simple or a-chotomons; branches eapituliferous. (Trop. South America. ${ }^{1}$)
60. Cecropia Lefl. ${ }^{2}$-Flowers diwcious (nearly of Coussapoa or Conocephetus); males 2-androus; calyx tubular or narrow conical, at apex subentire or shortly 2 -dentate, sometimes more decply 2 -fid. Stamens short; filaments erect; anthers introrse, 2-rimose. Female calyx tubular entire or subentire, subincrassate at apes and there perforated. Germen free, cuclosed by calyx; ovule inserted under apex of cell desceuding, micropyle extrorsely superior; style terminal or slightly lateral short, apex stigmatose simple variously capitate-penicillate. Fruit dry, enclused by calyx, hence subdrupaceous; seeds, etc., of Conssapou.-Trees or shrubs; juice milky ; branches terete, fistulons between the nodes; medulla hollow, here and there septate; leaves alternate, more or less peltate, palmatilobed or digitate ; petiole often callose at base; stipules connate in one wide spathelike amplexicaul, deciduous; scars annular; flowers axillary crowded; peduncles 1, 2-nate, at apex subumbellately 2 -a -rimose ; umbels (spurious) single, the younger enclosed by spathiform caducous bract; branches (receptacles) amentiform subeylindrical glomeruliferous; males generally more slender than the females. (Both trop. Americas. ${ }^{3}$)

[^260]61. Musanga R. Bre,--Flowers diweious ; calyx tubular louger or shorter obenical, entire at apex and there truncate in males; mouth orbicular, in females perforated by very small aperture. Stamen 1, inserted at bottom of calyx ; filament erect; anther terminal, facing outward; cells 2 , longitudinally rimose. Germen erect enclosed free, 1-locular ; orule 1, basilar crect orthotropons; micropyle superior, at apex stigmatose scarcely incrassate. Fruit covered with persistent calyx rather ovoidly compressed subligneous; sced erect; embryo...?-A tree; ${ }^{2}$ leaves digitate; stipules wide foliaccous coriaceous, covering top of younger ramule, deciduous; male flowers in very compound capituliferous racemes; capitules globular small, intermixed with bracts peltate at apex; females glomerulate on thick ollong receptacle. (Trop. west. Africa. ${ }^{3}$)
62. Myrianthus P.-Beadv. ${ }^{4}$ - Flowers diœcious; males 4merous, 4 -androus (of Conocephulus); filaments sometimes variously connate; anthers 2-locular, 2-rimose. Female flowers of Musetnye or Conoceplutus; germen free 1-locular ; ovule basilar erect orthotropous; ${ }^{5}$ style clavate to stigmatose apex. Syncarp ovoid or ellipsoid wide and covering eo (dry?) fruits; seed exalbuminous. Other characters of Cionncephelus.-A moderate-sized tree; leaves alternate petiolate digitate; leaflets (to 6) lauceolate unequal, white beneath; stipules wide (uf Cecropict) ; scar obliquely linear; glomerules of flowers ∞; males congregated along axes of ramose inflorescence ; females on subglobose capitule. ${ }^{6}$ (Tiop. urest. Africa. ${ }^{7}$)
63. Dicranostachys Tréc. - Flowers diœcious (nearly of Myri-
(Faruma).—Plukn, Almag. 146, t. 242, fig. 5 (Ficus),—P. Br. Jam. 111 (Coilotapalus), Jacq. Obs. ii. 12, t. 46 ; Stirp. Ain. Pict. 126, t. 262, fig. 66.-Aubl. Guian. ii. 894.-W. Spec. iv. 651.-Sphexg. Syst. iii. S09.-Kı. Liman, xx. 530.-Garcee, Linnow, xxii. 70.-A. Rich. IR. S. Cuba, xi. 222.-Griseb. Fl. Brit. W.Ind. 15\%. - Liebm. Jidensk. Selsk. Skrift. Hjoben. (1851), 317. - Allem, Revist. Brazil. (Jan. 1860), 8, c. ic. - Mre. Mart. Fl. Bras. Urtic.. 139, t. 46-50.-Walp. Ann. i. 650.
${ }^{1}$ App. to Tuck Nar. (1818), 453 (Congo, 34); Misc. Works (ed. Benn.), i. 138, 153.-Benn. Horsf. Pl. Jav. Rar. 48.-Tréc. Aun. Sc. Nat. sér. 3 , viii. 146.
: Habit and leaves of Cecropia.
${ }^{3}$ Spec. 1. M. Smithii R. Br. Herb.-Walp. Ann. i. 667.
${ }^{4}$ Fl. Oucar. et Ben. i. 16, t. 11, 12.-R. Br. Congo, 449.-Endl. Ger. n. 1867.-Tréc. Alin.

Sc. Nat. sér. 3, viii. 86.-Bur. Prodr. xvii. 284 (not Nutr.).
${ }^{5}$ Coat 2 -plicate.
${ }^{6}$ In the axil of single leaves flowers are observed with superior conical foliaceous bud and 2 female inferior stipitate inflorescences, girt on both sides with scars of stipules. All the female flowers are not always on the surface of the receptacle, but some glomerules penetrate within the cavity of the receptacle. Hence later the receptacle deeply covers some of the fruit; whence it seems, Pal.-Beavvars, in his incorrect figure, took pains to depict a single seed-bearing berry within; the flesh of the receptacle being very similarly considered as the pericarp of the simple fruit.

7 Spec. 1. M. arboreus P.-Beauv. loc. cit.Benn. Horsf. Pl. Jav. Rar, 50.
${ }^{8}$ Ann. Sc. Nat. sér. 3, viii. 85, t. 1, fig. 1-8. -Bur. Prodr, xvii. 283.
(unthus) ; male calyx 3-4-fill, imbricate. Stameus :3, 4; filaments short erect, comnte at base; :mthers extrorse, ?-rimose. Female calyx thickly urceolate, small aperture at apex. Germen, etc., of
 apex, here laterally sulcate aul stigmatose. Fruit (small?) capitate ; seed...?-Trees; leaves alternate, simple or digitate (of Myriunthus.) ; leaflets oftener serrate, whitish beneath, at base generally more or less unequilateral ; male inflorescences ramose (of Myrienthers) ; female flowers congregated in spurions capitules; capitules few-flowered, contiguons only at base and stellately divaricate above. ${ }^{1}$ (Trop. west. Africa. ${ }^{2}$)

IV. CANNABINE

64. Cannabis T.-Flowers diœecious; male sepals 5, imbricate. Stamens 5, opposite sepals, pendent; filaments thin inserted round centre; anthers oblong subintrorse, finally marginate or extrursely rimose. Fenale calyx gamophyllous membranous cupular enfolline the germen and persistent. Germen free, 1-locular ; ovule 1, descending campylotropous; branches of terminal style 2 , linear-elongate, sometimes equal, everywhere papilloso-stigmatose. Fruit dry,

[^261]2. Clarisia (R. et Pav. Prodr. 128, t. 28), a very doubtful genus, sometimes made a subgenus of Myrica (Endl. Geh. n. 1839 a), sometimes enumerated as an independent genus among the Myricacece (Lixdl. Veg. Lingd. 256 ; -C. DC. Prodr, xvi. sect. ii. 1505), from a somewhat rude figure of the male inflorescence, it seems rather to belong to this order and perbaps to the series Artocarpere; staminal filaments very similar not incurved in bud. From description, male amentum filiform, marked with a spiral furrow, covered with oblong imbricate scales, 1 -florous. Perianth 0, unless the scales may be called such. Corolla 0. Staminal filaments 2 , each inserted within a scale short erect filiform. Anthers small sub-4-angular. Female Howers in racemes 2-nate. Perianth proper (s) inferior very small squamose; scales 4-6, orbi-cular-subpeltate, aftixed to pedicel by a disk, crenate at margin. Corolla 0. Germen ovate. styles 2, subulate and patent; stigmas acute simple. Drupe ovate; seed subrotund. Species 2 arborescent (char. ex R. and Pay.-Affinity porhaps (:) with Psendosorocea, Sahagunia. and Sourcsia.).
clothed with calyx, indchiscent, l-spermous; seed descending ; cotyledons of exalbuminous curved embryo rather thick, torsally convex; radicle subequal incumbent asecnding. - An erect (strong smelling) scabrous piluse ammal herb; juice aqueous; leaves opposite and alternate palmatinerved, 5-9-seet.; stipules fiee, persistent; flowers terminal and axillary to upper leaves; male inflorescence compound racemose loosely cymiferous ; bracts linear ; the uppermost often 0 ; female flowers condensed in compound cymes; bracts in cymule foliaceous, stipuliferous, 2 -flowred; bracteoles of single flowers ovately lauceolate, with velvety glands externally (consisting of connate stipules, persistent around and finally longer than enclosed fruit). (Temp. Asia.) See p. 162.
65. Humulus L.-Flowers diœcious (nearly of Cumabis); stamens 5 ; filaments short; anthers erect. Female calyx gamophyllous persistent. Germen, ete., of C'unuchis; style branches elongately subulate papilliferous equal. Fruit dry induviate; embryo of descending exalbuminous seed circinately involute.-Perennial (odorous) herbs; brauches herbaccous volubile scabrous; leaves opposite petiolate, entire or ofterer lobate; stipules interpetiolate wide, free or counate in pairs; male inflorescences loose with lanceolate bracts ; female condensed with cone-like bracts and large distinct stipules, \cong-flowered; bracteoles closely surrounding single flowers, more or less produced above, ovate or lanceolate; nearly all parts of the inflorescence and flowers more or less sprinkled with yellow resinous glandules. (Temp. Europe and Asia.) See p. 165.

LI. CASTANEACEE.

I. BIRCH SERIES.

It is not with the Chestruts, from which it received its name more than a century since, that we shall commence the study of this family, inasmuch as they represent a type with

Betuta pumila.

Fig. 146. Foliaccons and tloriferous branch.
 inferior ovary and complicated by the presence of an involucre quite peculiar, but with the Birches ${ }^{1}$ (fig. 146-157), of which the gynrecium is superior and the flowers regular apetalons and monœcious. The males are often tetramerous, and the calyx may then, as in B. pumila ${ }^{2}$ (fig. 146-150), be formed of four sepals. They are rarely equal in that case; much more frequently the anterior is more developed than the three others, which are themselves unequal. These latter may even disappear in great part or completely, as in neighbouring species. The andrœcium is represented by four elongate extrorse cells dehiscing by a longitudinal cleft. ${ }^{3}$ According to certain authors, there are as many unilocular anthers ; according to others (and this opinion ought probably to be adopted) there are only two anthers primarily superposed to two of the sepals, the anterior and posterior, the cells of which are quite separate, because each of these cells is supported by one of

[^262][^263]the two branches of a filament which, simple at its base, bifureates at a variable height like the letter Y^{1}. The female flowers are destitute of perianth and composed only of a free gynacium with a bilocular ovary, ${ }^{2}$ and surmounted by a style almost inmediately divided into two long subulate hranches, covered with stigmatic

Betula prmila.

Fig. 147. Triforous male scale ($\frac{9}{1}$).

Fig. 148. Long. sect. of triftorous male scale.

Fig. 149. Male Hower.

Fig. 150. Fruit ($\frac{5}{2}$).
papille. In each of the ovarian cells (which are, like the styles, anterior and posterior), there is, in the internal angle, a placentit supporting a single ${ }^{3}$ descending anatropous urule, with the micropyle directed upwards and outwards. ${ }^{4}$ The fruit, flat and edged with two membranous wings perceptible on the ovary and rendering it samaroid, is dry ${ }^{5}$ and indehiscent, interlocular and monospermous by abortion of one of its seeds, ${ }^{6}$ whilst the other is fertile and encloses under its coats a fleshy embryo, straight and destitute of albumen, with superior radicle and cotyledons fleshy and nearly

Fig. 152. Male catkins.

Fig. 155 . Female catkin. flat.--The Birches are trees and shrubs growing in the cold and temperate regions of both worlds. ${ }^{7}$ They

[^264][^265]have alternate simple leares, dentate or entire, not persistent, with petioles accompanied at the base by two lateral caducous stipules. Young, they are plicate and equitant in the interior of a scaly bud.

Betula alla.

Fig. 154. Male floriferous scale without flowers.

Fig. 15n. Male fluwers.

Fig. 156. Triflorous female cyme.

Fig. 151. Ioung foli- Fig. 157. Long. sect. of aceous branch. female tlower $\frac{4}{2}$. with the samarx, which they completely conceal in all the birehes

[^266] The flowers are generally monœcious and collected in unisexual catkins, which are solitary, or more rarely in clusters, ${ }^{1}$ to the number of two or four as in the Asiatic species constituting the genus Betulaster. ${ }^{2}$ In the axil of each scale of the male catkin, there is a cyme, formed generally of three flowers, a median and two lateral, rising from the axillant scale and accompanied by two secondary scales, similarly supported and interior, one on each side. ${ }^{3}$ In the female catkins, there is in the axil of each scale, accompanied also by four secondary scales, a biparous cyme three- or more-flowered, often reduced to two flowers. ${ }^{4}$ In the fructiferous catkin, the principal accrescent scales accompanied by the secondary scales embodied with them, ${ }^{5}$ are detached early or persist for a longer or shorter period on the axis of the catkin,
pules of the principal bract or scale. Previous to their late displacement they appear, from the situation, to represent two lateral bracteoles, the axil of which would be occupied by the lateral flowers of the inflorescence.
${ }^{4}$ From abortion of the terminal flower, not unfrequent in this genus.
${ }^{5}$ So that the whole then appears a rigid bract, trilobed above.
proper, ${ }^{1}$ whilst they are shorter than the fruit in Betuluster: ${ }^{2}$ Some thirty species are adnitted in the genus ${ }^{3}$ thus limited.

The Alders: (Fig. 15s-167) differ but little from the Biothes with which they were formerly united. The flowers are also monercions:

Fis. 159. Male catkin.

Fig. 162. Biflorous female
floriferous scale.
Fig. 162. Biflorous fe
floriferous scale.

Alnus cordifolia.

Fir. 103. Fruit (5).

Fig. 164. Long. sect. of fruit.
and disposed in eatkins. In the axil of the scales of the male catkin, there are generally three flowers firming a cyme, or, more rarely, a single flower; and the secondary scales, rising with the flowers from the principal scale, are generally four in number, two on each side. The perianth, sometimes but little developel, is formed of four folioles, free or mited at the base, and the stamens, equal in

[^267]-Don, Prodr. Fl. Nep. 58 -Spach, Jacquem. Ioy. Bot. t. 158.-Sieb. et Zucc. Abh. d. How. Baier. Al. iv. Abth. 3, 228.-Miq. Ann. Mus. Lugd.-Bat. ii. 136.-Gren. et Godr. Fl. de Fr. iii. 146.
${ }^{4}$ Alnes T. Inst. 587, t. 359.-Lank. Dict. i. 330.-Nees, Gen. iv. t. 19.-Endl. Ger. n. 1841 ; Suppl. iv. p. ii. 20.-Spach, Ann. Sc. Nat. sér. 2, xv. 124, 203 ; Suit. à Buffon, xi. 246. -Reg. Mlonogr. Betul. 73; DC. Prodr. xvi. sect. ii. 180 .
number, are superposed to them. Rarely the flower is 10-12merous and 10-12-androus. ${ }^{1}$

Alnus cordifulia.

Fig. 160. Triflorous male Horiferous scale.

Fig. 161. Male foriferous scale, flowers removed. In the female catkin, ordinarily shorter, more rigid than in the Birches, and erect, there are only two flowers in the axil of each of the thick scales, the middle one being abortive. The gynæecium is similar to that of the Birches, and the fruit, dry and monospermons, is wingless or surrounded by a membranous wing. The axillant scales there hecome woody. The Alders are trees and shrubs of tho

Alnus glutinosa.

Fig. 165. Side view of male floriferous scale.

Fig. 166, Male flower. Fig. 167. Compound iruit. temperate and cold regions of both worlds in the northern hemisphere, rare in South America and southern Africa. Their organs of vegetation are analogous to those of the Birches. The leaves are accompanied by lateral stipules. The flowers are sometimes developed at the same time as the leaves, but more frequently carlier, and in this case the females may, as in the species constituting the genus Alnaster, ${ }^{2}$ emerge from buds bearing one or more leaves. Often the eatkins are solitary, more rarely they are collected in clusters. About fifteen species of Alder are enumerated. ${ }^{4}$

[^268][^269]
II. IIAZEL SERIES.

In most of the IIrzels or Nut-trees ${ }^{1}$ (fig. 168-174), the flowers, amentaccous and monocious, are apetalous and regular. The

Corylus A vellana.

Fig. 171. Female flower.

Fig, 168. Male and female inflorescences.

Fig. 169. Two-flowered female scale.

Fig. 170. Female flower surrounded by young involucre.
male catkins, similar to those of the Birches, bear numerous alternate scales, and within these are nearly always found two lateral seales supported with them. ${ }^{2}$ Near the point of union of these various appendages stamens are inserted, most frequently to the number of eight, ${ }^{3}$ formed each of a filament and a unilocular, ${ }^{4}$ extrorse ${ }^{5}$

3, 230.-Thuscif, Flora (1834), 520.- Peepp. et Endl. Nov. Gen. et Spec. t. 198, fig. C.Mie, Am. Nus. Lugd.-Bat. ii. 137.-A. Grax, Man. ed. 5, 460.-Bertol. Fl. Ital. x. 163.Leneb. Fl. Ross. iii. 657.-Rupr. Bull. Acad. Pétersb. (180̃7), 500^{2}.-Gren. et Godr. Fl. de Fr. iii. 148.
${ }^{1}$ Corylus T. Inst. 581, t. 347.-L. Gen. n, 730.-Adans. Fam. des. Pl. ii. 375.-J. Gelq. 410. -Lamk. Dict. iv. 495 ; Suppl. iv. 101 ; $1 l l$. t. 780.-Gertn. Fruct. ii. 52, t. 89.-Scekuhr, Handb. t. 305.-Turp. Dict. Sc. Nat. Atl. t. 302, 303.-Nees, Gen. ii. 22.-Spach, Suit. à Buffon, xi. 205.-Endl. Gen. n. 1844.-Schacht, Lehrb. 441, t. 9 ; Der Baum, t. 4.-Payer, Fam. Nat. 163.-A. DC. Prodr. xvi. sect. ii. 129.-H. Bn. Compt. Rend. Acad. Sc. Ixxvii. 61 ; Compt. Rend. Ass. Fruns. i. (1872), 490, t. 9; Adansonia, xi.t. 6 .

[^270]VOL. VI.
anther, dehiscing by a longitudinal cleft. ${ }^{1}$ The female flowers are disposed in a very short bud-like catkin (fig. 172), with alternate and imbricate bracts, few in number. In the axil of each of these are found the flowers, arranged in pairs and surrounded each by an involucre covered with hairs,
Corylus Arellana.

Fig. 172. Female inflorescence ($\left.\begin{array}{l}8 \\ 1\end{array}\right)$.

Fig. 173. Young fruit, long. sect. ($\left.\begin{array}{l}8 \\ 1\end{array}\right)$. formed by the lateral secondary bract, here more or less deeply cut and finally surrounding the floral receptacle. The latter has the form of a sac with narrow opening, enclosing in its cavity the adnate ovary surmounted by a small annular calyx, very short, epigynous and surrounding the base of a style soon divided into two large subulate stigmatiferous branches, coloured red. ${ }^{2}$ In the inferior ovary, ${ }^{3}$ there were originally two parietal placentse uniting along the axis of the cavity to form two cells, each of which might bear two ovules; but ordinarily in the adult flower, each cell contains only one descending anatropous ovule, ${ }^{4}$ with micropyle directed upwards and outwards. ${ }^{5}$ The fruit, around which the secondary bract, forming the involucre, has taken the form of a long green sac, is an arhene the pericarp of which, dry and intehiseent, unilocular and monospermons, ${ }^{6}$ is formed partly of the hardened walls of the receptacular pouch ; it is crowned with the scars of the style and calyx. The descending seed, surroumded by a soft disconnected ${ }^{7}$ tissue, encloses under its coats a large fleshy

[^271][^272]rectilineal embryo, with thick and oily plano-convex cotyledons and a short superior radicle. There are some Mazels in which the foliaceous involucre is much elongated in a tube beyond the fruit; they have been named Tubo-Acellente; ${ }^{1}$ and others in which the edges of the large involucre is divided into ramified spinous teeth resembling the prickles of the Chestnuts; these form Aeenthochlemys. ${ }^{2}$ Others again, as C. Dutiditna (fig. 171), a species from the north-east of Asia, have a small fruit, surrounded, besides the sacciform membranous involucre, by a rather large exterior bract, accrescent and cleft within; of these the genus Ostryopsis ${ }^{3}$ has been formed. Thus constituted, the genus Corylus ${ }^{4}$ comprises eight species, ${ }^{5}$ natives of the temperate northern regions of both worlds. They are small trees or shrubs having alternate, penninerved, ${ }^{6}$ dentate leaves, with a petiole accompmied at its base with two lateral caducous stipules. The male catkins are solitary, pendent, or disposed in clusters on the wood of the branches where they are developed in winter before the leaves. The female catkins, much shorter, appear somewhat later on

Corylus Davidiana.
 the branches of the preceding year, but likewise Fig. 17t. Tetrandrous male before the leaves, and are at first nearly sessile. floriferous scale ($\binom{5}{1}$.

Their very short support is a brauch which, during the maturation of the fruit, is lengthened and fiually presents, under the achenes which terminate it, generally few in number often in pairs, several alternate leaves similar to those of the other branches.

Beside Corytus are placed the Inninbeams, the flowers of which

[^273][^274]are nearly the same, equally monccious, precocions, and amentaccous. The stamens number from three to twenty in the axil of the bracts of the male catkin (fig. 175) and are formed of a free slender filament, bifureate as Y , and an extrorse anther and cell, surmounting earh of the branches, longitudinally dehiseent. ${ }^{1}$ In

Carpinues Betulus.

Fig. 176. Female flowering branch.

Fig. 179. Fructiferous branch.
the female catkin long and slenier (fig. 176), the alternate caducous bracts correspond to two flowers (fig. 177, 178) which occupy each the axil of a lateral bract. This, unlike that of the Nuacts, persisting and growing beside the fruit, does not completely envelope it and remains foliaccous, rigid, trilobed (fig. 179, 180). The ovary, sumounted by a small dentate calyx and a style similar to that of the Nuts, has the same organization and is finally divided into two cells by two placente at first parictal, each also bearing one or two

[^275][^276]ovules similar to those of Corglus. The fruit is the same, though in general smaller and less hard, traversed by vertical salient nervures. In Corpinus Ostryme ${ }^{1}$ and virginienter, of which the genus Ostrya. ${ }^{3}$ has been formed, the lateral bract, foliaceous like that of the Hornbeams proper, surrounds the ovary, then the fruit, with a sort of membranous conical sac, closed, finally covered with very fine rigid hairs which easily penetrate the skin. In this respect, these species, all the other characters of which are those of the Hornbeams, and which, with us, will constitute only a section of this genus, serve as intermediaries between Corylus and other species of Carpinus. There are Carpinus Betutus.

Fig. 177. Female floriferous scale.

Fig. 180. Fruit.

Nig. 175. Male floriferous scale ($\frac{0}{1}$).

Fig. 178. Female flower ($\frac{12}{1}$).
about ten species * of Hornbeams inhabiting the temprerate regions of both worlds. They are trees or shrubs, with alternate, pemninerved, doubly serrate leaves, folded in the bud according to the secondary nervures, ${ }^{5}$ accompanied at the base with two lateral caducous stipules. ${ }^{6}$ The male catkins are lateral ; and the female terminal. At the period of fructification, these latter are clongate, pendent and racemiform (fig. 176).

[^277]Mus. Lugd.-Bat. i. 121.-A. Gray, Man. ed. 5, 457.-Chapm. Fl. S. Unit. St. 425.-Gren. et Godr. Fl. de Pi: iii. 120.-Walp. Am. iii. 379. ${ }^{5}$ With some authors (A. DC. Pradi. 124) a character of a tribe of Curpinece of the family of Corylacea; on the prefoliation see Zucc. Char. Holzjew. t. 2.-Henry, Act. Nat. Cur. xxii. p. i. t. 29.
${ }^{6}$ On the supernumerary germination of $\mathrm{Car}{ }^{-}$ pinus Betulus, see Viaud-Gravdmarais, Bull Soc. Bot. de Fr. vii. S39.

III. OAK SERIES.

The flowers of the Ouks ${ }^{1}$ (fig. 181-188) are moncecious and arranged in spikes. Those bearing male flowers (fig. 181, 183) have a slender axis, often pendent, and alternate bracts, in the axil of

Quercus Robur.

Fig. 18: Bud.

Fig. 188. Sced.

Fig. 181. Floriferous branch.

Fig. 186. Long. sect. of female flower.
which are the flowers, solitary or collected in glomerules. They are often pentamerous; but the calyx may have a smaller number of divisions, generally united below, or a greater number, ${ }^{2}$ and they are imbricate or valvate in prefloration. The andræecium is often formed of stamens equal in number and superposed to the sepals; but an equal number, or less, of alternate stamens. Finally, the number of pieces of the androcium may deseend to three or four or

[^278][^279]rise to fifteen. All are formed of a free slender filament, inserted in the centre of a floral receptacle, rarely under a rudimentary gynacium, and of an exserted, bilocular, extrorse anther, dehiscing by two longitudinal elefts. ${ }^{1}$ The femake catkin (fig. 184) is ordinarily thicker, more rigid and bearing a smaller number of flowers. ${ }^{2}$ 'They have a gourd-like receptacle, with a neek more or less elongate, and the cavity of which entirely shelters the inferior ovary (fig. 185, 186),

Qucreus Robur.

Fig. 184. Female inflorescence.

Fig. 183. Male inflorescence.

Fig. 187. Fruit.
whilst its superior opening bears a calyx often having six ${ }^{3}$ divisions imbricate in two series, more rarely a lower or higher number. ${ }^{4}$ The ovary is surmounted by a style with three branches of variable form, ${ }^{5}$ often thickened, dilated and obtuse at their stigmatiferous extremity, entire or slightly lobed. It encloses three ${ }^{6}$ cells, more or less incomplete, either above or below, containing each two collateral, descending ovules, more or less completely anatropous, with micropyle exterior and superior. ${ }^{7}$ The ovary is, at its base, surrounded to a variable height by a cupule entirely covered externally with bractlike prominences of very variable dimensions (fig. 185, 186), not unfrequently nearly smooth or traversed by folds or wrinkles nearly horizontal or oblique. ${ }^{8}$ This cupule persists thickening and hardening around the fruit (fig. 187) which it may even completely

[^280]one or more sterile or fertile stameus, either within or without the perianth
${ }^{5}$ Rarely linear, erect (see p. 233).

6 Sometimes two or four.
7 With double coat.
8 The morphological signification of this
envelope, ${ }^{1}$ and which is an achene, the ucorn, inserted by a large, scarlike surface at the bottom of its cupule, ${ }^{2}$ from which finally it generally separates, ${ }^{3}$ and surmounted by the remains of the superior calyx and styles. Ordinarily it encloses only a single fertile descending sced (fig. 188), accompanied, at a very variable point of its height, ${ }^{4}$ by five other seeds, small and sterile, and containing under its coats a large fleshy embryo, destitute of albumen, with thick plano-convex cotyledons, sometimes smooth and sometimes more or less wrinkled or ruminated externally, and a short superior radicle, partly or entirely concealed by the prolonged base of the cotyledons.

There are Ouks in all parts of the northern hemisphere, both old and new world, and some inhabit tropical regions. They are trees, rarely of low elevation, with alternate leaves persistent or falling in winter, accompanied by two lateral caducous stipules. The limb ${ }^{5}$ is penninerved, entire or more or less deeply cut, longitudinally plicate in prefloration, and at first enveloped in buds with inbricate scales, formed by the stipules ${ }^{6}$ (fig. 182). The inflorescences, ordinarily misexual, sometimes have female flowers at the base and males in their upper portion, which are early detached. The male catkins, pendent or erect, rise from the axil of the inforior leaves of the young branches or of the bracts which replace them at this level, oftener from lateral aphyllous or few-leaved buds. The female cat-
cupule, formerly considered as formed of bracts united together to a variable height, has been much discussed. It is now pretty well agreed as to the axile nature of the body of the cupule itself, which Schacht calls a disk and Payer a fold of the peduncle. We may, however, hesitate as to the nature of the prominences it bears and which often, by their form and anatomic structure, closely approximate to foliaceous organs, but which, by the same characters (the value of which is insignificant), and also by their tardy appearance on the body itself of the cupule, may appear equally comparable to mickles.
${ }^{1}$ There are species in which it divides superiorly at maturity.

2 To which it sometimes adheres in its lower part.
${ }^{3}$ The fruit is matured sometimes in the year and sometimes, after a long repose, in the following year. (J. Gay, Bull. Soc. Bot. de Fro (1857), 445, 501 ; Am. Sc. Nat. Sér. 4, vi. 223̈);
a character noted by Michaux, in his Hintoire des Chenes, in 1861, and which has served to distinguish certain species. The biennial maturing is, perhaps, owing to defect of fecunda. tion in the first year.
${ }^{4}$ Sometimes near the base, as in Q. Robur, sometimes between the base and the middle, as in Q. Suber, more frequently near the summit. (A. DC. Biblioth. Univ. Ger. (Oct. 1862) ; Ann. Sc. Nat. sér. 4, xviii. 49.).
© When young, like many other parts, it is covered with stellate or fasciculate hairs, with some solitary, or ordinarily caducous, or contracted in adult age (A. DC).
${ }^{6}$ Dexl., Zur Erklaer. d. Laubたh。 Ament. (1848) ; Fl. Bad. ii. (on the morphological character of the cupule).-Hemiry, Nor. Act. Nat.Cur. xxii. p. i. 337, t. 22.-H. Manl (Morphol. Untersuch. ucb. d. Eiche (1862), Cassel, in-4) bas established the disposition of the bracts of the bud and the leaves in our indigenous species, the nervation of the leaves, ctc.
kins terminated by a flower or by a small number of abortive flowers, spring from the axils of the superior leaves or terminal buds. In this genus, for more than an age, a number of species have been described, doubtless too large, viz., ${ }^{1}$ more than four hundred ; ${ }^{\text {it may }}$ be reduced by about one-third.

The Ouks can scarcely be distinguished generically from the Chestmuts ${ }^{3}$ (fig. 189-195), trees of the same countries, the monocious flowers of which are collected in slender and elongate catkins. The catkins which spring from the axils of the lower leaves are composed

[^281]Walt. Fl. Carol. 234.-W. in Act. Berol. iii. 396.-Ait. Hurt. Kew. iii. 3ā6.-Secondat, Mém. Hest. Nat. Chêb. (1785).-Michx. Hist. Nat. Chên. Ainer. (1801). - Michx, f. A)br. Amer. ii.-Bosc. Journ. Hist. Nat. ii. 319.Tex. Cat. IIort. Nap. 1819), 65.-H. B. Plant. Siquin. 24, t. 75-96.-Bl. Bijdr. 618; Fl. Jav. fasc. 13, 14 (Cupulif.), t. 1. $-19,20$ (Lithocarpus); Mus. Lugd.-Bat i. 296.-Don, Prodr. Fl. Nepal. 57.-Roxb.Hort. Beng. 113 ; Fl. Ind. iii. 634.Lour. Fl. Cochinch. (ed. 1790), 571.-Sm. Rees Cyclop. n. 20, 23.-Hook. Fl. Bor.-Amer. ii. 159 ; Icon.t.380, 403.-Guss. Fl. Sic. ii, 604.-Brend. Trees of Illin. 20.-Liebm, Egesl. 12.-Bonplardia, iii. 38, $\overline{2}$.-Mart. et Gal. Bull. Brux. x. n. 3.-Cham. et Schltl, Linncea (1830), 78.Benth. P!. Hartweg. 55, 90, 348; Fl. Hongk 321. -Hook. and Akn. Beech. Vog. Bot. 394.Wangenh. Amer: 78.-Torr. Sitgrave. Exp. Zuni, 173, t. 19.-A. Gray, Bot. Mém. 406 ; Man. ed. 5, 450.-Сhapm. Fl.S. Unit. St. 420.A. Rich. Fl. Cub. t. 73.-Nees, Kicn. et Sims Ann. Bot.ii. 100.-Kellog, Proc. Calif. Acad. ii. 36.-C. GAy, Fl. Chil. v. 396.-SEEM. Voy. IHerald. Bot. 251, 333.-Korth. Verh. Nat. Gesch. Bot. 208.--Mie. Fl. 'Ind.-Bat. i. p. i. 844.Hance, Hook. Journ. (1849), 176 ; Ann. Sc. Nat. sér. 4, xviii. 229.- BGe, Eurm. 61.—JAub. et Spach, Ill. Pl. Or. i. 108, t. 54-58.-Eisch, et Mey. Hohen. Enum. Talysch. 29.-C. A, Mey. Verz. Pff. Cauc. 44.-Kotschy, Eich. Europ. und Or. (1858-62).-Stev. Ferz. Taur. Halb. 307.-C. Koch, Linnaa, xxii. 319, 328.-Linnl. Paxt. Fl. Gard. i. 59, t. 37.-Pcech, Enum. Pl. Cypr: 12.--Webb, It. Hisp, 10.-Santi, Viag. Tosc. i. 156, t. 3.-Carruth. Journ. Lime. Soc. vi. 32.-Gren. et Godr. Fl. de Fr. iii. 115.
${ }^{3}$ Castaner T. Inst. 584, t. 352.-GモRTN Fiuct. i. 181, t. 37.-Lamk. Dict. i. 708; Suppl ii. 203 ; Ill. t. 782, fig. 1.-Turf. Diet. Sc. Nat. Atl. t. 304, 305.-Nees, Gen. ii. 25.-Spach, Suit. à Buffon, xi. 186.-Evdl. Gen. n. 1848 ; Suppl. iv. p. ii 29.-A.DC. Prudr. xvi. sect. ii. 113.
only of male flowers; those from the upper axils are androgynons, with female fluwers in the axil of their inferior bracts, ${ }^{1}$ and higher

Fig. 189. Floriferous branch.

Fig. 190. Male Hower (4).

Fig. 196. Median achene, front view.

Fig. 108. Long. sect. of achene.
than the males, often arrested in their development. The flowers of the two sexes are united in glomerules, sometimes reduced to one flower. In the male flower, very analogous to that of the Oaks, the sepals, geucrally six in number, imbricate in two series, surround a diplostemonous or triplustemonous andrœeium. The stamens have a

[^282]free exserted filament and a small bilocular extrorse anther dehiseing by two longitudinal clefts. In the female glomerules, surrounded by a common involucre, covered with bracts and prickles, ${ }^{1}$ there are at adult age one, or oftener three fertile flowers, ${ }^{*}$ the receptacle of

Castanea vulgaris.

Fig. 193. Female flower ((耇).

Fig. 191. Androgynous inflorescence.

Fig. 194. Long. sect. of female flower.
which has the form of an elongated gourd. Its cavity is filled by the ovary, whilst its margins support six biseriate and imbricate scpals and a variable number ${ }^{3}$ of sterile epigynous stamens. ${ }^{4}$ The ovary is surmounted by six simple stylary branches, stigmatiferous above and within, corresponding to an equal number of incomplete and biovulate cells. ${ }^{5}$ The collateral ovules ${ }^{6}$ are descending, more or less completely anatropous, with micropyle superior and exterior. ${ }^{7}$ The fruit (fig. 195-198) is an achene crowned with a sear, some-

[^283]example, three large and three small more interior.
${ }^{4}$ Here and there they become fertile. When even they are destitute of pollen, the filament and anther are ordinarily distinct at adult age.
${ }^{5}$ The elements of the gynæcium appear also to belong to two different verticils, and there are often three interior carpels, rather smaller than the exterior with which they alternate.
${ }^{6}$ Their appearance is late, as in the Betulece, the Corylece and the Oaks.
7 Their coat is double (J.G. Ag. Theor. Syst. Plant. t. 13, fig. 10, 11).
times with the remains of the perianth and styles, and inserted, to the number of one to three, ly a large basilar surfice, in the interior of a closed globular aceresent involucre, covered externally with bracts, which are seen in the female inflorescence, and, besides, with rigid prickles, simple or ramified at the summit, ${ }^{1}$ primarily disposed

Castanea vulgaris.

Fig. 192. Female glomerule ($\frac{4}{1}$).

Fig. 195. Compound fruit. over four equidistant areas, having at first nearly the form of an isosceles triangle with superior apex and separated from each other, at their bases, by groups of bracts which finally conceal them at maturity. At maturity, the involucre opens above in four pannels and allows the achenes to escape. Each of these contaius one fertile seed, the embryo (fig. 198) of which, destitute of albumen, has thick farinaceous cotyledons, externally waved or ruminant, sometimes deeply, and a superior radicle concealing the base of the cotyledus. The Chestmuts proper are trees of the northern hemisphere. There are probably only two species, ${ }^{3}$ one American, the other, with wumerous forms and variations, spread over the temperate regions of North America, Asia, Africa, and Europe. The leaves, caducous, are alternate, ${ }^{5}$ peminerved, dentrte, plicate in vernation according to the prineipal and lateral nervures, ${ }^{5}$ aceompanied at the base of the petiole by two lateral stipules which fall early. But it appears impossible

[^284][^285]to separate from this genus, otherwise than as a section, C. chrysopliylle, ${ }^{1}$ a Californian species, and a certain number of species of tropical and subtropical Asia, such as C. indica, jurenict, and about ten others, ${ }^{2}$ of which the genus Castannpsis ${ }^{3}$ has been made, and which, intimately connecting the Outis and the true Chestuuts, differ only from the latter in the number of cells in their ovary, reduced to three. Sometimes the involucre of the fruit, dehiscent or indehiscent, is covered with numerous crowded prickles, inserted apparently, in the adult stage, over the entire extent of its surface ; and sometimes, as in C. sumatrana, type of a genus Calleoocarpus, ${ }^{4}$ the prickles are conical and spread regularly over three prominent surfaces or form horizontal or oblique series. In these species the leaves are sometimes entire and sometimes dentate. Thus constituted, ${ }^{5}$ the genus Custanea comprises seventeen or eighteen species. ${ }^{6}$

The Becehes ${ }^{7}$ (fig. 199-206) were formerly included in the same genus as the Chestmuts. They have their monœcious flowers.s The males are formed of a gamosepalous subcampanulate calyx, divided above into a number of lobes varying from four to nine, and of an equally variable number (six to eight) of stamens, with a free slender exserted filament in the centre of the flower, and a bilocular extrorse anther dehiscing by two longitudinal clefts. ${ }^{9}$ The female flowers, in number from one to three, are enclosed in a common four-lobed involucre covered externally with projections of very variable form, sometimes foliaccous, sometimes representing superposed layers more or less deeply cut, or again, as in our common beech, haviug the appearance of long and slightly rigid prickles, at least in the upper

[^286]49 Ill. t. 782.-G.ertw. Fruet. i. 182, t. 37.Nees, Gen. ii. 24.-Mirb. Mem. Mus. xiv. t. 23-26.-Spach, Suit. à Buffon, xi. 194.-Endl. Gen. n. 1847; Suppl. iv. p. ii. 29.-Pater, Fam. Nat. 165.-A. DC. Prodr. xvi. sect. ii. 117.-Calusparassus Hombr, et. Jacetin. Voy. au Pôle Sud. Bot. Phanér. t. $6 \Sigma, 7$ Г, 8Ψ.Calucechinus Hombr. et Jacquin. loc. cit. t. 6 e, 7 Z, 8 П.-Nothofagus BL. Mus. Lugd. - Bat. i. 306. -Lophozonia Turcz. Bull. Mose. (1858), i.
${ }^{8}$ Here and there they are hermaphrodite, with some epigynous stamens, sterile or fertile (心́mivzl. Byt. Zuit. (1850), t. 745, t. S, fig. 1).
${ }^{9}$ According to H. Мони (Ann. Sc, Nat. sér. 2, iii. 312), the pollen is "spherical ; three narrow bands, with large umbilica surrounded by i narrow halo. Fagus sylvatica."
dorsal portion and the margins of the lobes of the involucre, for towards the base we find more or less foliaccous bracts. ${ }^{1}$ Each flower is composed of an inferiur, triangular ovary, with three cells

Fig. 202. Female flower.

Fig. 204. Young fruit in involucre.

Fig. 203. Long. sect. of female flower.
separated by thick partitions, ${ }^{2}$ from the interual angle of which ${ }^{3}$ descend two collateral anatropous ovules, with micropyle directed upwards and outwards," The style is divided, nearly from its base, into three simple elougate slender (fig. $20: 203$), or oftener short and thick ${ }^{6}$ (fig. ${ }^{2} 05,206$) branches, ${ }^{5}$ covered within and above

[^287]4 With double envelope.
${ }^{-}$In those of the species of the sect. Eufagus (A. DC. Frodr. 118 ;-Fagus Bis. MLus. Lugd.- Bat. i. 306) which inhabit the northern hemisphere notably in our common Beech.
${ }^{6}$ In the species of the same section which belong to the southern hemisphere.
with stigmatic papille. It is surrounded by a superior calyx of six biseriate, imbricate folioles, ordinarily persistent to the summit of the fruit. The latter is dry, triangular, with the angles often produced to narrow rigid vertical wings. It is enclosed either alone or with two or three others, in an accrescent, woody involucre, covered externally with projections variable in size, form and consistence, and finally opening in its upper part by four vertical clefts. In each achene is found one seed ${ }^{1}$ the embryo of which, destitute of albumen, has a superior radicle, partly covered by the base of

Fagus betuloides.

Fig. 200. Female flower ($\frac{4}{1}$).

Fig. 206. Long. sect. of female flower. the cotyledons, ${ }^{2}$ mostly fleshy, often folded back upon themselves. 3 The Beeches are trees or shrubs growing in the temperate or nearly cold regions of both hemispheres. ${ }^{4}$ Some attain great dimensions and resemble, in this respect, our common Beech; whilst those which in great number inhabit the cold regions of the western coast of the most southern parts of South America are often, in all their parts, reduced to the humblest dimensions. The leaves are alternate, caducous ${ }^{5}$ or persistent, penninerved, gencrally dentate, convex in the bud and often plicate along the lateral nervures, ${ }^{7}$ and accompanied by two lateral caducous stipules. The flowers are precocious, generally axillary, sometimes solitary and sometimes grouped at the summit of a common peduncle, in a sort of capitule or short spike. Some fifteen species have been described. ${ }^{8}$

[^288][^289]
IV.? BALANOPS SERIES.

In this genus, the place of which is somewhat doubtful, the flowers
Balannps Vieillardi.

Fig. 208. Male catkin.
Fig. 207. Fructiferous branch.
Fig. 213. Long. sect. of fruit. are regular and diocions. The males are naked and disposed in
slender catkins (fig. 20 S), on which they are alternate, nearly sessile, or on a short pediecl, frequently bearing their small axillant bract (fig. :09). Each represents is small bundle of stamens, the number

Firs 20n. Mald flower (h).

Fig. 211. Long. sect. of female flower (\dagger).

Fig. 212. Gynæcium.
of which varies from two to a dozen, each having a very short erect filament, and a bilocular introrse anther dehiscing by two longitudimal clefts. In the female flower (fig. 210), sessile on the trunk and branches, there are a great many unequal, imbricate, rigid folioles, covered with hairs, which are the parts, cither of a calys, or of an involucre, and, internally, a free gynecium (fig. 212), the hard conical ovary of which contracts abruptly at the base to a portion with soft coat, and at the summit is produced into two stylary branches, themselves soon bifureatel in two long linear lobes, subulate, exserted, simuous and covered internally with vot. vi.
stigmatic papillo. The earity of the ovary is divided by narrow parietal partitions into two very incomplete cells, to carch of which correspond two aseending anatropous ovules, inserted near the base and supported by a funicle of very variable length, ${ }^{1}$ the dilated summit of which forms an obturator to the exterior and inferior microprle (fig. 211). The fruit (fig. 207, 21:), above which persist the withered baselar folioles, ${ }^{2}$ forming a sort of cupule similar to that of the Oak (whence the name Bulunops ${ }^{3}$), is an ovoid berry, with thin coat, membranons endocarp, often not very distinct, the two cells of which, more or less complete, enclose cach one or two nearly erect sceds. The latter, under their integuments, contain an erect embryo, with short inferior radicle, thick cotyledons, nearly elliptical, greemish, and surrounded by a thin, often membramous, layer of fleshy albumen. Bullonops: consists of trees or shrubs, the simple or oftener little ramified stems of which bear ahove leaves almost sessile, simple, peminerverl, coriaccons, entire or slightly dentilate, alternate and sometimes collected at the eud, presenting the appearance of pairs or verticils. The male inflorescences and the female flowers proceed from a sealy bud borne ly the axes in the interval of the leaves. Six or seven species of this genus are known, all natives of New Caledonia.

V.? LEITNERIA SERIES.

Leitneria (fig. 214 - 216) has amentacons and diocious flowers. The catkins bear a large number of alternate bracts, at first imbricate. In the axil of each bract of the male catkins are found stamens, varying in number from two or thee to ten, ${ }^{5}$ the free and erect filaments of which support each a bilocular introrse anther, deliscing by two longitudinal elefts. The stamens are quite naked or surrounded at the base by some unequal bracts, sometimes united so as to form a sort of small perianth. The same may be the case in the female eatkins, where these bracts (?) ordinarily attain even a greater

[^290][^291]development. ${ }^{\text {. }}$ The gynaecium is formed of a single earpel, the rentral suture of which is opposite the axis of the catkin, and its unilocular ovary is surmounted by a long style, papillous and stig-

Fig. 216. Long. sect. of fruit (i).

Fig. 214. Male flower ($\frac{8}{2}$).

Lcitncria floridanca.

Fig. 215. Long. sect. of female inflorescence (${ }^{4}$).
matic on its entire interual surface, whilst its summit turns outwards. ${ }^{2}$ In the internal angle of the ovary, a parietal placenta supports a single descending ovule, incompletely anatropous, ${ }^{3}$ with micropyle directed upwards and outwards. The fruit is an oblong drupe, the exocarp of which is of little thickness, coriaceous, and its hard putamen encloses a descending seed, with thin albumen, covering a straight embryo with short superior radicle and greenish fleshy plano-convex cotyledons. L. floridma Cuapu., the ouly known species of this genus, inhabits the marshes of the

[^292]southern United States. It is a shrob the leaves of which remind us of those of the Willows and Chestnuts; they are alternate, petiolate, accompanied by lateral stipules; oblong, pinterd, penninerved, entire, tomentose beneath. The flowers develop before them, on the wood of the branches where the catkins occupy the axil of the fallen leaves. The stamens are somewhat raised with the contracted base of the axillant bracts. ${ }^{1}$

VI. MYRICA SERIES.

The flowers are equally amentaceons in the Mypern ${ }^{2}$ (fig. 217 2.2.) , and are likewise destitute of a true periauth; most generally, Myrica Gale.

Fig. 222. Fruit (3).

Fig. 219. Femalc catkin (${ }^{(1)}$).

Fig 2:3. Lorme sect. of fruit.

Fig. 217. Young male floriferous Fig. 221. Long. sect. Fig. 220. Female branch.
of female tlower.
flower ($\left.\begin{array}{l}\text { 5 } \\ \text { 5 }\end{array}\right)$.
as in the indigenous species, Myrim (inle L. (fig. 217-293), they are diecious and borne on simple catkins. In this species, in the

[^293]grouped in pairs face to face, are organized like those of Leitneria, but its stamens are also in pairs on the common axis of the eathin facing each other.
${ }_{2}$ Myrica I. Gen. ed. 1, n. 746 (part.).-J. Gen. $409,453 .-G$ Gertn. Fruct. i. 190, t. 39.-
axil of each scale of the male catkin, are found stamens, varying from two to five in number (fig. 218) ; but most frequently there are four, one anterior, one posterior, and two lateral. The filaments are free except quite at the base, where they are monadelphous, and the anthers are bilocular, introrse, and dehiscent by tro longitudinal clefts. ${ }^{1}$ In the female catkin (fig. 219), the axil of each scale is

Fig. 218. 5-androus malo flower. occupied by a sessile flower, accompanied by two lateral bracts. ${ }^{2}$ Otherwise the gynæcium is naked, and composed of a unilocular ovary, surmounted by a style almost immediately divided into two long subulate branches, primarily anterior and posterior, ${ }^{3}$ and covered with red stigmatic papillæ. In the interior of the ovarian cell is inserted at the base an ovule, which appears erect, and is orthotropous, that is to say its micropyle is superior:* When this ovary becomes a drupaceous fruit, with mesocarp slighty fleshy, and epicarp covered with glandular and resinous projections, the two lateral bracteoles, in this species persistent, form, as it were, two thick marginal wings (fig. 22.3, 20:3). The seed, erect, contains under its coat, a fleshy embryo, destitute of albumen, with superior radicle and thick plano-conves cotyledons. NT. (tele, of which a distinct gewus has been made, ${ }^{\text {T }}$ is a small odorons shrub, living socially in the marshes of temperate Europe and North America. Its leaves are altermate, simple, serrulate, penminerved, without stipules. The eatkins occupy the axils of the leares of tho preceding year (fig. 217), and the flowers bloom in the spring before the leaves of the year have attained their full development.

In M. (*splenifolia (fig. 202, 225), of which the geuus Comptonin6 has been made, the leaves are pinuatifid, accompanied by stipules. (wanting in other species of the genus), and in the axil of the laterul

Lamk. Dict. ii. 592 ; Suppl. ii. 696 ; Ill. t. 809. -Schкumr, Mandb. t. 322.-Trerp. Dict. Sc. Nat. Ail. t. 298.-Nees, Gen. fasc. 3, tab.-Spach, Suit. à Buffö, xi. 260.-Ennl. Gen. n. 1839 (part.).-C. DC. Prudr. xvi. sect. ii. 147 (incl. : ('omptonia Banks, Faya Weirb, Gale J. Bauh, Nagein Gertn.).
${ }^{1}$ The pollen is' "flattenod, ellipsoid, somewhat triangular; throo small pores at the angles,

[^294]bracts there is a rudimentary flower very imperfectly developect, and sometimes deseribed as a gland or bud. In many American and Cape species, the female flower is surrounded ly three or four bractorles, sometimes resembling a small calyx. These appendages may also be observed around the base of the stamens, as in M. nagi, ${ }^{1}$ a Japanese plant, and in many Mexican and Columbian species. In some others from the same countries, and in M. Clthiopica, the flowers are monœcious, and those of the two sexes are found united in the same catkin. In such case, the males, in goodly number,
 occupy the lower portion of the axis of the inflorescence and its ramifications, and the females the summit. The latter, however, is simple; whilst in the Asiatic species, and in 11. Foyne, a plant of the Canarics, Madeira, the Azores, and the Spanish peninsula, for which it has also been proposed to establish a distinct genus, the male catkins are compound, and represent each one of the divisions, sometimes pretty bumerous, of a ramified cluster. The male flowers are not, as in many other sectious of the genus, accompanied by bacteoles. The genus Myrich includes about thirty-five slecies, ${ }^{3}$ and iulabits all parts of the world, chiefly the temperate regions.

This family, still perhaps heterogencous with the limits here assigued to it, was still more so till recently. It was established by Adanson, in 1763, under the family name of C'nstmere.* With him it comprised only three sections, of which the first only corresponds

[^295][^296]to the group under consideration. A. L. de Jusisied a did not sensibly modify its cxtent ; and it is not kuown why he changed the name to Amentarese. In 1808, L. C. Rıehard ${ }^{2}$ subdivided it into Myrimere, ${ }^{3}$ then into Betuliner ${ }^{*}$ and Cupmlifote. ${ }^{5}$ B. Mrebel, in 1815, ${ }^{6}$ distinguished the Fanily Corylarece. To the older genera, eight in number, constituting tha three secondary groups, viz., Betulu,
 were addeci, in 1806, Difilmeles, of Dupetrt-Thouars ; ${ }^{\text {i }}$ and, in 1860, Leituria, discorered by Chapan.. ${ }^{8}$ In 1871 we published ${ }^{9}$ Butanops, bringing the total number of genera in this fimily up to eleven, distributed in six series characterized as follows :-
I. Betclee.-Flowers with male perianth, incomplete or little developed. Gynæcium superior, naked. Ovary bilocular. Ovule in each cell solitary, ${ }^{10}$ descending. Fruit dry. Trees or shrubs, with alternate leaves, lateral stipules. Flowers in unisexual catkins. -2 genera.
II. Conyles. ${ }^{11}$-Flowers without male perianth. Gynacium inferior, surmounted by a short superior calyx. Ovary bilocular. Orule in each cell solitary, descending. Fruit dry, with membranous saceiform or expanded induvium.-Leaves altermate, with lateral stipules. Flowers in unisexual catkins; the females bud-like.-2 gencra.
III. Quercines. ${ }^{12}$-Flowers with male perianth complete or nearly so. Gynecium inferior, surmounted by a superior calyx. Ovary $\ddot{2}-10$-locular. ${ }^{13}$ Ovules geminate, descending in each cell. Fruit dry. Involucre hard, covered with excresecnces rery variable in form, and surrounding one or more fruits.-Leares generally alternate, with lateral stipules. Flowers in simple or mixed catkins, or in cymes.-3 genera.

[^297][^298]IV? Balanopsees.-Male flowers naked. Gynæcium superior, surrounded by mumerous imbricate folioles (calys?). Ovary with two incomplete cells. Ovules geminate, ascending. Fruit fleshy. Seed with albumen of little thickness.-Leaves altemate or subverticillate, without stipules. Male flowers in catkins; female flowers sessile on the branches. -1 genus.

V? Leitneriet.-Male flowers naked. Giynecium superior, surrounded or not by a mulimentary calyx (?). Ovaries solitary or geminate, milncular. Ovule solitary, inserted in the interual angle, descending. Fruit drupaceous. Seed with albumen of little thickness or mil.-Leaves alternate, with or without stipules. Flower's in simple or compound catkins.-2 genera.

VI? Mremee.- Male flowers naked or furmished with a rudimentary calys (\%). Gynæecium superior, generally naked. Ovary unilocular. Ovule solitary, erect, orthotropous, with superine micropyle. Fruit drupacoous. Seed with little or no albumen.-Luases alternate with lateral stipules. Flowers in 1 - or 2 -sexual catlins. -1 gemus.

Such are the characters the value of which sutfices to distiuguish the series one from another. Those which, in the sime scrices, distinguish the genera, are more considerable. They are : the degree of development of the perianth, the number of stanens of of anthercells, and of the ovarian cells; the form, style, consistenee, and monde of dehiscence of the involucre, the number of female flowers it contains, the mode in which it envelops the fruit or remains flat or open below it or at its sille; the configuration of the cotyledons, their situation epigarons or hypogerons in germination. The characters emstant in the entire group are, consequently: diclinons, apetalous flowers, inflorescence in catkins or spikes very analogons; the woody consistence of the stems; the definite number of ovules, solitary or geminate, the outward direction of the micropyle; the great development of the cotyledons, which are always thick and fleshy.

The affinities ${ }^{1}$ of this group are casily derived from this col-

[^299][^300]lection of characters. It is scarecly separable from the Uhmuceer to which, as we have seen, Apanson had united it. Only normally among the Castancocen, there are not the polygamous flowers of the Elms, nor the stipules characteristic of the Aitacorpere, wor the peculiar disposition of the staminal filaments of the Morece, nor the opaline or milky latex of the two latter groups. Moreover, at adult age, the greater part of the Custenencece preserve in the ovary more than one ovnliferous cell, which is the case with no one of the Ilmarere. On the other hand, by the Betulene, the family before us borders on the amentaceous groups of the Enphorliacee, such as the Secpece and Antidesmere; and by the Coniylecte, to the series of Scrificu!gucere which comprise the Ilutanere and Itememelictece. In fact, as we have elsewhere said,' it is not simply a resemblance of foliage and of habit that is found between the Alders and certain Fothergillw or P'urotin, or between Coremlopsis and Corylues ; for these latter, with their inferior ovary and descending ovules, perfectly definite in number, in cells at first incomplete, seem to be only amentaceous and apetalous representatives of Corylnpsis and neighbouring IHmemelilece. Hence an analogy between the Quercinetr and l'orylece and the Cornacer, which themselves have so many prints of agreement with the Itememelidece. Take away the involucre and all those accessory organs of tardy growth, which form the cupules and spinous sacs of the Corellect and (Quercinetr, and the flower with inferior ovary of the Oaks, Chestunts, \&e., is altogether, in construction, that of the apetaluns Combriterete, notably of Terminalia, which often also have apetalous, diclinous flowers in spikes, or amentiform capitules (Anogeissus, Ramatuelle, Conoctermis), and the placentre of which, parietal at first, like those of (Querens or C'estunea, but remaining so to the end, bear in like manner ovules definite in number, descending, with micropyle exterior and superior. Finally, by the Myricen, this family approaches the Juglanlece, the unilocular ovary of which likewise encloses a single orthotropous and crect ovule; ${ }^{2}$ but the independence of the gynecium in Myrice suffices to distinguish it immediately from them. ${ }^{\text {a }}$

[^301][^302]The total number of species in this family is estimated at about four hundred and twenty-five. The series (buereinew itself' comprises tinre hundred and fifteen. The Gomy on are twenty in number; the Bertulere, twenty-eight; the Muricue, thirty-five. All the geuera composing these groups are common to both worlds. (1n the other hamd, Leitnerin is confined to a very limited portion of America, and Didymeles to Madagascar. Balanops has been observed only in New C'aledmia. In the south of South America, as also in Anstralia and New Zealand, the family is represented by those curious species of Beech which belong to the section Nothofitimes, or by Fumus cuntureticn, which grows as far as Cape Ilorn. In North Americar r. formginm inhabits nearly the same regions as F. sylmetion in Lurope, the latter ascending in Norway as far as the both degree. The common Chestunt extends over a vast area of the Nediterranean regiou and central Asia, from Portugal to Japan; in America it is replaced by Custmen mmilu. The Oaks grow in all the northern hemisphere, and between the tropies. The Hornbeums ascend in Europe to Siweden, and in America to Newfomdland and Canada; Corylus Avellana, in Norway as far as 65°; and C. Americana, to Canada, and in Asia to the river Amour. In Europe the Birches are formud as firr as Ireland, and Cape Nortl, in Lat. 71°; whilst in Nurway the Beech seareely exceeds (60\%,3, the Oak bill, 5 , and the Blackthorn (iajo $^{\circ}, 3 .{ }^{1}$ In the submarine forests on many European shores, Oaks, Blackthorus, and Birches ${ }^{2}$ aro observed in great number. The most cosmopelitan genus of this family is, doubtless, Myrice, since it is scen in Furope from Lapland to Portugal ; in Africa from the Azores and Canaries to the Cape of Good Hope ; and, in the Last, in Abyssinia and Madagascar' ; whilst it is equally represented in America, from Labrador to Mexico, in Columbia and Peru ; in Japan, in Iudia, in Java and New Caledonia.

Uses.-It is for their wood ${ }^{3}$ chiefly that the Castaneacece are prized ; and it is umecessary to insist upori the qualities of that of

[^303][^304]the Oak, Chestnut, Beech, Hazel, Blackthorn, Elm, and Birch. The bark of the Oak is, besides, employed for its astringent propertics. Dried and reduced to powder, it forms tan, used principally in dressing skins. From it is extracted tamin, much used in medicine as a tonic, febrifuge, \&e. With us the bark used for these purposis is that of Q. robur. ${ }^{1}$ (fig. $181-1 S^{4}$), particularly the varicty with female flowers and sessile fruit; ${ }^{*}$ and that which is pelunculate, ${ }^{3}$ often designated by the name of White Oak. ${ }^{1}$ The acorns are rich in fecula, but are so umpalatable that they cannot be used as food for man without a preparation too costly to admit of this sweet fecula being brought into common use. They serve only to feed animals, especially pigs. There are many other species of Querens, the fruit of which is sweet and edible. In Europe, (e. Ilecr, ${ }^{5}$ Bullotu, ${ }^{6}$ and even the Cork-oaks are mentioned. The latter are two in number, (. Sube ${ }^{7}$ and Q. orreitentetis, ${ }^{\text {a }}$ distinguished one from the other chiefly ly the time required for maturing the fruit; ${ }^{9}$ but both presenting this peculiarity, that their suberose layer, at a certain age, takes an enormons development. ${ }^{10}$ At first it consists only of a
of the anatomy of the stems of the Dicotylutons (see Kres. Mém. sur l'Organis. des Pl. (1814), t. 14 (Quercu).-Mirb, Mém. Mus. xiv. (1818), 31 (Fagzs).-G. de Busareig. Ant. Sc. Nat. sér. 1, xxx. t. 7-9 (Quereus).-Link, Elem. (1837) t. 4 ; Icon. An. Bot.fasc. i. vi. $4-15$ (Betula). -Trevir. Phys. Gevo. (1835), i. t. iii. $3 \ddagger-36$ (Fagus).-Dutroch, L'Institut. n. 192 (Quercus). -Bischoff, Lerhb. t. 2 (Quercus).-C. H. Schulz, Nov. Act. Nat. Cur. (1841), xviii, Suppl. ii. t. 33 (Betula).-H. Moнц, Bot. Zeit. (1855), 880 (Fagus, Betula).-Hartig, Bot. Zeit. (1859) 94, 97 (Fagus).-Hoffmans, Z, Kemutn. d. Wichenholtz. Flora (1849), 369.-Hook. F. Fl. Antarct. i. 300, t. 107 (Fagus).-Schacht, Der Baum (trans. E. Morren), 425,426 (char. of the wood and bark).
${ }^{1}$ Quercus Robur L. Spec. 1414.-A. DC. Prodr. xvi. sect. i. 4, n. 1. -Gutb. Drog. Simpl. ed. 6, ii. 286.-Mŕr. et Del. Dict. Mat. Méd. v. 585.-Rosenth, op. cit. 185.
${ }^{2}$ Q. sessiliftora Martin.--Sm. Brit. ${ }^{\text {Fl }}$ 。iii. 1026.-Gren. et Godr. Fl. de Fr. iii. 116.Roseith. op. cit. 184,-Berg et Schm. Darst. Off. Gew. t. vii. f. (Chẻne à grappes, C. rouge, C. mâle, Roure, Roure, Roble).
${ }^{3}$ Q. pedunculata Eur. Arbr. 77.-Berg. et

Schm. op. cit. t. viii. a (Q. Robur).-Q. racemosa Lamk. Dict. i. 715.
${ }^{4}$ C. femellic, Gravelin.
${ }^{3}$ L. Spec. 1412.-A. DC. Prodr. n. 73.-?. Gramuntia L.-Q. calicina Porr. Dict. Suppl. ii. 217.-Suber angustifolium non servatum Deham. Arbr. ii. 291, t. 2 (Xeuse, Quesne).
${ }^{6}$ Desf. Act. Acad. I'ar. (1790), c. ic. ; Fl. Atl. ii. 350.-Q. Castellana Porr. Dict. Suppl. ii. 226 (\%)-Q. rotundifolia Lamk. (var. by M. A. De Candolle (Frodr: 39) of the Q. Ile.x). It has been thought (Rosenth. Syn. Pl. Diophor. 186) that the acorn of this species was used to make the racahout of the Arabs.

7 L. Spec. ed. 2, 1413.-Duham. Arbr. ed. 2, 7, t. 45.-Nees, Pl. Off: Suppl.-Harve, Arzn. Gew. 12, t. 43.-A. DC. Prodr. n. 75 (Alcornoque, Šurier, Rusque, Leuge).
${ }^{3}$ J. Gay, Bull. Sue. Bot. de Fr. iv. 445; in Ann. Se. Nat. sér. 4, vi. 445.-A. DC. prodr. n. S1.-Q. Suber Kotsch. Eich. t. 33.
${ }^{9}$ It is biennial in the latter, and maturation takes place the same year in the true Q. Suber.
${ }_{10}$ On the production of Cork, see H. МонL, lteb. d. Entwickel. des Korkes (1836); Ueb. d_{0} Wieder-ersatz des Liorkes bei Q. Suber [Bot. Zeit. (1848), 361].—lanst. Unters. über d. Bau una
few layers of uncoloured cells in radiating series under the epidermis of the stems. More iuternally, the parcuchyma, filled with chlorophyl, is mingled with a mass of larger and uncoloured cellules. In the course of the second or thind year, these latter become more compact, and their eont increases in thickuess, whilst the interposed cells become dry and dark coloured. The suberose layer thickening still more during the fourth and fifth year, the cpidernis bursts, and the mass of cork thenceforth increases in thickness, a new layer being formed each year. The anmual zones are separated by interposent layers of periderm, of a depper colour. At the age of from ten to filteen years, vertical rectangular plates of this cork, callent mule, are cut, under which are found the liber and deep portions of the cortical parenchyma. Outside of this, layers of cork are protuced and cut every seven or cight years; the quality of this enk, called femme, is very superior. This work is carried on principally in the southwest of Europe (particularly France), and in the north-west of Africa. Another Mediterrancan species, Q. orerifore, ${ }^{1}$ wourishes the Fermes, formerly celebrated in industry as a lye, and in medicine forming the base of the famed Allemers confertion. The gall-nuts of the Levant, the best employed in therapeuties and the arts, are developed after the puncture of a hymenopterous insect, Diphorpis golle tinetorite; the female of which pierees the scarcely formed buds of (?. Insitenion, ${ }^{2}$ a Mediterranem species, to deposit her eggs in the interior. The bud becomes hypertrophic by the accumulation of a large quantity of tamin and fecula, on which the young insect, emerging from the ega, feeds, until it pieres the gall and comes forth in a perfect state. Many other Oaks, cepecially the Green Oak, Q. iolmi, and, in the south-west of France, the 'Lauzin Oak,"

[^305][^306]bear on their different organs-buds, leaves, and fruit-galis produced in a similar manner, but very different in form, colour, and consistence ; and generally very inferior in quality to those first mentioned. ${ }^{1}$ All serve equally for the production of tanniu, and the prepration of numerous medicaments, ink, dyes, \&e. The species used for dyeing and dressing skins, all rich in tamnin, are also very numerous in both worlds. The most celebrated are the Yellow Oak ${ }^{2}$ of North America, the Red, ${ }^{3}$ White, ${ }^{4}$ Cinder, ${ }^{5}$ and Bi-coloured ${ }^{6}$ Oaks of the same country ; in France, the Burgundy Oak; ${ }^{7}$ in the Levant, the Velane Oak; ; not to mention all the species of secondary interest possessing the same properties, and of which industry employs cither the wood, or the bark, or the acorns. ${ }^{9}$ The ('hestmuts, so little distinct generically from the Oake, have also their astringent properties. In our common Chestnut ${ }^{10}$ (fig. 159-198), as well as in that of America, which has always been emsidered a different species, and named C'ustemea pumite, ${ }^{11}$ the liber has been employed as an anti-dysenteric ; the involucre of the fruit as a dye: the bark is
> ${ }^{1}$ Especially mentioned are the galls produced by Q. Corris L. humilis Lami, Egilops L. tauricola Kotscr. Trallonia Kotscer. Q. Egilops and cocifera furnish also a sweet substance called Oak manna.
> ${ }^{2}$ (Q. coccinea Wangentr. Anpfl. Nordam. Holz. (1777), 44, fig. 9.-Mreilx. Chên. t. 31, 32.Michx. r. Arbr. Amé:. ii. 116, t. 23.-A. DC. Prodr, n. 119.-Q. rubra L. Spec. 1413.-Q. tinctorize Mrcex. Chếu. t. 24, 25.-Michx. F. loc. cit. t. 22.-Hayne, Arzn. Gew. 12, t. 46.-Q. velutina Lamк. Dict. ii. 721.-Q. discolor W. Spec. iv. 444?
> ${ }^{3}$ Q. rubra L. Spec. 1413 (part.).-Wangenh. loc. cit. t. 7.-Micix. op. cit. t. 35, 36.-A. DC. Prodr. n. 116.
> ${ }^{4}$ Q. alba L. Spec. 1414.-Micix. op. cit. ii. 13. t. 1.-Emers. Tr. Massach. 127, t. 1.-A. DC. Prodr. n. 26.

${ }^{5}$ Q. cinerca Micix. Chén. t. 14.-A. DC. Prodr. n. 145.
${ }^{6}$ Q. bicolor W. Nov, Act. Berol. iii. 396, Spec. iv. 440.-Emers. op. cit. 135, t. 4.-A. DC. Prodr. n. 23.-Q. Michauxii Nutt. Gen. Amer. ii. 21 v.
'Q. Cerris L. Spec. 1415.- Hayne, Aizn. Gcu. xii, t. 48.-Gren. et Gonr. Al. de Fr. iii. 11S.-A. DC. Prodr. n. 79 (Doucer, Gland chuâtii).
${ }^{8}$ Q. Eigilops L. Spec. 1414 (not Scop.).Tcmimater. As. Min. t. 41,-Q. Valani Oliw, (V'clanède, Telanida, Avelanèle.)

[^307]used to tan skins and make ink. The wood of the Chestnuts is one of the most useful known; they are valuable trees which grow in the poorest silicions soils. The frnit ${ }^{1}$ is well known to be edible, and is used for making many alimentary preparations. ${ }^{2}$ The Beech is not less useful, particularly the common Beech ${ }^{3}$ (fig. 199-204) ; the wood of which is used for a multitude of purposes, and its bark and fruit are valued for tanning and dyeing. The charcoal and soot extracted from it are used for making powder, and an esteemed bistre colour. The fruit serves to make a sort of bread, and the embryo is rich in oil, useful both for the table and for lighting. In America, Fugus fermyinea * is applied to the same usus, industrial and economic. In Chili, l. whliqne, ${ }^{5}$ according to travellers, furnishes a wood almost as valuable as that of the Oak. The Alders and Birches are also valuable trees, especially in Europe and North America. The common Alder ${ }^{6}$ (fig. 165-167) has an astringent bark, employed in the treatment of fevers and angina. The leaves are considered poisonous; they were applied to tumours, and the property of arresting the secretion of milk has been attributed to them. In America, Alnus serrulata ${ }^{7}$ is used in the treatment of cutaneous, scrofulous, and syphilitic affections. Many other Alders ${ }^{8}$ have analogous properties. The most useful of the Birches is the White Birch ${ }^{9}$ (fig. $151-1.57$), a tree of the cold and temperate

[^308][^309]regions of our hemisphere. Its sap, extracted in spring, is sweet and acidulous. It has been prescribed for many maladies l-gout, rheumatism, skin diseases. Sugar and vinegar are extracted from it ; a sort of sparkling wine may also be prepared from it, considered, as also the sap itself, as a diuretic and purifier, an antiscorbutic and antipsoric, a vermifuge and lithontriptic. The bark and leaves have been prescribed for scrofulous swellings, tumours, pains, dropsies. The bark has been extolled as antipsoric, antiscorbutic, and febrifuge. It furnishes by distillation a pyrogenous oil, having the odour of fine Russia leather, and is said to be used in preparing it. The same is said of the bark and leaves of Jyriec, notably of those of M. Gete. 'The Blaek Bireh " and Dwarf Birch ${ }^{3}$ have the same properties ; ${ }^{4}$ from the sup a kind of fermented beer is prepared. Nearly all the species of the genus have a flexible bark, easily detached, and used for making certain useful oljects. ${ }^{5}$ The Hazels are prized for their wool, their febrifuge and tonic bark, tinctorial leaves, and especially for their alimentary seed, from which an edible oil is extracted. In Europe it is chictly the common nut ${ }^{6}$ (fig. 168-173), or filbert, with its numerous varieties and cultivated forms, ${ }^{7}$ and Corylus tubuloses ${ }^{8}$ and Celuma; ; in the United States, (. americance ${ }^{10}$ and C. rosticate ; ${ }^{11}$ found also in the north of eastern Asia. ${ }^{12}$ They have the same properties and the same alimentary cmbryo. The Horubeams, or Yoke Elms, have a very useful wood, and a bark used for dyeing in some parts of Europe. The common Hornbeam ${ }^{13}$ (fig. 175-180) forms the hedges of our parks. Ctipimus

1 "Birch water is the hope, the happiness, and the panacea of rich and poor, great and small, lords and serfs."-(Perct).
${ }^{2}$ B. nigra W. Spec. iv. 464.-Reg. Mronogr. Betul. 60, t. 12 ; Prodr. n. 16.-B. rubra Michx. Albr. ii. 143, t. 3.
${ }^{3}$ B. nana L. Spcc. 1394; Fl. Lapp. 266, t. 6, fig. 4.-Reg. Prodr. n. 7.
${ }^{4}$ Likowise B. carpinifolia, populifolia, papyracea Ait. Bhojpaltra Wall.
¿ On the bark of Betula, see Békétoff, Bull. Mosc. xiii. 75.
${ }^{6}$ Corylus Avellana L. Spec. 1417 .-Schкuнr, Handl. t. 305.—Dietr. Fl. Bor.t. 842.-Reichb. lc. Fl. Germ. t. 636.-Guib. Drog. Simpl, ed. 6, ii. 283.-Rosenth, op. cit. 184, 1105.-C. DC. 1rodr. 130, n. 3.

7 Notably the Hazel with large fruit (C. Avellana Macrocarpa Reichb. Ic. t. 638), or N. of Pielmont, of Barcelona; the red and white

[^310]Ostrper is more rarely cultivated for the same purpose, and its bark and wood are also useful; likewise O. virginiana, ${ }^{2}$ utilized by American industry. The Wax trees derive their name from the peculiarity presented by their pericarp, of developing within its fleshy substance, and on its surface, a substance resembling the wax of the bee. Mypict rerificte ${ }^{3}$ is the best known in this respect; but the same property exists also in II. pensyltanien ${ }^{4}$ and carolinensis, ${ }^{5}$ in M. rordifolit, ${ }^{6}$ queraifolin, ${ }^{7}$ species from the Cape, and MI. wthiopicu, of Abyssinia. The fruit of these plants is gencrally subjected to boiling water, when the wax, liquefied by the heat, rises to the surface. The Myricas all have an astringent bark, especially MI. sapidn ${ }^{3}$ in India, and our 1I. (íald ${ }^{10}$ (fig. 217 -223.3), a marshy species, with odorous leaves, ${ }^{11}$ substituted for the hop in Sweden, and for tobacco in Norway. It yields a yellow dye. The fruit of M. sappita and of M. exprlenter ${ }^{12}$ is eaten in India and in the westerm isles of Africa. Many Wax trees are cultivated among us, as are also a great many species belonging to other genera of the familyOaks, Beeches, Birches, Alders, Hornbeams, and Hazels-particularly those forms and varieties with fastigiate or recumbent stems, pendent branches, laciniate or coloured leaves, brown or purple.
${ }^{1}$ See p. 229, note 1.
2 See p. 229, note 2.
${ }^{3}$ L. Spec. 1453.-Micux, Fl. Bnr.-Aner. ii. 227.-Bigel. Med. Bot. t. 43.-Mér. et Del. Dict, Mat. Méd. iv. 531,-C. DC. Prodr, xvi. sect. ii. 148, n. 5.
${ }^{4}$ Lamk.-Dueam. Arbr. ed. 2, ii. 190, t. 55 (var. (?) of preceding species).
${ }^{3}$ W. Spec. iv. 746 (var. scarcely distinct from preceding species).
${ }^{6}$ L. Spec. 1453.-Duhas. Aror. ii. 193.C. DC. Prodr. n. 2 Buisson de cire). The Hottentets are said to eat this wax as a sort of bread.
7 Var. (?) of Mr. cordifolia. It gives a green candle wax.

[^311]
GENERA.

I. BETULE.

1. Betula T.-Flowers amentaceous monocious apetalous; calyx 4 -phyllous; folioles connate at base, very unequal ; one more largely developed; the others smaller squamiform, very small or abortive. Stamens 2 (or 4 ?), central; filaments (anterior and posterior) Ω-fid above ; cells of each anther hence widely separate, extrorsely longitudinally rimose. Female flower naked ; gynæcium free. Germen compressed, 2-locular ; style nearly 2 -partite at base; branches elongate filiform, stigmatose above. Ovules in cells 1 (very rarely 2), descending anatropous; micropyle extrorsely superior. Fruit dry, indehiscent, angular or samaroidly alate at margin, crowned with style, gencrally by abortion l-spermous. Seed descending; coat thin; cotyledons of exalbuminous embryo, flat, rather fleshy, at germination foliaceous; radicle superior.-Trees or shrubs; leaves alternate, penninerved; stipules lateral, oftener caducous; male catkins solitary or 2-nate, from aphyllous lateral and terminal buds, generally precocious; scales of catkin peltate, with internal squamule on each side, 3 -florous; female catkins from latcral $3-5$-phyllous buds, solitary or more rarely racemose on common peduncle; scales of catkin subentire or oftener (from aduate lateral scales) 3-lobed, imbricate, 2-3-florous, finally oftener deciduous with fruit; cone oblong or ovoid. (Temp. and cold regions of loth worlds in North. hemisphere.)-See p. 220.
2. Alnus T.-Flowers monœcious (nearly of Brtula) ; male calyx oftener subequally or unequally 4 -partite, more rarcly $10-12$-phyllous. Stamens equal in number and opposite sepals; anthers 2-locular. VOL. VI.

Gynæcium, ovules, \&c., of Butmla. Fruit dry, compressed, wingless, or surrounded by a membranous wing, indehiscent; seed generally 1 (of lietula).-Trees or shrubs; leaves alternate; vernal floration preceding or simultancous (Phylhothyisus, Clethopsis) with leaves; scales of male catkins peltate, 5 -bracteolate, 1 - or oftener 3 -florous; seales of female catkins cuneiform, shortly (from adnate bracteoles) $4-5$-lohed, incrassate above, at maturity separating from each other, not deciduous, lignescent; cones short. (Temp. and firgirl iegions of buth worlds, temp. South America, South Africa.)-Sce p. 22:3.

II. CORYLEE.

3. Corylus T.-Flowers amentaceous monœcious; males naked; stamens 4-8 (very rarely 2, 3), inserted within scales of eatkin; filaments short free; anthers 1-locular (or 2-locular; cells separate), extrorsely rimose. Female flowers \gtrsim-nate budlike in axils of bracts of catkins; receptacle saclike, cuclosing inferior adnate germen, with very short annular epigynous calyx ; style branches 2, linear elongate, densely stigmatose papillose. Ovules in cells $\underset{\sim}{2}$ solitary (or more rarely 2 -nate) descending; micropyle extrorsely superior. Nuts more or less ligneous, 1-locular ; walls very thick medullose below. Seed generally by abortion 1 ; cotyledons of thick exalbuminous embryo fleshy plano-convex, epigeous at germination; radicle short superior and united to base of cotyledons.-Small trees or shrubs; leaves alternate dentate or peuninerved, in vernation longitudinally plicate as to the central nerve, and hence on one side facing axis ; stipules caducous; catkins precocious; bracts of males cmeiform, gencrally covering 2 bracteoles, connate within (sometimes (0) ; female catkins short subsessile, finally stipitate to clongate foliate ramule; each fruit surrounded by a sacciform accresernt bracteole at sometimes open tubular apex dentate, laciuiate or spinescent, very rarcly (O.itiynpsix) with external accrescent scale, divided within. (Northern temproutr reyions of hoth hemispheress). -See p. 225.
4. Carpinus T.-Flowers nearly of Corghis; the males consisting of stamens $s(3-20)$ inserted in axil of bracts of catkin ; filaments slender $\quad 3$-fid; auther cells separate, pilose at apex and extrorsely
rimose. Female flowers 2-nate in axils of caducous bracts of catkin ; gynecium, \&c., of Corylus. Nucules crowned with remains of calyx subligneous plurinerved, 1-locular; seed of Cor?l/s.-Small trees or shrubs; leaves alternate peminerved dentate, in vernation concave towards axis, not lougitudinally plicate along costa; stipules lateral, oftener caducous; catkins precocious lateral ; males slender ; females elongate, ramiform terminal ; bracteoles lateral accrescent around axillary fruit, or leaflike lobate patulous or internally increased at base by very small ligule (histergormpus), or more ravely conicaltubular (0 strout), after anthesis developed to a nearly closed come covered with stinging hairs and surrounding fruit. (North. hemisphere of both worlds).-See p. 227.

III. QUERCINE正.

5. Quercus T.-Flowers monocious or rarely dimecious apetalous; male calyx : 3 -S-partite or lobate. Stamens same in number or 2-3-times as many; filaments slender exserted, or central, or more rarely inserted around rudiment of gynecium ; anthers extrorse, 2-locular, ᄅ-rimose. Receptacle of female flower very coneave, enclosing adnate germen and bearing superior 3 S-lobed epigsnous calyx inserted at margin; germen cells 2-4, oftener 3, complete or generally incomplete above ; style branches equal to number of cells, linear crect or oftener thick open, stigmatose above. Ovules in cells 2 -nate, desceuding ; more or less completely anatropous ; micropyle extrorsely superior. Achene (acorn) surrounded at base with cupule, marked at apex with sear of thin perianth. Fertile seed 1, surrounded at base or at a greater or less height by 5 abortive seeds; cotyledons of exalbuminous embryo plano-convex fleshy, externally smooth or undulate, more rarely sinuate lobate ; radicle superior. Trees large or small; leaves alternate, sometimes persistent, penninerved, longitudinally plicate in veruation ; stipules lateral fugacious; buds squamose stipulate; catkins erect or pendulous, l-sexual, or more rarely androgynous; female flowers inferior ; bracts alternate short, 1-8-florous; female catkins 1- or oftener few-florous; each flower aud fruit surrounded by cupule externally squamose, spirally or annularly zonate, rarely sub-mude, sometimes finally fissous, free from acorn or aduate to base, exserted or more rarely euclosed. (North. temp. regions of both worlds).—See p. 230.

6? Castanea T.-Flowers monecious (nearly of (Quercus); male calyx oftener (i-partite; folioles i-seriate. Stameus 6-20, often -2-scriate ; filaments erect exserted ; anthers extrorse ; cells short sulglobose rimose. Fenale flowers within involucre 1-3; receptacle lageniform, enclosing adnate germen; cells 3 (C'nstunopsis) or 4-6, more or less complete; style branches same in number simple, surrounded at base by lobes of superior calyx generally same in number. Ovules in each cell 2 descending and other characters of (herens. Fruit dry, 1-3 enclosed in subglobose involucre, externally cristate or echinate with sharp scales various in form or sub-conical tubercles, finally closed or $\gtrsim \sim 4$-partite. Seed in each 1 , descending; cotyledons of exalbuminous embrgo fleshy farinaceous, plano-convex or externally undulately ruminate ; radicle superior.-Trees ; leaves alternate, entire or dentate pemmerved ; stipules lateral fugacions; male eatkins springing from axils oftener inferior, slender caducous; androgynous or female from upper or terminal axils; other characters of Guerens. (Temp. and culd regions of both nomdds).-See p. 233.
7. Fagus T.--Fluwers monocious; males solitary or sub-capitate. Calyx gamophyllous sub-campauulate, 4 - 8 -lubed. Stamens equal in number to lobes of calyx, or twice as many; filaments inserted at bottom of calyx, slender exserted ; anthers oblong extrorse, 2 -rimose ; connective obtuse or mucronate at apex. Female flowers within involucre 1-3; receptacle very concave lageniform 3-gonal ; cells 3, 2 -ovulate ; style branches 3, short or elongate, glabrous or pilose at lack, surrounded at base with 6 lobes of epigyuous calyx. Orules in cells 2 , collaterally descending; micropyle extrorsely superior. Fruit enclosed in common accrescent woody involucre, 4-partite and bracteate at base, clothed externally with seales or fimbriate prickles, dry indehiscent, alately 3-gonal. Fertile seed 1, descending, aceompanied above by $3-5$ very small sterile sceds; cotyledons of exalbuminous embryo fleshy rather thick, entire or adpressed plicate, in germination epigeous, expanded, foliaceous ; radicle short superior. -Trees or shrubs; leaves alternate penninerved, in vernation convex plicate along nerves or non-plicate (Nothofagus), persistent or deciduous; stipules lateral fugacious; male flowers springing from axils of inferior leaves; females from those of superior sessile stipitate. (Temp. regions of both worlds).-Sce p. 237.

IV? BALANOPSE E.

8. Balanops II. Bn.-Flowers diacious; males naked, consisting of stamens as (generally 3-10), subumbellate on very small convex receptacle ; filaments short erect, sometimes comnate at base ; anthers introrse, 2 -rimose. Female flowers solitary ; receptacle short, sometimes subcupular; folioles of perianth (?) ∞, thick unequal, greater from exterior to interior, imbricate. Germen free, suddenly attenuate from base, narrowing at apex to 2 -partite style; branches linearsubulate papillose, \gtrsim-fid; cells of germen 2 , very incomplete. Ovules in each 2-nate, inserted on placentiform dissepiment, ascending; micropyle extrorsely superior ; funicles slender unequal erect, dilated at apes to obturator covering micropyle. Fruit surrounded at base by persistent and cupuliform calyx (?), ovoid accuminate subbacate; mesocarp more or less pulpy ; endocarp finally subcompletely septate. Sceds in cells solitary suberect ; coat glabrous; cotyledons of slightly albuminous straight embryo orate, foliaceous or rather thick; radicle short inferior.-Trees or shrubs; leaves alternate or spuriously verticillate, coriaceous, penninerved exstipulate; male catkins solitary or fer fasciculate springing from wood of branches, breaking from perulate bud, slender and loaded with remotely alternate 1 bracteolate flowers; female flowers often crowded sessile on wood. (N. Cule-donia).-See p. 240.

V? LEITNERIA.

9. Leitneria Cintru.-Flowers diœcious amentaccous; males consisting of stamens $5-10$, inserted in axil of seales of catkin and more or less connate with its base ; filaments free ; anthers introrse, 2 -rimose. Female flowers in axil of bracts solitary, either naked, or surrounded by a minute unequally 3 -t-lobed calyx, laterally bracteolate (and sometimes increased by a few stamens) ; germen free, 1-locular, attenuate to elongate recurved style stigmatose and and sulcate within. Ovale 1, inserted in internal angle descending, incompletely anatropous; micropyle extrorsely superior. Fruit obloug drupaceous; flesh seauty; putamen 1-spermous. Seed descending ; cotyledons of slightly albuminous cmbryo rather flat and fleshy; radicle superior. - A small tree; leaves alternate
petiolate peminerved; stipules lateral; catkins axillary; flomatiou developed before leaves. (Itlorida.)-See p. 242.
$10(?)$. Didymeles Dur.-Th. - Flowers diwcious amentaccous; surrounded by bracteoles or sepals (?) ; males 2-androus; filaments short erect; anthers ovate extrorse, 2 -rimose. Carpels 2, opposite free; germen of each 1-locular, attenuate above to long recurved and revolute style, longituadiually suleate and densely plumosepapillose within. Ovule 1, descending ; micropyle extrorsely superior ; exostome far produced in tube dilated at apex. Fruit consisting of drupes (?) 2 , sulcate within; seed desceuding ; cotyledons of exalbuminous cmbryo thick fleshy plano-convex; radicle superior.-A tree (?); leaves alternate petiolate entire peminerved coriaceous ; catkins axillary and (?) terminal. (Dhuluyuscu:)-Sce p. 244.

VI (?) MYRICEÆ.

11. Myrica L.-Flowers diæcions or more rarely moncecions amentaceous; males consisting of stamens $2:-20$, sessile in axil of each bract or spicate, nakerl or surrounded by 2 -ヵ bracteoles; filameuts free or comnate at base; authers extrorse, 2-rimose. Female flowers sessile in axils of seales of catkin, naked at lase or surrounded by 2 or a few sterile or arrely fertile bracteoles (bearing abortive budlike flower in axil). Germen free, 1-locular; style brauches 2 (anterior and posterior), papillose-plumose within ; ovule 1, basilar or subbasilar orthotropous; micropyle superior. Fruit drupaceous; exocarp rugose papillose and secreting a waxy matter ; putamen more or less hard, 1 -spermous. Seed erect; cotyledons of straight exalbuminous or very scantily albuminous embryo thick; radicle superior.-Simall trees, shrubs or undershrubs, often odorous; leaves alternate, very rarely (C'omptonia) stipulate, peminerved, entire or dentate or serrate; catkins axillary generally springing from innovation, simple or compound, either 1-sexual, or androgynous; female flowers superior; males inferior. (All temp. cund trurim regions.) - See p. 244.

LII. COMBRETACEA.

I. COMBRETUM SERIES.

The flowers of Combrete ' (fig. 226-228) are hermaphrodite or polygamo-diwcious. In certain species they are pentamerous, notably

Combretum (Poivrea) coccincem.

Fig. :20. Flower ($\left.\begin{array}{l}5 \\ 1\end{array}\right)$.

Fig. 227. Diagram.

Fig. 228. Long. sect. of flower.
in those of which the genera Poivera and Cuconcia ${ }^{3}$ have been made. The receptacle has the form of a very deep sac, uarrow and elongate, ${ }^{*}$ insensibly attenuated towards the upper part and there

[^312][^313]abruptly dilated to a kind of hemispherical cup, lined to a variable extent by a glandular bed or mumerous hairs, the margin of which bears the sepals, valvate at adult age. ${ }^{1}$ In the intervals are inserted an equal number of petals very variable in size, sometimes large and contorted or more rardy imbricate, in other cases very narrow; sometimes they are entirely wanting. ${ }^{2}$ The stamens are in number double that of the petals and are arranged in two verticils. Five are superposed to the petals and inserted on the internal surface of the receptacle higher thau the alternate ones. All have a free subulate elougate exserted filament, at first folded back upou itself so that its summit is directed downwards to attach itself to the back of the anther which is introrse, bilocular, dehiscing by two longitudinal elefts. It becomes erect at the time of authesis. ${ }^{3}$ In the female or hermaphrodite flowers, the receptacular cavity, below the point where it is dilated to a cup, is entirely filled by the adnate ovary which is surmounted by a subulate style, at summit stigmatiferous, not swollen, undivided. In the single cavity of the ovary are found two or three parietal placente, often but slightly distinct at adult age, from the upper of each of which depend one or two ovules, at first lateral, ${ }^{\text {r }}$ attached by a funicle more or less long and slender, anatropous and with micropyle directed upwards and outwards. ${ }^{5}$ The fruit, surmounted by a scar produced by the early separation of the dilated portion of the receptacle, is elongate, coriaceous, membranous or almost spougy, generally indehiscent, ${ }^{6}$ with four to six vertical promineuces in form of dihedral angles, soft or pointed, sometimes dilated to vertical wings, coriaceous or membranous. The narrow central cavity of the pericarp contains a ingle descending seed, narrow and elongate, often traversed by longitudinal furrows, enclosing under its coats a fleshy embryo, destitute of albumen, with superior radicle, aud cotyledons planoconvex, angular or plicate, contortuplicate, more rarely convolute. In Cucoucio, ${ }^{\text {a }}$ the receptacular tube is often a little curved or gibbous

[^314][^315]on one side, and the stamens are more decidedly incurved in the bud. The androceium is diplostemonons or sometimes formed of a number of stamens a little above teu; a fact occasionally observed in the Combeta proper. On the other land there is impoverishment of

Fig. 229. Floriferous branch.

Fig. 231. Long. sect. of flower.
the androcium in Thilue, ${ }^{1}$ the apetalous and tetramerous flower of which sometimes has eight stamens; four of them may be wanting or remain sterile. All these plants, however, appear to us inseparable from the genus Combretum, which, thus constituted, comprises about a hundred and thirty species, ${ }^{2}$ generally shrubby, not unfrequently sarmentose and climbing, with opposite leaves, rarely verticillate or
described as Hleshy. However, it is finally quite dry and 5 -angular, like that of so many other Combretere, and it also presents incomplete lines of dehiscence.

[^316]alternate, petiolate, entire ; and flowers disposed in simple or more or less ramified spikes, very variable in form and length, ${ }^{1}$ and furnished with bracts more or less developed. They belong to the warm regions of Asia, Africa, and South America.

Quisqualis (fig. 229-2?4), climbing shrubs of tropical Asia and Africa, have all the charac-

Quisquatis indica.

Fir. 232. Fruit. Fig. 234. Seed.

Fig. 233. Long. sect. of fruit. ters of the Combreta, except that the receptacular pouch, after enveloping the ovary, is prolonged upwards in a long tube traversed by the style adhering to one side of it ; after which it is dilated to a cup which bears ten stamens with short filaments erect at adult age, and higher up five valvate sepals and five imbricate or contorted petals. The fruit is dry and encloses a single seed, the embryo of which has two fleshy cotyledons, round or chanuelled externally. The pretty flowers of Uninunalis are collected in short capituliform spikes more rarely in axillary and terminal clusters.

In Lumnit:ern, trees and shrubs with alternate and coriaccous leaves, growing on the shores of all the tropical seas of the old world, the flowers are hermaphrodite and very analogous to those of (tomblietnm. The long receptacle, enveloping the ovary, is dilated abore the latter in a campanulate cup, the margin of which bears five slightly imbricate persistent sepals and five contorted or imbricate petals. Its interior surface is covered with a glandular disk with ten indentations in the upper part, at the bottom of which are inserted the stamens with filaments slightly incurved at the summit, and cordate introrse anthers. The ovules, of which the number varies from two to five, are suspended by a long funicle; and the

Fl. ZBras. Mfer. ii. 246, t. 129, 130.-Hook. Icon. t. 592 ; Bot. Mag.t. 2944.-Guillem. et Perr. Fl. Sen. Tent. i. t. 66, fig. 1 (Poirrea), 67, 68.Benth. Niger, 337 (Poirrea).-Harv. Thes. Cap) t. 74, 7o.-Sond. Fl. Cap. ii. 508, 512 (Poivrea). -Tul. Anu. Sc. Nat. sér. 4, vi. 76 (Pcevrca), S3

[^317]moody clongate fruit loaring at its margin the traces of the two lateral bracteoles of the flower, borne on the sides of the receptacle, contains one linear sed the embryo of which lias convolute cotyledons. Lagmeulariu rucemosm, a shrub inhabiting, like Lumnitieru, the brackish waters of the shore alike in western Africa and tropical America, has opposite leaves and spikes of polygamous flowers, the inferior and obeonical ovary of which also bears upon its margin the lateral bracteoles raised nearly to the height of the persistent calyx, and five imbricate petals. The stamens are also to the number of ten with short filaments and cordate anthers, and are inserted at the level of an epigynous disk which crowns the ovary and surrounds the base of a short style stigmatiferous and bilobed at summit. In the ovarian cavity is found a placenta nearly apical from which depend two sessile ovules. The fruit, dry and coriaceous, obpyramidal and inwardly compressed, encloses a single seed the embryo of which has also convolute cotyledons. Macropterentlies, Australian shrubs, owe their name to the presence, on the sides of their ovary and fruit, of two large lateral bracteoles, raised and flattened inwardly, in the form of wings. The flower is in other respects that of Lurunculariu, except that the receptacle contracts much less above the ovary, and that the latter contains from ten to sixteen ovules suspeuded by slender funicles of very unequal length. The leaves are opposite or fasciculate, and the flowers geminate on axillary peduncles.

Guivion and Calyeopteris, shrubs with opposite and downy leaves, the one from tropical Africa, the other from India, lave pentamerous flowers, in construction very near those of Combretum. In the former they are collected in a sort of capitnle surrounded by four large foliaceous decussate bracts forming an involucre. In the latter they are disposed in large ramified clusters. But Guiera has long expauded petals inserted in the hollows of five sepals persistent but not acerescent to the summit of a lowg siliquiform curved very villose fruit; whilst C'rlycopterits has no petals, and its fruit, short and pentagonal, is surmounted by accrescent seppals in five membranous and veined plates. In both these genera the embryo has convolute cotyledons.

Terminalia has given its name to a distinct tribe of this family (Terminclice), the principal characters of which were thought to be, alternate leaves, apetalous flowers, and an embryo with convolute cotyledons. Besides Teminulia (fig. 295-210), it comprised many
other genera, in particular Anompissurs, Buchennciu, Bucilu, Chuncou, C'onecar'mis, Penturter", I'tmetuellu, which we cau separate from it only as sub-genera. Termimalit proper has hermaphrodite, polygamous or diwcious flowers, the narrow receptacle of which, after

Fig. 236. Flower (${ }^{1}$).
Fig. 235. Floriferous branch.
enveloping the ovary, immediately expands into a cup similar to that of Combretum, and bears four or five valvate sepals, two series of stamens inserted around the base of the style, ordinarily surrounded by a hairy epigynous disk annular or
Terminalia (Anogeissus) leiocarpa.

Fig. 238. Capitule of fruit.

Fig. 230. Single fruit ($\left(\frac{1}{3}\right)$. lobed. In the unilocular ovary are found two or three descending ovules similar to those of Laguncularia. The fruit, not, as usual, crowned with the caducous calyx, is very variable in appearance, consistence, and form. In Badamia, Myrobalanus, and Pamea, it is ovoid, with a roundish or angular putamen. In Catappa and Anogeissus, it is compressed or dilated into two marginal wings (fig. 238, 239). In Chumena, species whose leaves are frequently opposite and furnished with two glands at the base of the inferior surface, it is small, coriaceous, and prolonged to $2-5$ expanded membranous wings. In P'entuptere, the leaves of which have ordinarily the same characters, the putamen is osseous or woody, and the wings are 5-7 in number. Rematuella, from

Venezucla, has a slightly fleshy fruit with three to six thick vertical wings, entire, sinuous, or lobed at the margin. Besides, their flowers are collected in capitules, that is, the principal axis remains the shortest as often happens in the true Terminalia, although the latter frequently have also flowers in elongate simple or compound spikes (fig. 235). The flowers of Anogeissus are also in capitules. This is why we have not retained, as distinct from Terminalia, Conocarpus (fig. 240), which has the same apetalous, pentamerous flowers as Terminalia, but the inflorescences of which become small globular capitules collected in clusters. In Conocropus, the fruit is finally surrounded externally by persistent recurved bracts remaining close to each other so that the whole forms a sort

Fig. 240. Eloriferous branch. of cone. Thus limited, this genus comprises nearly a hundred species, all tropical, common to the four quarters of the globe, principally in the old world.

II. TUPELOS SERIES.

Tupelos ${ }^{1}$ (fig. 24l-244) has polygamo-dixcious flowers. In the male flower, the summit of the pedicel is dilated to a small calyx with five or more short tecth, surmounted by a thick

[^318][^319]orbicular glandular disk, with entire or crenulate margin, sometimes smooth and bare on the upper surface, and sometimes supporting a central and conical rudiment of a gynucium. Outside of this are inserted caducous petals, equal

Fig. 241. Male floriferous branch. in number and alternating with the teeth of the calyx, and an equal, double, triple or quadruple number of stamens, arranged in verticils and formed each of a free slender exserted filament, and a short, bilocular, introrse anther dehiscing by two longitudinal clefts. In the hermaphrodite flowers, the perianth and androecium are the same; but the receptacle is deeply depressed to an obconical or tubular cavity which encloses an inferior and unilocular ovary, ${ }^{1}$ surmominted by a simple or rarely bifurcate, curved or revolute style, the internal margiu of which is traversed by a longitudinal furrow with edges covered with stigmatic papillic. In the female flowers the stamens disappear, or are carried, in small number and sterile, above the ovary, by the margin of the receptacle. In the internal angle of the ovarian cell near the summit is inserted a descending anatropous ovule, with micropyle exterior and superior. ${ }^{2}$ The fruit is an oblong drupe, crowned by a scar, with thick and hard putamen, compressed or cylindrical, cuelosing a seed the membranous coats of which cover a fleshy albumen, which envelopes an embryo with foliaceous cotyledons, nearly equal in size to the allomen and surmounted by a short cylindrical radicle. 'Iupelos consists of trees or shubs, not unfrerguently covered with a silky down, growing, to the number of half a dozen species, ${ }^{3}$ in the southern part of North America, in the temperate mountainous regions of Λ sia, and in the

[^320][^321]Malayan archipelago. ${ }^{1}$ The leaves are entire, widely dentate or sublobate, alternate, petiolate, without stipules. The flowers, at the summit of a common peduncle, form a sort of capitule or short spike

Myssa liftora.

Fig. 243. Hermaphrodite Hower ($\frac{3}{1}$).

Fig, 242, Male flower ($\frac{4}{1}$).

Fig. 244. Long. sect. of hermaphrodite flower.
on which they are disposed in small groups (probably glomerules), accompanied by lateral bracteoles sometimes forming small involucres. The females, less numerous at the summit of the common peduncle, may even be solitary. ${ }^{\text {? }}$

III? ALANGIUM SERIES.

The flowers of Alangium ${ }^{3}$ (fig. 245-252) are regular and hermaphrodite. The concave receptacle, like that of Comurctum or $N_{y s s c e}$,

Abstract

1 According to Bentham and Hooker, N. sessiliflora Ноок. ғ. and Tномs., a Himalayan species, is very analogous to Ceratostachys (Bu. Bijdr. 644 ;-Mıa. Fl. Ind.-Bat. i. p. i. 839), a Javanese plant, itself probably identical with Agathisanthes (BL. loc. cit. ;-Mra. loc. cit. 838). Camptotheca, of Tibet, appears very near the proceding types, differing chiefly in its valvate corolla (imbricate in Ceratostachys) and in its anthers with four cellules pendent from a dilatation of the connective, and opening irregularly on the side of the filament. ${ }^{2}$ Here also we provisionally place Davidia, a beautiful tree of Tibet, the authentic specimens of which, unfortunately, some time since disappeared from the herbarium of the Museum, which has prevented us from giving a figure of it. The flowers are collected in 1- or 2 -sexual capitules; the males represented simply by

stamens, free on the surface of a globular receptacle. The female flower, occupying, when present, not the summit, but the side of the upper portion of the receptacle, is composed of an inferior ovary, with numerous uniovalate cells, surmounted by an epigynous calyx, within which may be found some short strmens with fertile or sterile anthers. The ovules in each cell are solitary and descending, with exterior micropyle. D. involucrata has alternate leaves and two large white foliaceous bracts under the inflorescence.
${ }^{3}$ Lamk. Dict, i. 174; Suppl. i. 366.-Correa, Ann. Mrus. x. 161. - DC. Prodr. iii. 203. Spach, Suit. à Buffon, xiii. 260.-Endl. Gen. n. 6096.-H. Bn. Adansonia, v. 193.-B. H. Gen. 949 , n. 1.-Angolam Adans. Fiom. des Pl. ii. 85. -Angolamia Scop. Introd. n. 280.
encloses an inferior ovary and is crowned with an epigynous disk, around which are inserted the calyx, the corolla, and the andrecium. The calyx, short and superior, has from four to ten teeth with which alternate an equal number of narrow clongate valvate petals, finally reflexed or revolute. The epigynous stamens are the same in

Fig. 245. Flower.

Alangium decapetalum.

Fig. 247. Fruit.

Fig. 248. Transverse sect. of fruit.

Fig. 246. Long. sect. of flower.
number as the petals, with which they alternate, or double, triple, or quadruple (fig. $24.5,246$); they are formed each of a free filament, glabrous or hairy, and a bilocular, introrse anther dehiseing by two longitudinal clefts. ${ }^{1}$ The ovary, set in the eavity of the receptacle and consequently inferior, is unilocular in the true Alangiums, and encloses, inserted a little below the summit, a descending anatropous ovule with micropyle primarily superior and exterior, later lateral, afterwards slightly contorted.? The style, rising from the centre of the epigynous disk, is swollen at its stigmatiferous summit, almost entire or divided into a variable number of small lobes. The fruit is a drupe, erowned with the persistent calyx and the putamen, often of little thickness, encloses a sced whose coats cover a fleshy albumen, externally smooth or ruminated, enveloping an axile embryo, with supcrior cylindrical radicle, and wide foliaceous cotyledons, flat or more or less contortuplicate. There are some species of Alanyium

[^322]which, with a unilocular ovary, have a mumber of stamens double that of the petals; we have named them Diplelumpinm $;^{1}$ and others where, with an isostemonous androcium, there is likewise a single cell; these are our Marlcopsis, ${ }^{2}$ that is species which closely approach Marlet ${ }^{3}$ (fig. $249-252$), of which a distinct genus has

Fig. 249. Flower ($\frac{1}{2}$).

Alangium (MIrlea) begoniafolium.

IVig. 252. Transverse sect. of fruit.

Fig. 250. Long. seet. of flower.
hitherto been made, but of which we shall make only a section of the genus Alnnyinm. The andrecium is there constantly isostemonous, but the ovary ecells are two in number. The consequence is that, in the drupaceous fruit, the putamen is hollowed with two cells. One of them is ordinarily uarrow and sterile. The seed contained in the other has constantly albumen externally smooth and flat cotyledons. Thus conceived, ${ }^{4}$ this genus comprises sume fifteen species ${ }^{5}$ inhabiting the tropical regions of Λ frica, Λ sia, and Oceania. They are trees

[^323]Alangium $\left\{\begin{array}{l}\text { 1. Angolam (Adans.). } \\ \text { 2. Diplalangium (H. Br.). } \\ \text { 3. Marleopsis (H. Bn.). } \\ \text { 4. Rhytidandra (A. Gray). } \\ \text { 5. Marlea (Roxb.). }\end{array}\right.$
3 Wight and Arn. Prodr.i. 325.-LLindl. Bot. Reg. (1838), t. 61 (Marlea).-Wiaht, Icon. t. 194; Ill. t. 96.-Dcne. Jacquem. Voy. Bot. t. 83 (Marlea),-Mi@. Fl. Ind.-Bat. i. pp. i. 773, 774
VOL. VI.
or shrubs sometimes spinous. Their leaves are alternate, petiolate, without stipules, regular or more or less unsyminetrical at the base, entire, dentate or lobed, penninerved or digitinerved at the base. The flowers ${ }^{1}$ are disposed in cymes or glomerules more or less compound in the axil of the leaves, and each is ordinarily articulated at the summit of its pedicel.

This family was established by R. Brown ${ }^{2}$ in 1810. Of the genera referred to it at the present time, some, such as Nyssa, Comocotrms, Bucitu, Treminulin, Chunena, and Ponen, were attributed by A. L. de Jussiev to his Order Eleremnacer, ${ }^{3}$ and others, such as Caroncia, Combretum, and Cuiria, to that of Onagracese. Alengium figures at the head of the same author's following Order Myiftacerr. Of the latter, De Cindolle, in $18 \% 8$, made a separate Order, Alongient, ${ }^{5}$ which Linderey ${ }^{6}$ retained, adding to it Tupelos, for which Jussied ${ }^{7}$ had, in 1825, founded a family, Nyssucecte. Recently, N_{y} sise on the one hand and Alangium and Morled on the other, have been ranged, by Bemthiar and Hoorer, ${ }^{9}$ in the family Cornacen, with which their affinities are incontestable. ${ }^{9}$ At the same time, since in this family the ovules have the micropyle turned inwards, $N_{y / s i s t}$, in which we have determined ${ }^{10}$ it to be exterior, would not belong to it; and if, as we believe, its direction is at first the same in Alungirm, and becomes lateral only by subsequent torsion, Alcugimm and $N_{y \text { ysen }}$ are not so near to Curans as to the Liveliaceur and Combertaceer. 'To the latter rather than to the former we provisionally refer them, on account of the characters of their andrecium, of their inflorescence, of their style, and of their fruit. At one period, among the Combetacer, were known only plants with orules inserted near the summit of the ovary. Later it was seen that their placenta was parietal and centripetal, and that the ovules were, in reality, inserted right and left of the upper portion of the placenta.

[^324][^325]Let the latter advance farther and we shall have an ovary with two cells, incomplete or complete, sometimes observed in $N_{y / s} s^{\prime}(t$, and, in the Altnigien, with dicarpellar gynecium, an ovary with two complete carities, each enclosing one ovule. Under this view the true Combrefnece would not be the most perfect representatives of this family, to which they alone have hitherto been admitted. Hence the division into three series which, as a new order, we propose:-
I. Combretee. ${ }^{1}$--Flowers hermaphrodite or polygamous, with or without corolla, with milocular pauciovulate ovary. Ovules equal or double in number that of the very imperfect parietal placentr, and inserted near the summit, ordinarily attached by a long funicle, ${ }^{2}$ with exterior mieropyle. Seeds without albumen.- δ genera.

IT. Nrssme. - Flowers polygamo-diocious, with polypetalous corolla, rarely absent. Ovary with one or more cells, generally complete, uniovulate. Ovule descending, attached by a short funiele, with exterior micropyle. Seeds albuminous.-3 genera.
III. Alangiee.-Flowers hermaphrodite or rarely polygamous, with $4-10$ petals. Ovary with one or two miovulate cells. Ovule descending, inserted at top of internal angle by a short funicle, with micropyle finally lateral. Seeds albuminous.-1 genus.

The affinities of these three groups are manifold. We have spoken of those of the Alungie(r with the Comucren, which, besides the characters derived from the ovule, are distinguished by their isostemonous androcium. The Arelincer, like the Combretucere, have the ovular micropyle turned outwards. It is admitted, as we shall also see, that they are distinct from the latter, in which, as in them, the ovarian partitions are complete, by their habit, their mode of inflorescence, their distinct stylary divisions and their embryo reduced to small dimensions; all characters of very small value. The Ontarfariere, which present many analogies to the $N_{y / s}$ serl, have an indefinite number of ovules; or, if the number is definite, the descending orules have an interior micropyle, as in the Cornucert, and the ascending ovules an exterior. In the Thirophoraceet, on the contrary, the descending ovules have the micropyle outward, as in the Combeterecer; but the former are distinguished by their habit, their

[^326]stipules, the organisation of their corolla and stamens, their style, analogons to that of the Cormarece, except in Anisuplyylmore, which has nearly all the characters of the Combretre, but whose singular leaves and embryo with macropod radiele are very distinct. The closest affinities of the Cumbecter appear, as we have seen, ${ }^{1}$ to be those which ally them to the Qurreiner'. The female flower of a Chestunt, with its inferior ovary and the receptacular dilatation which surmounts it, with its eprigyuous stamens and descending ovules with exterior micropyle, appears to us altogether that of a Trimimatine whose placentary partitions, always incomplete, are somewhat more advanced towards the axis of an ovary primarily unilocular in both cases. The exceptional cupule of the (luetinecr, so characteristic, is not found in the whole family of the C'ustrnerecere, depenting only upon a morlification in the form of cortain organs of vergetation, and not upon the organisation of the flower itself. The true place of the Combictured appears to us then to be between the Quercinect, the Araliaceo, the Onagrariacco, and the Cornacew.

The Comberter and Alangier are plants of tropical comtries. The latter are confined to Asia, Afrim, and Oceania; the former are common to both worlds. Quisquelix, Mucropteronthes, Ciniern, and Celyeopterix, belong only to the old world ; but the two principal gencra, Combrotum and Tirminalin, are distributed, unequally indeed, between Asia, Africa, and America. Lummiterer, Latyne"nlario, and Conoctipus, ${ }^{2}$ are among those curious littoral plants which, like the Mangroves, develope themselves in the brackish waters of widely distant tropical shores. The first has been observed ouly in Asia, Africa, and Oceania, hut the two latter are met with, likewise, in South America and tropical Africa. 'Ihe $N_{y \text { ssert', on the }}$ other hand, are trees of temperate regions. In North America N_{y} yssut inhabits the most southern parts, Mexico aud the Uuited States. In India and Java it grows in small numbers on the mountains. Camptotheca and Davidia belong to castern Tibet.

Uses.-Like the Quercinere, to which we have several times compared them, these plants have generally an astringent bark and fruit.

[^327]Those of Terminalia, formerly very celebrated in therapeuties as tonics and astringents and still used as such in their native countries, where they are also employed especially for tanning skius and dyeing stuffs, were known under the name of Myrobultus., ${ }^{1}$ applied also to other fruits borne by plants of very different families. ${ }^{2}$ Especially distinguished among them were Mypobulan citrine ${ }^{3}$ attributed to Terminalia citrina; ${ }^{\text {² }}$ M. Chelulir to T. Ohelula ; M. Bellerir to T. Beflerica. ${ }^{6}$ The bark of these trees, preseribed for inflammations and fevers, like that of some species of Combretum, yields a gum, sometimes sweet, as that of Arucia arubica, sometimes astringent, burning with a flame. Terminulie presents still another point of analogy to the Oaks in that their various organs, under the influence of insect puncture, develope galls ${ }^{7}$ rich in tannin, good for dyeing and tanning. Such especially is T. C'helula, the galls of which, hornshaped, large, flat, and hollow, give with alum a solid yellow colour, and with ferruginous clay, an excellent black dye. The root of T ' lutifolius affords an anti-diarrhoutic in the Antilles. That of T'. Cutappa, ${ }^{9}$ a beautiful Indian species, introduced and cultivated in tropical America, is also prescribed for flux, diarrhoea, dysentery, and its bark for gastric and bilious fever. They are useful for dyeing black. Its frnit is valued as an article of food and as a medicine. The same is the case with many other species of Treminalict, notably T. alatu, ${ }^{10}$ in India, is substituted for catechu in the treatment of angina, ulcers, and scorbutic eruptions ; T. macioptore, ${ }^{11}$ of Senegal,

[^328][^329]which, though astringent, has a root sairl to be purgative; T. mauritiana ${ }^{1}$ (fig. $235-237$), the sceds of which are edible; T. angustifolin, ${ }^{3}$ which, in Intia, yiekls a kind of benzoin; 'T. TMceras, ${ }^{3}$ of the Antilles, the astringent bark of which is employed in medicine; T. evecter (fig. $2 t 0$), the bark of which is usceful in the treatment of ophthalmia, syphilitic, diabetic, and many other affections. ${ }^{5}$ Latgmenluria racemoser, ${ }^{6}$ of the tropical African and North American shores, is also an astringent plant. Quispuatis. indicu ${ }^{7}$ (fig. 229-231) has anthelmintic seeds of a sharp and bitter taste; its leaves also, either alone or with mustard, are prescribed for worms and affections of the lower intestines. Many species of ('ombretmm are also useful. C. coccinemm* (fig. 290-2.2S) and C. argentem, grandiflorum, ${ }^{9}$ and "lternifotium, have astringent barks. Sereral are tinctorial. The ashes of C. glutimosnm ${ }^{10}$ are used in Senegambia to fix the colours of indigo. In Guyana, the Galibees rubbed the muzzle of their dors with the fruit of T. Chouncia to increase their power of scent. "De Martios made known in Europe Terminulin "reftuter, ${ }^{1 ?}$ of Brazil, as yiclding a drastic and resolutive juice used in his country for the same purposes as gum gutta. Soveral species of Trmimulin of the same comntries are tinctorial. In Mozambique an aromatic fatty matter is extracted from the seeds of C^{r}. Dutyonsmm, ${ }^{13}$ usci for prepring food. Almmgium has aromatic roots. The wood is good and the firuit edible, but often viscous and nearly tasteless. A. derthetulum ${ }^{1+}$ (fig. 245-24S) and

[^330][^331]hexapetulum ${ }^{1}$ are said to be purgative and diuretic. Thumes has slightly acid drupes, especially $N y$ ssen capitata ${ }^{2}$ and biflom ${ }^{3}$ (fig. $241-244$), the fruit of which is sometimes substituted for citrous. That of N. armuticm, ${ }^{4}$ cillosen,,5 sermdens, ${ }^{6}$ is also eaten. The wood of these trees splits with difficulty, on account of the intricacy of their fibres; it is often used in the United States, but is little valued. ${ }^{7}$ These trees are cultivated among us with some difficulty. Plants of the other series are met with only in conservatories, where certain species of Combertum and Quisquelis produce red flowers of a very fine effect.

[^332]comprising N. villosa W. and sylvatica Marsh. Chapman adds in the south N. aquatica L. and N. capitata Walt.; in all, consequently only four American species, which, probably, present many variations.

7 On tho stem of a Nyssa angulisans, see Trécul, Ann. Sc. Nat. sér. 3, xvii. 2\%0. On the wood of the Alangice: : Lindl. Veg. Kingd. 720. That of the Combretacece in general, and notably those growing in brackish waters, presents numerous peculiarities for study.

GENERA.

I. COMBREIE E .

1. Combretum L.-Flowers hermaphrodite or polygamo-dioccious; receptacle tubular-lageniform, cunstricted to apex, then dilated cupuliform ; sepals 4 , 5 , valvate, glabrous or pilose within, sometimes glandularly incrassate at base, deciduous. Petals 4 , 5 , sometimes small (or very rarely (0). Stamens S-10, ᄅ-seriate; the oppositipetalous inserted higher; filaments clongate free, incurved above; anthers small introrse, \gtrsim-dymous, \therefore-rimose. Germen aduate within to concavity of receptacle, 1-locular; style subulate, at apex simple or slightly incrassate stigmatose. Uvules $2-6$, suspended from apex of cell by a rather lomg fimicle, anatropous; micropyle extrorsely superior. Fruit coriaccous or sul)-sponsy, sometimes sub-fleshy, t-6gonal or 4-6-ptcrous; winges short thick of often membranous; pericarp indehiscent or finally 4 -(j-partible. Seed 1 , descending, elongate, sulcate or angular; coat membranous or coriaceous; cotyledons of exalbuminous embryo fleshy, oftener narrow, phicate contortuplicate or deeply sulcate, sometimes very rarely convolute.-Shrubs or more rarely trees, often climbing, sometimes spinous; leaves opposite or more rarely verticillate, very rarely alternate, petiolate, ofteuer membranous entire exstipulate; flowers in spikes or racemes, sometimes ramose, rarely secund ; bracts small or rather large. (Trop, Asin, Africa, America.) See p. 263.
2. Quisqualis L. - Flowers' nearly of l'omlnetnm; tube of re-

[^333]ceptacle far produced beyond germen attenuate ; sepals patent or recurved. Stamens 10 , germen ovules 4,5 , etc. of Combretum. Fruit oblong coriaceons, acutely 5 -gonal, 5 -alate; seed 5 -gonal. Embryo calbuminous; cotyledons 2 (or rurely 3), thick fleshy, flat or concave within, convex or sulcate without.-Climbing shrubs; branches sarmentose ; leaves opposite or subopposite entire ; fluwers ${ }^{1}$ in spikes, sometimes compound, axillary and terminal. (Trop. Asin and Africa. ${ }^{2}$)
3. Lumnitzera W.3-Flowers (nearly of Comlretum) hermaphrodite; receptacle obloug, attenuate on both sides, externally increased to middle by $\underset{\sim}{a}$ lateral aduate bracteoles, produced somewhat beyond germen and finally dilated. Sepals 5, equal or unequal, imbricate, persistent. Petals 5, oblong patent. Stamens ${ }^{4} 10$ and germen of 'combetum; arules 2-6;5 funicle clongate. Fruit oblong, ovoidly attenuate, or subfusiform compressed woody, laterally obtuse augled to remains of bracteoles, crowned with persistent calyx. Seed linear ; ${ }^{6}$ cotyleduns of exallhminons embryo convolute.-'Trees and shrubs ; leaves alternate, inserted at summit of twigs, subsessile, obovate-cuneate, thick coriaccous cnervate, entire or crenate; Howers ${ }^{7}$ in short axillary and terminal racemes. (All tropicul shopes of ohd world. ${ }^{8}$)
4. Laguncularia G.lrtn. f.'-Flowers polygamous (nearly of Inmniturnt1) ; receptacle (in male flower short) turbinate rather terete not produced beyond germen, laterally incerased by $?$ small adnate bracteoles. ('alyx urccolate, ${ }^{\text {ofid }}$, persistent. Petals 5, small, caducous. Stamens 10; filaments short incurved; anthers cordate enclosed or slightly exserted. Germen internally adnate to

[^334][^335]receptacle and crowned with thick epigynous disk; style short, at apex stigmatose 2 -lobed. Ovules 2 ; funicle subapieal very short (or 0). Fruit dry coriaccous, indehisceut, elongate-obovoid, sometimes longitudinally cortulate, sericeous, crowned with persistent calyx. Seed l, descending, conformed to cell ; cotyledons of exalbuminous embryo highly convolute.-Small trees; leaves opposite petiolate, elliptical or ohlong, obtuse, entire thick coriaceous, 2-glandular at base; flowers ${ }^{1}$ in axillary and terminal ramose spikes, often 3 -spiked. (Trop. America and west. coast of trop. Africa. ${ }^{2}$)
5. Macropteranthes F. Muell. ${ }^{3}$-Flowers hermaphrodite (of Jutymuruluria), 5-merous. Stamens 10 , or fewer ; anthers sometimes ciliate. Germen adnate within to cavity of receptacle not constricted at apex and laterally winged with \because adnate bracterles. Ovules in cell 10-16, inserted under apex by linear-elongate funicles. Fruit (indohiscont ?) erowned with calyx and augmented to middle by $\underset{\sim}{\sim}$ wide foliaceous horizontal wings ; secds . . .?-Small sericcous trees; leaves opposite or fasciculate small entire ; flowers axillary 2 -nate on peduncle. (Trop. Australia. ${ }^{4}$)
(6. Guiera Anss.5 - Flowers hermaphrodite (of ('ombretum), 5-merous; receptacle aftemuate on both sides, produced beyond germen. Petals 5, narow, perceptibly dilated at apex. Stamens 10, exserted; anthers small didymous. Germen, disk, etc., of Lumnitior": ovules 4, 5; funicles clongate. Fruit coriaceous, indehiscent, elongate-cylindrical and curved, ${ }^{6}$ sericeo-villose, crowned with persistent calyx. Seed 1, narrow ; cotyledons of exalbuminous elongate embryo convolute.-A somewhat tomentose shrub; leaves opposite, petiolate, entire apiculate black-spotted; flowers ${ }^{7}$ crowded in axillary globose solitary pellunculate capitules; lracts t, foliaceous inserted under eapitule, valvately connivent in common involucre around enclosed flowers, finally reflexed at anthesis. (Trop, west. Africa. ${ }^{8}$)

[^336]7. Calycopteris Lami. ${ }^{1}$ - Flowers hermaphrodite (nearly of Guiviu or ('ombetum) apetalous, 5-merous; receptacle enclosing inferior germen and not produced berour. Sepals 5, persistent, accrescent. Stamens 10, euclosed, anthers 2-dymous. (icrmen
 somewhat villose, cromned with 5 aceresecut membranous venose obtuse and patent sepals, indehiscent, I-spermous; cotyledons of exalbuminous embryo convolute.-A climbing shrub, ${ }^{2}$ glabrous or oftener sericeo-villose; leaves generally opposite petiolate entire acuminate ; flowers crowded in axillary simple or terminal and very ramose racemes. (East. India. ${ }^{3}$)
8. Terminalia L. ${ }^{\dagger}$-Flowers hermaphrodite or polygamo-diocious (nearly of Cimuliretim) apetalous ; tube of receptacle ovoid or subcylindrical, sometimes clongate-lageniform, not at all or scarcely, sometimes a little (Remuturllu ${ }^{5}$) or farther (Anompissus ${ }^{6}$) produced beyond germen, dilated above to a campanulate or suburceolate cupule, glabrous or pilose within, sometimes glandular aud calyciferous at margin. Sepals rarely 4 , oftenest 5 , free or connute at lase, valvate, generally decidums or rarely (B uridu ${ }^{7}$) persistent. Stamens 4, 5, or most often $8-10$, 2 -seriate; filaments subulate incurved, finally exserted ; the altermisepaluns inserted higher ; anthers versatile or rarely (Burhennews ${ }^{\text {s }}$) not mobile. Germen inferior; style generally incrassate at base, at apex stigmatose simple and oftener not dilated. Ovules in cell 2, 3 (of Combretum). Fruit ovoid (Myrobalanus ${ }^{9}$) or ellipsoid or elongate, ${ }^{10}$ or angular, ancipiti-

[^337]Pentaptera Roxb. Ramatuella I. B. I. Vicentia Allem.).
${ }^{5}$ H. B. K. Nov. Gen. et Spec. vii. 254, t. 656.DC. Prodr. iii. 16.-Endl. Gen. n. 60s0.-B. H. Gen. 686, n. 4.
${ }^{6}$ Wall. Cut. n. 4014.-Evdl. Gen. n. 6082.B. H. Gen. 687, n. 5.-Hook. Fl. Ind. ii. 450.
: L. Gen. n. 541.-Lamk. Ill. t. 356.--DC. Prodr. iii. 9.-Endl. Gen. n. 6075 (part).Buceras P. Br. Jam. ii. 310.
${ }^{8}$ Eichl. Flora (1860), 164 ; Mart. Fl. Bras. Combret. 95 , t. 25.
${ }^{9}$ Gertn. Fruct. ii. 90, t. 97. - Badamia Gebin. loc.cit.-Pamea Aubr.Guia .946, t. 359 - Fatraa J. Dict. Sc. Nat. xvi. 206.
${ }^{10}$ In Bucida it often happens, from the attack of insects, that the leaves of the fruit (as in some plants of the Order) grow out in long siliquiform horns (whence the generic name).
compressed (Ontappra ${ }^{1}$), $9-7$-alate; wings thick, sometimes sinuate or incised (Romutnello.) thick coriaceons or widely membranous; exocarp thin or more rarely thick, fleshy or coriaccous; putamen coriaceous or osseous, 1 -spermons, straight, curved or much recurved ${ }^{2}$ (Conorerquis. ${ }^{3}$). Seed oveid or elongate, terete or angular ; cont thin; cotyledons of exalbuminous embryo convolute.-Trees or shrubs; leaves alternate or more rarely opposite and 2 -oglandular at base (('huncom, ${ }^{4}$ I'cotnutern ${ }^{5}$), often collected at summit of twigs, sessile or oftener petiolate, generally entire, sometimes pellucid or darkspotted ; flowers ${ }^{6}$ spicate or more rarely racemose ; spikes simple or more or less ramose, elongate, loose or in short capitules ; or sometimes (Anugrissus, Conocmpmis, limutucllu) densely capitate. (All trop. regions. ${ }^{7}$) See p. 267.

II? NYSSE E.

9. Nyssa L.-Flowers polygamo-diocious ; receptacle of males shortly cupular or subplane. Calyx small, very small or subnil ; teeth $5-\infty$. Petals $5-\infty$, imbricate. Stamens $5-18$, or ∞, inserted with perianth around thick pulvinulate disk entire or crenate or lobed, glabrous smonth above or produced to a central cone (rudiment of gynacium?) ; filaments free ; anthers sub-2-dymous; cells laterally or introrsely rimose. Receptacle of female or hermaphredite flower tubular, urcenlate or subcampanulate, enclosing adnate germen; calyx as in males. Petals small or 0. Rudimentary stamens () or few anautherous or with effete anthers. Ceermen inferior, 1-locular (or very rarely 2 -locular; dissepiments perfect or
[^338][^339]imperfect); style straight or recurved ar revolute, convexity sulcate, simple or at stigmatose apex 2 -fill, girt at base with thick epigynous disk. Ovule 1 (or very rarely 2), descending; micropyle extrorsely supurior. Fruit drupaccous oblong, areolate at apex; putamen terete cr sulcate. Albumen of desecnding seed fleshy ; cotyledons of inverted embryo foliaceurs and equilateral to albumen. -Trees or shrubs, sometimes sericeous; leaves altermate petiolate, exstipulate, entire or coarsely dentate or lobate; flowers axillary, inserted at smmmit of pedunculum, capitate or shortly racemose (glomerulate ?), bracteate and bracteolate; bracts sometimes involucrate; female flower's fewer, sometimes solitary. (South. Noith America, monnt. Asia and temp. Malaya.) See p. 269.

10? Camptotheka Decve. ${ }^{1}$ - Flowers polygamous (nearly of Xysset) ; calyx cupular. Petals 5, imbicate. Stamens 10, 2-seriate, inserted under epigynous disk; cellules of anthers 4 , appended to conical connective; each introrsely uncqually valvicide. ${ }^{2}$ Germen (in male flower effete) inferior ; ovule . . ? ? ; style - -ficl (in male flower very short, buriod in disk). Fruit capitate compressed subsamaroid, truncate at apex and crowned with remains of disk; mesucarp suberose ; endocarp thin. Seed desceuding elongate ; testa thin; albumen fleshy; embryo (grecenish) equal to albumen, cotyledons thin; radicle superior.--A tree; leaves alternate, deciduous; flowers capitate ; capitules (glomeruliferous) in terminal raceme and podicellate; bracts and bracteoles lateral iuvolucrating cymulis. (Eust. Tibet. ${ }^{\text {3 }}$)

11? Davidia II. Bx. ${ }^{*}$ - Flowers polygamo-diecions; males 1 -androus ; stamens ∞, collected in minute enclosed globular capitule, around slightly projecting base of filaments; filaments fice subulate, inserted in foveoles of receptacle; anther cells ovate, free ou both sides, sublaterally rimose. Female flower in capitules 0 , wr 1, laterally inserted above middle of receptacle, oblique ; receptacle proper of flower subovoid sacciform, euclusing adnate germen and bearing subepigynous perianth consisting of ∞ small unequal subulate folioles. Germen inferior, (6 10-locular, attemuate beyoud prianth; style conical, externally rugose, at apex divided into raliating lobes, sulcate and stigmatose within, equal in number to cells. Ovules in complete cells sulitary, insurted a little below apex,

[^340]descending; mieropyle extrorsely superior. Itermaphrodite flower in other respects similar to female and augmented by short straight hypogynous (fertile or sterile) stamens within the perianth. Fruit...? - A ree; leaves altermate, petiolate, cordato-acuminate serrate penninerved, sub-3-7-nerved at base ; ${ }^{1}$ flowers precocions; capitules terminal peduculate ; bracts 2 , subopposite, wide foliaceous, conformed and equil to leaves, petaloid coloured (white), involucrate and finally expanded. (East. Tibet. ${ }^{\text { }}$)

III? ALANGIEN.

12. Alangium Link.-Flowers hermaphrodite or rarely polygamous; receptacle concave, turhinate, campanulate, or subeylindrical, enclosing adnate germen. Calyx inserted at margin, subentire truncate or $4-10$-dentate. Petals $4-10$, lorate or linear, ralvate, finally reflexed or revolute. Stamens inserted with perianth (epigynous), equal in number aud alternating with petals or $2-4$ times as many; filaments free or comnate at base, inscrted under epimynous disk; anthers linear-clongate, introrse or laterally rimose. Germen inferior, 1 - -locular or more rarely B-locular, septa perfect or imperfert above ; stylegirt at base with epigynous cupular or pulvinate disk, at stigmatose apex clavate or capitate, oftener minutely $4-\infty$. lutate. Oyule in each cell 1 , inserted under apex, descending; micropyle extrorsely (\because) superior, finally oftencr lateral. Fruit drupacoons, crowned with calyx or its sear ; exocarp thin or thick fleshy; putamen more or less hard, sometimes crustaccons, 1 -2spermous. Seed oblong ; integumeut thin; alhumeu fleshy, externally smooth or sometimes simuate or ruminate ; cotyledons of axile embryo foliaceous, digitinerved at lase, or tlat, or slightly corrugate or sometimes contortuplicate; radicle terete superior.-L'rees or shrubs, marmed or sometimes spincseent, glabrons or tomentose; leaves alternate petiolate exstipulate, entire or angular-lolate, at base equal or sometimes unequal, perninerved or sometimes digitinerved at base; flowers in axillary more or less compound ramose eymes ; branches of infloresecuce elongate or sometimes more or less contracted; pedicels generally articulate. (Axich, Orennin. "unl liop. Lfricu, Malacca.) See p. 271.
[^341]
LIII. RIIIZOPIIORACE E.

I. MANGROVE SERIES.

The Mangroves are especially known by their long adventitious Rhizophora Mangle.

Fig. 254. Flower $\binom{3}{1}$.

Fig. 255. Diagram.

Fig. 256. Long. sect. of flower.

Fig. 258. Fruiv.

Fig. 257. Dehiscent stamen.

Fig. 260. Fruit, with germinating seed.

Fig. 259. Long. sect. of fruit.
roots which descend into the mud, whence the name Ihizopluror (fig. 253-260). They have regular and hermaphrodite flowers, the concave

[^342]receptacle of which cucluses the inferior portion of the uvary and Rhisophora Mangle.

Fig. 203. Floriferous and fructiferous branch.
bears on its margin the stamens and perianth. The latter is domble,
formed of a coriaceous calyx of four thick and valvate persistent sepals, one anterior, another posterior and two lateral (fig. 255), and four alteruate petals, longer, equally valvate, with a margin often cut into fine induplicate lacinie. The stamens, eight in number, are superposed, four to the seprals and four, longer, to the petals. ${ }^{1}$ Each is formed of a filament very short or nil and a basifixed elongate anther with two cells dehiscing longitudinally in quite a peculiar manner ${ }^{2}$ (fig. 2ej7). The gynecium is composed of an ovary partly inferior and hollowed into two sells, one anterior, the other posterior; it is surmounted by a very short style, almost immediately divided into two very small stigmatiferous lobes. In the internal angle is seena placenta supporting two collateral descending anatropous ovules with micropyle directed upwards and outwards. ${ }^{3}$ The fruit, accompanied at its base by the persistent and generally reflexed calyx, is coriaceous, indeliscent, monospermous. The sced is remarkable for ihe comportment of its fleshy embryo, destitute of albumen, but often surrounded by a soft matter which appears to play its part. The cotyledons are conferruminous, and the superior radicle is considerably elougated while the fruit still remains attached to the tree. It thus takes the form of a long pointed club and perforates the summit of the pericarp (fig. 2.53, 2.5-960) to deseend vertically to the soil into which the radicle sinks before the upper portion of the embryo is disengaged. lihi"enilure consists of trees met with in all the tropical regions of the globe. Their long alventitions roots support them firmly at the bottom of the water, above which rises the thick stem with opposite branches and decussate petiolate, elliptic, entire,

[^343][^344]glabrous, thick and coriaceous leaves, aceompanied by large interpetiolate and caducous stipules. The flowers ${ }^{1}$ are axillary, collected in bi- or triparous, rarely simple, more generally ramified cymes at the summit of a common peduncle; they are sessile or pedicellate, articulate, with two comate bracteoles forming a sort of involucel. Half it dozen species ${ }^{2}$ are admitted in this genus; but perhaps this number may be reduced by one half.

From the genus fikizophore have been separated certain species which, with the same organs of vegetation, present notable differenees in their flowers. Such is (eriops, found on most tropical shores of Asia, Africa, and Oceania, which has 4-(i-merous flowers, with a

Branuiera gymnorhiza.

Fig. 261. Hlower.

Fig. 263. l'etal with the two stamens it nuvelops.

Fig. 262. Long. sect. of flower ($\left.\begin{array}{l}3 \\ 2\end{array}\right)$.
valvate calyx and petals sloping to the summit and bordered, esperially in their uprer pertin, with lomes stipitate glands. The stamens, in appearanee, arn superposed in pairs to each petal which receives them in its cavity, and the inferior ovary contains three incomplete and hiosulate cells. The flowers, not numerous, are grouped in contracted cymes as a whole resembing a capitule, and are geminate in a small involucre at the summit of a short and thick pedicel. lis"minion (fig. 2f(1-26:3) was also formerly included in

[^345]Benth. Fl. Austral. ii. 493.-Mia. Fl. Ind.-Bat. i. p. i. 585 ; suppl. 125, 323. -Seem. Fl. Tit. 91.-Grisebs. Fl. Brit. WF••Iub。274.-Waly. Rep. ii. 70 ; Amn. iv. 675.

Rhimphora. It has flowers constructed like those of ('eriops, but much larger, with from eight to fifteen narrow and puinted sepals, the same number of oblong petals, much sloped at the summit and near the base internally replicate upm themselves in such a manner as closely to envelope a pair of stamens with clongate anthers, appat rently superposed to each of them ${ }^{1}$ (fig. $2(6 ;)$). The iuferior ovary, aduate to the bottom of the receptacle, has two, three, or fuur cells, more or less complete, with two desecnding ovules in each. The fruit is like that of Rhimphorm, as which Drumuirera also has the same organs of vegetation, aud the flowers are axillary, solitary or in cymes. They inhabit the same maritime shores as Ceriops.

Tn Kemmelin, which grows on the coasts of castern India, the organs of vegetation, the fruit, the mode of germination, de., are all those of likiondhen ; but the flowers, grouped in small numbers (in cyme) at the summit of a common peduncle, are of 5 or 6 parts, with petals finely and deeply laciniate at the margin, and an inferior orary of which the three biovulate cells commmicate to a greater or less extent ; the androcium is formed of an indefinite number of stamens with long and slender filanents and small introrse antheris.

II. BARRALDELA SERIES.

In the hermaphrodite and regular flowers' of B norpoldecin ${ }^{2}$ (fig. 2(6)-269), the (avity of the receptacle contains the inferior orary, whilst its margins, lined with an epigynous disk, forming a duble or triple anmular cushion, bear the perianth and androcium. The former is represented by a valsate calyx of four or five triangular sepals and a corolla of the same number of petals, cutire, bilobed, crenelate or laciniate at the margins and finally induplicate. The

[^346]Malal.iv. 13 (not of others),-Carallia Roxb, Pl. Coromand. iii. (1819) 8, t. 211 ; Fl. Ind. Or. ii. 481.-Mook. Fll. Iud. ii. 439.-M. Br. Congn, 437.-DC. Prodr. iii. 33.--Endl. Gen. n. 6102. -Benth. Journ. Lim. Soc. iii. 67, 74.-H. Bn. Adansonia, iii. 24, 36; Payer Fam. Nut. 361.B. I. Gch. 6 S 0, n. 5.-Symmetia Be. Bijir. 1130.-Baraullia Steud. Nom. 101.-Petaloma DC. Prodr. iii. 294.-Catalium Ham. mss. (ex Endl.).
androecium is formed of a number of stamens double that of the petals, disposed in two verticils and alternating with an equal number of lobes of the disk. There is one stamen within each petal which envelopes it mure or less in its cavity, and one in each interval

Barraldcia integervima.

Fig. 26s. Sced.

Fig. 265. Diagram.

Fis. 2fif. Long. sect. of flower.

Fig. 267. Fruit ($\left.\begin{array}{l}4 \\ 1\end{array}\right)$.

Fig. 269. Long. sect. of seed.
between the petals. ${ }^{1}$ Each is formed of a free filament, at first incurved at the summit, and of a short bilocular introrse anther dehiscing by two longitudinal clefts. The inferior ovary, the summit of which only is free in some species, is surmounted by a slender style the capitate extremity of which is divided into a number of stigmatiferous lobes equal to that of the cells. The latter vary from two to five, superposed to the petals when equal in number, and culose each two lateral desceuding ovules, completely or incompletely anatropous, with micropyle directed upwards and outwards. ${ }^{2}$ The fruit, small, coriaceous, surmounted by the remains of the calyx, ${ }^{3}$ contains generally only one fertile reniform seed, the thick coats of

[^347]which corer a fleshy albumen, surrounding a more or less curved embryo, of which the radicle is superior and the cotyledons are flat. Seven or eight species ${ }^{1}$ of Barcaldein are known, natives of the tropical regions of Africa, Asia, and Occania. They are trees or shrubs with rounded branches, somewhat swollen at the level of the leaves, which are opposite, petiolate, thick, eutire, glabrous, penninerved, entire or finely dentelate and accompanied by interpetiolate caducous stipules ordinarily but slightly developed. The flowers ${ }^{2}$ are disposed in the axil of the leaves in bi- or triparous cymes, generally much ramified.

Close beside Bampldine is placed Crossonstylis, which is extremely like, presenting quite the same variations as to the absolute number of stamens, with 4 - or 5-merous flowers. They differ chiefly in the ovary, only partly inferior, in the very variable number of more or less incomplete, biovulate cells, in their fleshy fruit, tardily loculicidal, with seeds furnished with a voluminous axil and a straight embryo. It comprises Oceanie shrubs. As in Burethein the petals are sometimes entire, sometimes more or less laciniate. The flower of Gyuntroches, a shrub of the Indian archipelago, has the same characters as that of the preceding genera, with four or five sepais and a diplostemonous audrocium, and a fleshy fruit; but in each of the cells of the iuferior ovary there are four desending ovules, disposed in pairs ; and in the eymes there are no comate bracteoles to form it sort of calicule. In Pellacaly.e, native of the same regions, the ovary, entirely inferior, is surmounted by a receptacular tube at the summit of which are inserted from four to six sepals, an equal number of alternate petals (little developed or nil) and a double number of stamens arranged in two verticils. The ovariau cells enclose numerous descending ovules.

III. MACARISIA SERIES.

For a loug time referred to other fimilies, Mrnctrisio ${ }^{3}$ (fig. 270, 271) is the best type of this group to which the names of Legnotidece

[^348]and Casisinntere have been given. The flowers are regular, with a receptacle in the form of a shallow cup, bearing on its margin five valvate and slightly reluplicate sepals, and five alternate petals, spoon-shaped at the base, with a limb divided into unequil lobes. ${ }^{1}$ The perigynous stamens are inserted on the reecptacle within the petals; they are formed

Fig. 270. Long. sect. of flower ($\frac{4}{1}$).

Fig. 271. Long. sect. of fruit. each of a free filament and an introrse bilocular anther, dehiscing by two longitudinal clefts, inflexed in the bud. Five are superposed to the petals, and five, somewhat shorter, alternate; they are separated from each other by an equal number of tongues belonging to the disk. The gynecium, somewhat restricted at the base, is inserted at the botton of the reepptacular cup, but entirely free. It is composed of an way with five eells, superposed to the petals, surmounted by a style slightly capitate and stigmatiferous at the summit. In the intermal angle of each cell is fomed a placenta supporting two rollateral, descending, incompletely anatromes ovules, with micropyle exterior and superios. The fruit is a loculicidal cansule finally dividing above into ten pomels and setting free ten (or less) compressed seeds, sumounted by a long rertical membranous wing, and chelosing, in the centre of a floshy albumen, an clomate cmbryo, with oblong cotyledons and superim raticle. Inmenisin consists of shrubs from Madagasear. The leares are epposite, petiolate, accompanied ly interpetiolate stipules, with entire or dentelate, peminerved limb. The flowers, in the axil of the leaves, are in compound cymes, with articulate pedicels aceompanied by two lateral bracteoles. Two species ${ }^{3}$ are known.
 the flower of which is nearly the same in construction as that of

[^349][^350]Mararisia, but a little more complicated. The petals, four or five in number, are spathulate and deeply laciniate, and the stamens are from fifteen to thiry in number. In the ovary, constricted at the

Cassipourea elliptica.

Fig. 272. Flower.

Fig. 273. Long. sect. of flower.
base, are found three or four biovulate cells; and the fruit, spherical or ovoid, thick and more or less fleshy, finally opens along the partitions. The albuminous seeds are more or less angular but not winged. In the old world Cassipourea has its analogues in three genera scarcely distinct. They are: Dactylopetalum, native of tropical western Africa and Madagascar, having pentamerous flowers with ten or fifteen stamens, and an ovary with two or three incomplete cells; Blepharistomma, an Indian shrub, having the tetramerous and diplostemonous flower of Cassipourea, with an ovary of three biovulate cells; and Weihea, inhabiting Ceylon and the same regions as

Cassipoura elliptica.

Fig. 274. Flower with perianth menused. Dactylopetalum, having the andrœcium of Cussipousen, but an orary inserted at the buttom of the receptacle by a wide base, more or less aduate, and flowers, solitary or grouped in cymes more or less compound, accompanied by two commate bracteoles forming a sort of calicule.

IV. ANISOPHYLLEA SERIES.

In this genus, which has been referred to very different families, ${ }^{1}$ and which owes its name ${ }^{2}$ to the singular peculiarity presented by

[^351]its leaves, the flowers are polygamous (fig. 27.5, 276) and have a receptacle varying much in shape according as they include the two sexes or are only males. That is, when they are hermaphrodite or female, the ovary is lodged in a tubular, oleonical or ovoid pouch, forming its receptacular cavity, which disappears

Fig. 2\%". Floriferous lranch.

Fig. 276 . Long. sect. of male tiower $\left(\frac{1}{20}\right)$.
when there is no gynecium to cuvelop. The epigynous calyx is formed of four tolerably thick trimoular, valvate seprals, and the corolla, of the same number of alternate petals. The latter are often thick and fleshy, sometimes small and entire, or very slighty sloped at the summit, bilobed or divided into a variable number of mequal lobes. The androcium is diplostemonons, and its eight pieces, superposed, four to the sepals, and four to the petals, are alternate with an equal number of lobes of the epigynous disk. They are formed each of a free subulate filament, thickened and often compressed towards the base, and of an introrse, bilocular anther, dehiscing by two longitudinal elefts, which maty be retuced to a small sterile mass, of glandular appearance, in the oppositipetalous

[^352]stamens, or even disappear altogether. Th the intormal angle of each ovarian cell, there is a deseending anatropous ovule with micropyle superior and exterior. The fruit. surmounted by the calys or its scar, is oblong, slightly fleshy or coriaceous, with smooth surface, or tribversed by longitudinal ribs, ${ }^{1}$ and encloses a descending seed the coats of which cover a fleshy macropodal embryo, with a superior radicle, in the form of a thick club and with a gemmule formed of a grodly number of small leaves in two vertical series. Anixophyllen, of which seven or eight species ${ }^{2}$ are known, consists of trees or shrubs mostly from the tropical regions of the old world; they have been observed in India, Malaya, Madagascar, and tropical western Africa. The leaves are alternate, distichous, without stipules, alternately small and reduced to stipuliform tonguns, and large, oval or lanccolate, sometimes oblique at the base (giving them the form of a parallelogram or trapezium), cutire, coriaccous, in dried specimens often presenting a yellow tinge, penninerved and regularly or irregularly $3-7$-nerved at the base. The flowers are axillary (fig. 27.), small and disposed in simple spikes, with or without bracteoles.

The different groups united in this small family should have been placed far from each other, and they have been, in fact, when the principles of A. L. De Jussied have beeu strictly applied. The Cussipumper known were, clearly, plants evidently epigynous, while the true Rhi:ophorece and Corallio had an ovary in great part inferior, with perigynous or epigynous stamens. It was R. Brown, ${ }^{3}$ who, in 1814, gave the name of Rhianphone to a distinet family, ${ }^{4}$ before him referred to the C'umituliene. In 1846 Lindlex 3
 not ignorant of their affinities with the Mangroves pointed out by R. Brown. Anismpllylea, on the other hand, has been considered a neighbour of the Suritictyurer". Exdlicher, ${ }^{6}$ nevertheless, in 1840,

[^353][^354]restored the C'assipource to the Rhiwophorece; ${ }^{1}$ according to him as also to Linidey, it was only the genus Crossostylis of Fonster that ought to be transferred to another family, that of My,turete. After many labours, particularly by Blede, Arnott, Knhthnls, and A.
 were, in 185 , ${ }^{\text {a }}$, the subject of a special memoir hy Mr. Bextman, ${ }^{2}$ who remited in this group the nine genera Carallin, loollacaly, Ihe-
 Durtylonetalum, and ''rssipumbera. The Rhi: ophenere, on the other hand, alter the labours of Wterit and Arsott, ${ }^{3}$ comprised the four
 recognized that the gemus ILnotrisite of Dupetir-Thounas, referred to various families, in particular to the Rhomunere, to the Meliacere, to the Linacce, ${ }^{5}$ was allied to Cassipourea; that Anisopinyllea presented closer floral analogies to C'urallin; that Anstrutheria belonged to the old genus Weiled of Srenengel, and that certain
 of A. Garar. At present we do not think it pessible to refer I'lesiantlun of J. D. Inowera to the gemus I'rllucely, as an apetalous type, and we restore to C'urntlin its primitive name of Buraldein, which dates from 18ng. Comsequently, we provisinally retain in this family only fourteen genera, distributed in four scries in the following manner:
I. Remznhoner.-Tieceptacle concare and ovary partly or entirely inferior. Style simple. Sced exalbuminous, with macropod embryo, germinating in the fruit and on the tree.- Trees of the sea coast ; leaves orposite, entire, with interpetiolate stipules.-t genera.
II. Bahalmen:- Receptacle coneave and ovary partly or entirely inferior. Style simple. Seed furnished with allbumen surrounding the embryo which does not germinate in the fruit--Trees and shrubs; leaves opposite, generally entire, with interpetiolate stipules. -4 genera.
III. Macarisien. ${ }^{7}$ - Receptacle concave or convex and ovary free sussile or shortly stipitate. Seed allominous arillate or winged.-

[^355]Trees and shrubs; leaves opposite, entire or dentelate, with interpetiolate stipules.-5 genera.
IV. Anisophyllee. ${ }^{1}$ - Receptacle concave and ovary inferior. Styles distinct. Flowers polygamous. Sced exalbuminous, with macropod embryo. Shrubs with alternate leaves or alternately large and very small. Flowers in spikes or axillary clusters. - 1 gemus.

These fourteen genera comprise some fifty species, all of which, except one Rhi:ompora and two or three Casisipmurens, belong to the old world. All the species of Crossustylis are Oceanic. Nucurisin is found only in Madagascar, and Dectiplopetulum belongs exclusively to that island aud western tropical Africa. Weitere belongs to the same regions except one species which iuhabits Ceylon. Blephuristomma is Indian, as likewise Kemdelin. Peflucaly, and rignotroches belong to Malaya. Anisomplyllet has been observed in Asia and tropical Oceania, in Madagascar and the west of tropical Africa; Burveldriu in Madagasear, Asia, and tropical Occania. The genera of the Mangrove series are formed of species all of which, except Rhizupherct Mangle, grow abundantly on all the tropical maritime shores of the old world. They are the most rommon and best known amoug many plants of very different families growing with them and in the same manner on flooded coasts, such as Aciermier, Eyfierors, Comuernpurs, Lumnitucom, ete., which, seuding down into the mud their numerous long adventitious roots that support their stems, constitute aquatic forests, ${ }^{2}$ often very dense, affording shelter to crowds of marine animals, and considered in most tropical countries as dangerous sources of miasmatic affections.

These plants have manifold affinities; on the one haud with certain families with free gynecium, as the Murarisiop, and on the other hand with groups, as Rhi:ophorre, in which the orary is inferior and aduate to the cavity of the receptacle. This is precisely the ease with the Lorentluce, Onagrarioe, and Cornacere, to which they were formerly referred or compared, but are distinguished : the first by their simple perianth and the organization of their gynocium ; the last by a great number of traits, but chiefly that their ovules, when they are descending and definite in number, have the mieropyle
interior, and not exterior like that of the Rhimphemerpo. By their npposite leaves and inferior ovary, these last are near neighbours of the Myituren, from which they are separated by their stipules and by the geuerally definite number of their stamens and ovules. The latter, moreover, are always descending, with the micropyle exterior. This character recurs in the . Irellineree, the flower of which, analogous to that of the Rhimphorere in the form of the receptacle, and the thick corolla, often valvate, has an andrecium nearly always isostemonous, inserted below an epigynous disk, whilst the seeds have a small embryo situate near the summit of an abundant albumen, and the leaves are generally alternate and often compound. The genera of lihisumhnareere with free ovary, ${ }^{1}$ whilst the receptacle is more or less coneave, approach the $I_{\text {n }}$ thrariatere, of which they ofteu present the labit, the inflorescence, the simple style, but have generally neither interpetiolate stipules, nor punctate leaves, nor independent disk prominent in its upper part, nor thick and valvate petals, nor albumen in the seeds. The Rhi:uphorncetr have also been considered as allied to the Surifragucerr, especially to the Hemmemelidere, among which the genus Anisophyller has been placed, and to the Cmmeniere with opposite leares. But this affinity appears to us distant ; it can hardly be claimed for genera with parictal placentro, independant styles, numerous and not voluminous ovules, inserted on a salient or deseending and more or less lilobed placenta. To sum up, the Rhi:ophortcen appear to us neighbours of the Myrtereth, of the Lyythrertucece, and of the c'urnerere, but it is always easy to distinguish them.

Uses. ${ }^{\text {: - These are not numerous. The plants are generally }}$ astringent, tolcrably rich in tamin, and consequently sometimes employed by dyers and tamuers. This is the ease with Rhirophora muntle ${ }^{3}$ (fig. 253-260). Its lark is used in tropical America to dye black aud brown. It is employed medicinally in the treatment of flux, hemorrhage, and angina. The fruit is said to be edible, and a sort of fermented wine is prepared from it. In Brazil and Columbia,

[^356][^357]a reddish juice is obtained from incisions made in the trunk which, dried in the sun, constitutes a kind of false dragon's blood, not unfrequently brought to Europe as American kino and having the same astringent qualities as that of India. ${ }^{1}$ The wood ${ }^{2}$ of this species is tolerably hard and durable. Several Mangroves of the old world (many of which are scarcely specifically distinct) have quite analogous properties, particularly R. "quiculato and murronata. ${ }^{3}$ The Bruguieres of India, chiefly B.gymmorhize4 (fig. 261-263) and B. Rheedii, Rumphii, cylimutien, purifforce, have the same uses. Kondelin Rikectii ${ }^{5}$ is also employed as an astringent medicine. The leares of several Tudian liwiraldeits, among others \mathcal{B}. conymbusa and integrerimut (fig. 264-669), are used in the treatment of ulcers in the mouth and throat. At Sierral Leone, the fruit of Anisophylleer lawinu ${ }^{7}$ is sold in the markets in spring; it is about the size of a pigeon's egg and edible. Except Barreldeir, the plants of this group are rarely seen in our conservatories. litheapharct grows with difficulty and ordinarily attains but little development.

[^358][^359]
GENERA.

I. RHIZOPIORE玉.

1. Rhizophora L.-Fhowers regular; receptacle concare obeonical. Scpals 4 , insertel in margin of receptacle, coriaceous, valvate. P'etals 4 , alternate, valvate. Stamens 8,4 oppositipetalons, longer (or more rately $1: 2$); filaments perigynous with perianth, short or suhnil ; anthers clongate pointed tinally 2 -valvate ; furrows of anthers lateral or subintrorse, sometimes incomplete; cells areolate-multilocellate. Germen semi-inferior, a-locular, at vertex proluced to a cone; style subulate, ofteru short, at apex stigmatose 2 -leutate. Ovules in cells 2-uate, collaterally descending; micropgle extrorsely superior. Fruit girt below the middle with reflexed persistent calyx, coriaceous, indehiscent. Seed 1, desecnding; cotyledons of exalbuminous embryo conferruminate; radicle perforating the apex of the seed germinatiog within the fruit while remaining on the tree and of the pericarp, elongately clavate and serking the mad. Trees and shrubs oftencr glabreus; branches thick cicatrized; leaves oppositu, pertiolate, coriaceous entire glabrous; stipules interpetiolate, carlucous ; flowers in axillary pedunculate, ramosely a-3-chotomous eymes; pedicel girt at base with lateral bracteoles comate in a cupule. (All trop. shores.) - See p. 257.
․ Ceriops Arx. - Flowers nearly of Rhimphora, ${ }^{2}$:-(j-merous; petals ${ }^{3}$ inserted at base of fleshy 10 12-lobed disk. Stamens 10-12 ; thase olposite petals longer; filaments slender, alternating with
[^360][^361]lobes of disk；anthers oblong．Germen semi－inferior， $2-3$－locular； cells 丷三－orulate；style at apex simple subulate．Fruit，ete．，of
 leaves aud stipules of lihiöphora ；flowers subcapitate，\because－3－choto－

3．Bruguiera Lonk．－Flowers nearly of Rhizuhorn，S－1t－ merous；petals setiferous，＂－lobed and each enfolding a pair of stamens．＂ Stamens $16-25$ ；filaments fimally elastically resilient from petals； authers introrse linear－oblong．Germen inferior， 2 －t－locular ；style at apex minutely $2-4$－fid ；orules，etc．，of Rhi＊＂phor＂．Fruit turbinate， crowned with accrescent calyx ；seed germinating as in Rhiminhert．－ Trees；leaves and stipules of Rhiouphoce；fluwers ${ }^{*}$ axillary solitary

4．Kandelia Wigirs and Anx．i－Flowers nearly of Rhizuphurn， 5 －b－merous ；stamens ∞ ；filaments capillary ；anthers olilong． Germen sub－I－locular；ovules 6 ，inserted $\stackrel{\sim}{2}$－nately on columnar pla－ centa（in 1－locular ovary），ilesecnding；style at apex 3 －fid．Other characters of likioulter＇－Simall trees；opposite leares and inter－ petiolate stipules of likionhlum；Howers ${ }^{\text {F }}$ eymose pedunctulate axillary few．（East Indian shores．${ }^{8}$ ）

II．BARRALDEIEX．

万．Barraldeia Der．－Th．－Flowers hermaphrodite；receptacle very coucave．Sepals 4－8，inserted in margin，valvate．Petals same in

[^362][^363]number, subentire or Ω-firl, serrate or lacerate. Stamens double in number, inserted in 2 series under epigynous simple or 2 -plicate, 816 -lobed disk projecting between the filaments and free ; inthers introrsely 2 -rimose. Germen partly or quite inferior ; cells ? 3 -6; style at stigmatose apex variously :3-6-lobed. Ovules in cells 2, descending; micropyle extrorse. Fruit generally crowned with calyx, glolular coriaceons. Sced globular or reniform; alhumen fleshy; radicle of axile more or less incurved embryo superior.Glabrous trees or shrubs; leaves opposite petiolate glabrous, entire or serrulate; stipules interpetiolate, cinducous; flowers small in compound cymes; pedicels articnlate, minutely ${ }^{2}$-hacteolate. (Asin, tiop. Oceania, Malacca.)-See p. 291.
6. Crossostylis Fonst. - Flowers nearly of Burvaldia; receptacle shortly obconical or obprumidal. Sepals $4,5,3$-angular, valvate. Petals same in number lacerate or more rarely subentire (IItphlopete7/mm ${ }^{2}$). Stamens 8-10, of oftener 12--,3 alternating with as many lobes of disk $; 4$ authers introrse. Germen aduate to receptacle at base, thence free; style at stignatose apex fumel-shaped and there reflexed ∞-lobed. Orules in cells $4-\infty$ (very incomplete) 2 -nate, inserted in paris on contral column ${ }^{\text {s }}$ descending ; micropyle extrorsely superior. Fruit scarcely or to a less or greater extent arduate to receptacle and crowned with calyx, scarcely or tardily septicidal. Sceds ∞, furnished with a flushy aril; albumen fleshy; cotyledons of oftener straight embryo narrowly ovate. - Small trees or shrubs; leaves opposite; stipules, ete, of Pumoldein; flowers ${ }^{7}$ axillary pedunculate, 2-nate or cymose ∞. (Oceania. ${ }^{8}$)
7. Gynotroches Bl. ${ }^{9}$-Flowers nearly of Buruldrin, 4 -5-mincrons. Stamens 8-10, inscrted at margin of disk; anthers small sub-ㅇdymous. Germen partly inferior ; cells 4-6; style depressed-

[^364]prominent or inconspicuous.
${ }^{6}$ Sometimes green.
7 Large or minute, white.
${ }^{8}$ Spec. about 5. Gullema. Am, sic. Nout sér. 2, vii. 354.-A. Guav, lec. cit. 610, t. 77.Seem. Fl. Vit. 428.-Br, et Gr, İull. Soc. liot. Fr. viii. 376 ; Aun, Sc. Nat. sér. 5, xiii. 393.
${ }_{9}$ Bijur. 218 ; Mus. Lugd.-Bat. i. 126, t. 31.Benti. Joum. Lim. Soc. iii. 76.- H. Bn. Adensonia, iii. 30, 40; Fayer Fam. Nat. 36.B. H. Gcn. C81, n. 9.-Hooж. Fl. Ind. ii. 440.Dryptopotalum Arno. Ann。 Nat. Hist. i. 372.Exdl. Gen. n. 6103.
capitate. Ovules in cells 4,2 -seriate, descending. ${ }^{1}$ Fruit baccate, ∞-spermous ; seeds, etc., of Burraldeiu.-Trees or shrubs; leaves opposite ; stipules interpetiolate, caducous; flowers² axillary eymose, articulate, ebracteolate. (Indian Archipelago. ${ }^{3}$)
8. Pellacalyx Korti. ${ }^{4}$ - Flowers ebracteolate ; receptacle tubular or subcampanulate, produced beyond adnate germen and lined with tubular disk. Scpals $4-6$, inserted at top of tube, small, 3 -angular, valvate, recurvel. Petals small, inserted between sepals, at apex slightly lacerate, ${ }^{5}$ or sometimes 0 (I'lesituntha6). Stamens twice as many as petals, iuserted in 2 scries under apex of tube. Germen inferior ; cells $6-10$, complete or incomplete; style erect, at apex capitate-disciform. Ovules in cells ∞. Fruit fleshy; seeds ∞, albuminous. ${ }^{i}$-Small trees ; leaves opposite petiolate, obloug entire or serrulate ; stipules caducous; flowers axillary solitary or glomerulate. (Indian Archipelago. ${ }^{8}$)

III. MACARISIE无.

9. Macarisia Dur.-Th.-Flowers hermaphrodite ; receptacle cupular, lined with disk. Sepals 5, margimally inserted, 3-angular, valvate, reflexed. Petals 5, inserted under 10 -dentate disk; lobes unequal involute. Stamens 10, 2-scriate, alternating with teeth of disk ; authers introrse, 2-rimose. Germen inserted at bottom of receptacle, shortly stipitate, free, 5-locular; cells oppositipetalous, incomplete above; style capitellate at apex. Ovules in cells 2, collaterally descending ; micropyle extrorsely superior. Fruit capsular, girt at base with scarcely increased receptacle, oblong- $\tilde{0}$-angular, loculicidally 5 -valvate or incompletely 10 -valvate. Seeds in cells 2 , descending; testa produced above to a wing ; aibumen fleshy; cotyledons of elongate embryo oblong; radicle superior.-Small trees; leaves opposite petiolate, oblong-lanceolate entire or denticulate;
[^365][^366]stipules interpetiolate ; flowers ixillary compound-cymose ; pedicels articulate, 2-bracteolate. (Madagascar.)—See p. 293.
10. Cassipourea Aubl. ${ }^{1}$-Flowers nearly of Matearisia, 4-5merous. Stamens ${ }^{2} 15-30$, inserted at margin of disk; disk, etc., of Macarisia. Germen very shortly stipitate or subsessile ; cells 3, 4, 2-ovulate. ${ }^{3}$ Fruit fleshy or suberose, tardily septicidal. Seed arillate; ${ }^{4}$ embryo albuminous. ${ }^{5}$-Glabrous trees or shrubs; leaves opposite, entire or crenulate, penninerved; stipules interpetiolate, caducous; flowers ${ }^{6}$ axillary cymose or solitary. (Trop.entr. Anerica. ${ }^{7}$)
11. Dactylopetalum Bextri. ${ }^{8}$-Flowers nearly of Cassipouren, 5 -6-merous; calyx dentate. Petals at base long narrow, lacerate at apex. Stamens 10, $\underset{\sim}{\sim}$-seriate; the oppositipetalous longer ; or 15, inserted under the crenatures of the disk ${ }^{9}$ lining the receptacle; filaments inflexed in bud or $2-p l i c a t e$; anthers introrse versatile. Germen more or less completely $2-3$-locular ; ${ }^{10}$ ovules in cells 2 ; obturator thick. Fruit . . ? - Small trees or shrubs; leaves opposite entire coriaceous; stipules small, caducous ; flowers ${ }^{11}$ axillary cymose or glomerulate, sometimes very crowded, articulate. Other characters of Cassipourea. (Trop. west. Africh, Malteyascui. ${ }^{12}$)

12? Blepharistemma Wali. ${ }^{13}$ - " Flowers polygamo-diocious (nearly of Cassipouren), 4-merous ; calyx valvate. Petals 4, laccrate, and stamens 8 (of Cassipmurea). Germen free, contracted at base, 3 -locular ; ovules in cells 2 and other characters of Cassipmuren.- A shrub (?); leaves opposite petiolate sinuately crenate penuinerved; stipules interpetiolate, caducous ; cymes axillary shortly pedunculate, ∞-florous." (East India. ${ }^{19}$)

[^367][^368]13? Weihea Spreng. ${ }^{2}$ - Flowers nearly of Cussipourea, 4-6merous ; stamens $15-30$. Germen at broad base internally adnate to receptacle; cells 3,4 , Ω-ovulate. ${ }^{2}$ Fruit tardily septicidal. ${ }^{3}$ Seeds ${ }^{*}$ albuminous, embryo, etc., of Cussipourea.-Trees or shrubs; leaves opposite, entire or serrulate ; flowers axillary, solitary or cymose $3-\infty .{ }^{5}$ Other characters of Cassipourea. ${ }^{6}$ (Ceylon, trop. west. Africa, Madagascar.7)

IV. ANISOPHYLLEA.

14. Anisophyllea R. Br.-Flowers polygamous; receptacle concave tubular. Calyx epigynous ; folioles 4, valvate, finally erect. Petals 4 , alternate, inserted with sepals, entire or emarginate, oftener 2 -lobed or lacerate. Stamens 8,2 -seriate and alteruating with glands of epigynous disk ; filaments subulate compressed ; anthers often 2dymous, 2 -rimose within, sometimes in oppositipetalous stamens glanduliform (or 0). Germen 4-locular ; cells oppositipetalous, 1 ovulate; styles 4, distinct, recurved at apex. Ovule descending; micropyle extrorsely superior. Fruit oblong, terete, often costate, drupaceous or coriaceous, naked or (?) widely 3-t-alate, indehiscent; seed descending; radicle of exalbuminous fleshy embryo macropod clavate; folioles of inferior gemmule ∞, decussate.-Trees or shrubs glabrous or sericeous; leaves distichously alternate, all equal or oftener the alternate ones minute stipuliform ; the others larger, at base equal or unequal, $3-7$-plinerved at base, coriaceous (often lutescent), exstipitate; flowers axillary spicate or subracemose, articulate ; bracteoles minute or 0. (Trop. Asic, Malayn, Malaca, trop. west. Africa.)—See p. 295.
[^369][^370]
LIV. MYRTACEA.

I. MYRTLE SERIES.

Tue best known plant of the Myrtle genus ${ }^{1}$ is doubtless the common Myrtle (fis. $273-28: 3$), so frequently cultivated in our gardens. Its

Fig. 277. Floriferous branch ($\frac{1}{2}$).
fluwers are hermaphrodite and regular, with a receptacle in the form of a deep cut in the cavity of which is lodged the adnate ovary, whilst the perianth and andrwecium are inserted in its margin. The

[^371]calyx is formed of five imbricate sepals, the margins of which are contiguous for only a short distance. Five sessile petals alternate with the sepals and are imbricate in prefloration. The stamens are very numerous, epigynous, and at adult age disposed without any appareut order.' Each is formed of a free filament, inflexed in

Fig. 282. Seed ($\left.\begin{array}{l}5 \\ 1\end{array}\right)$,

Fig. 281, Fruit $\binom{2}{1}$.

Fig. 278. Flower.

Fig. 283. Long. sect. of seed.
the bud, and of a short bilocular introrse anther a dehiscing by two longitudinal clefts. ${ }^{3}$ The inferior ovary contains two or three cells in the internal angle of which is found a placenta bearing an indefinite number of small anatropous ovules. The fruit surmounted by the remains of the now fleshy calyx, is a berry enclosing one or several reniform seeds, ${ }^{4}$ with a large fleshy hilum, hard coats, covering a curved flesly embryo, destitute of albumen. The summit of the cotyledons and that of the radicle are turned towards the umbilicum. The common Jryrtle is a slurub with simple opposite leaves, without stipules, permeated with reservoirs of an odorous essence. The flowers are ordinarily solitary, and the axillary peduncle bears two lateral bracteoles in the upper part.
49.-Anamomis Griseb. Fl. Brit. ${ }^{+}$IV. - Ind. 210.Blepharocalyx Berg, Limar, xxvii. 412 ; xxix. 256.-Macropsidium BL. Mus. Lugd.-Bat. i. 85. -? Temus Mol. Chil. 153.-DC. Prodr. i. 77.C. Gat, Fl. Chil. i. 60.--Phm. Bot. Zeit. (1857), 392, 393.-Temu Berg, Linncea, xxx. 710.Myrtcola Berg, Linnca, xxvii. 393 ; xxix. 252; xxx. 709.-Ugni Turcz. Bull. Mosc. (1848), i. 579.- Myrcianthes Bera, Linncea, xxvii. 315 (incl.: Calycolpus Berg, Luma A. Grat, Pseudocaryophyllus Bera).

1 The stamens originate in Mryrtus, as in Callistemon, Eucalyptus, by groups superposed to the petals (Payer, Organog. 461), but they remain distinct to the end in Callistemon, whilst in the Myrtles "they are soon confused with each other so that they cannot be recognized."

2 Basifixed, or versatile.
${ }^{3}$ The pollen, in all the Myrtacece of our first three series, where it has been studied, has appeared "depressed, triangular, the sides often a little reentrant; three very slight folds, which unite at the poles on a triangular piece; in water approaching more or less a spherical form, producing small papille at the angles. Grains.small, transparent, not viscous." (H. Moul. Anv. Sc. Nat. sér. 2, iii. 333). The bands may be more or less wanting (in certain species of $P_{\text {sidium }}$, and the angles bear but slightly prominent papille (Myrcia).

4 They are sometimes separated by the rudi. ments of false partitions, as happens in Myrtcola (Leandria A. Gray).

There are Myrtles which frequently have as many ovarian cells as petals and which, consequently, would represent the most complete types of the genus. But at the same time their sepals are often large and foliaccous. These have been distinguished under the name of Calycolpus; ${ }^{1}$ they are all American. In those which have been named Lama, ${ }^{2}$ the seminal coats are membranous. Many have tetramerous flowers ${ }^{3}$ and some also a caducous calyx. Instead of being solitary, the flowers may be in cymes $3-7$-florous or formed of an indefinite number of flowers, biparous, or triparous. ${ }^{*}$ Thus constituted, ${ }^{5}$ this genus includes some sixty ${ }^{6}$ species, ${ }^{7}$ arborescent or oftener frutescent, glabrous or tomentose, natives of nearly all the warm regions of the globe. Beside this genus are placed a great number of others scarcely differing from it and most frequently separated from it only by characters quite artificial and mostly of very little value. Among those which have been proposed, we shall distinguish only the following, the number of which might perhaps be still further reduced without inconvenience.

Rhorlomyrtus, inhabitiug Oceauia, chiefly the Iudian Archipelago, consists of Myrtles in which the ovules, numerous in each cell, are isolated in a great number of cellules bounded by false partitions formed between them by the hypertrophiate placente. Deenspromm, native of the same countries, has also nearly all the characters of Myrtles and ovarian cells divided iuto uniovulate cellules by false partitions; but the latter are vertical, and the ovules, few in number (two to four) which they separate from each other, are descending. Pimenta is also very near the Myrtles, and the cells, two in number, likewise cuclose a limited number (one to three or four) of descending ovules, inserted very near the summit, and with mieropyle finally lateral ; but there are no false partitions. Pimente is from tropical

[^372][^373]America and has numerous flowers in ramified groups of cymes. MIfrein, American like Pimento, has all its essential characters ; but the orules, equally restricted in number (two in each cell), are ascending instead of desceuding, and their seeds have large contortuplicate cotyledons. In Rherl(tmuic, comprising shrubs of Asia and tropical Oceania, the flowers, ordinarily tetramerous, are also those of the Myrtles, and the ovules are numerous; but the ovary has only one cell ; so that these plants may be defined as Myrtles with tro parietal placeute. Fen:lin, Australiau shrubs, have also parietal placentation, but ordinarily ouly in one cell, as the other generally becomes more or less abortive, and on the placenta there are only two, three, or four superposed ovules which, having become seeds, are isolated each in a cellule formed by the false partitions of the putamen (the fruit being drupaceons). Feijon, a Brazilian shrub, has also the flowers of a Myrtle, with complete or incomplete and multiovulate ovarian cells. But the staminal filaments, instead of being at first incurved, are straight in the bud and lengthen rapidly during anthesis; the embryo is said to be surrounded by albumen.

The genus Marlieria is also American, and its flowers are organized like those of the Myrtles, with the ovary of Myreia, i.e. with cells containing each two ascending ovules ; but it is distinguished by the mode of insertion of the stamens and by the conformation of the calyx. The floral receptacle, after lodging the ovary at the bottom of its cavity, is prolonged in a hollow tube on which are inserted by steps the pieces of the androcium. The perianth, inserted on the margin of this tube, is formed of petals which may be wanting and of a gamosepalous calyx quite closed and opening only by tearing in the true Marlieria, or very shortly lobed and not completely closed in those named Eugeniopsis. Calyptranthes, trees or shrubs from tropical America, have all the characters of the true Murlierin, and are distinguished only by the mode in which the calyx detaches itself circularly by its base and in a single piece, like a hood.

Campomanesia has the calyx of Calyptranthes or rather of Marlieric, for it tears deeply from top to bottom, and thus forms from four to six unequal lobes. The ovary has from four to ten cells and is surmounted by a style at summit stigmatiferous peltate or capitate. In cach cell the ovules are disposed in two or four vertical series. The fruit encloses several seeds the embryo of which is spirally
rolled. It comprises American trees and shrubs. One has been distinguished under the name of Paiceen, because its receptacular cup, before bearing the calyx, is dilated outwards into a sort of large horizontal circular disk.

Fig. 284. Bud. These plants differ little from the Guyavas (Psidium), long known by the form of their calyx (fig. 284, 285), which is valvate, gamophyllous, membranous, and which tears at the time of anthesis to release the internal organs. The ovary has from two to eight cells in which the ovules, very numerous, are disposed in many series. The fruit is a berry, the pulp of which encloses a variable number of seeds, with curved or spiral embryo and short cotyledons. The Guyavas are probably all of American origin, but several have long since been introduced into the tropical regions of the old world. Psilliopsis has been gencrically distinguished from them, because the summit of its calyx is dilated into five foliaceons layers. Myprhinimm, a South American slorub, has the leares, the flowers, and the frait of a Myrtle, and is immediately distinguished ly the almost definite number of its long stamens. There are often only four, that is one facing cach sepal ; but from five to eight are not unfrequently observed, because, in this ease, there are one or more pairs where in the isostemonous flowers only one stamen is scen.

Euyruiu (fig. 286-289), formerly coufounded with the Myrtles, has quite the flower, and differs from them only by one character, viz, that their secds, ordinarily solitary or fen in number, have a large straight embryo, with a short radicle and thick hemispherical cotyledons, placed against each other or even united by their plane surface. 'Two things differ chiefly in their organization; the
inflorescence and the form of the receptacle. The former is a simple or compound cluster, reduced even to one flower, or it is in cymes, as in Jombrsa and Sym:rgium. This latter name is derived from the fact that the petals may be united in a single piece and detached by the base as a hood ; but this character is far from being

Eugenia Jambos.

Fig. 286. Long. sect. of flower.

Fig. 287. Long. sect. of fruit.
constant. The floral receptacle may be more or less globular or turbinate and prolinged above the inferior ovary as in Jomintose, or
 288, 289), or to an obconical hom, as in ('trrimystns, and this hom may even be very long (Cuphementhens), smonth without or covered with thick rertical wings (Itemomytus), without the other essential characters being modified. Hence a very large number of divisions in this genus, which, comprising some five hundred species, very abmadent in America, but existing also in all the tropical regions of the old world, is represented by trees and shrubs with leares almost always opposite, without stipules, sometimes however opposite or verticilate by threes, analugous to those of the Myrtles. ${ }^{1}$ The

[^374]Acicalyptus, has been hitherto doubtfully placed among the xerocarpous Myrtacer; but its fruit is unknown, and it is apparently very near the other genus Piliocalyx, which has a fruit and sced of Eugonia. As to the flower
imperfectly known, range themselves doubtfully near Futgenim, from which perhaps they will not all be definitively separated. The first of these genera is Ameriean, likewise the second, remarkable for its stamens being inserted in numerous series on the receptacular tube. In the third (which has been doubtfully referred to the precediug), has been placed a Brazilian species and also a species from New Cale-

Fig. 289. Long. sect. of fruit.

Eugenia (Caryophyllus) aromatica.

Fig 288. Floriferous branch.
donia, the calyx of which is somewhat different as regards alternative prefloration.

II. LEPTOSPERM SERIES.

In the genus $I_{\text {eptospermum }}{ }^{1}$ (fig. 290-293), which has given its name to quite a group of Myptacere with dry fruit, ${ }^{2}$ the flowers are

Acicalyptus has ovarian cells (complete or incomplete) containing numerous anatropous ovules, arranged on vertical placentio; and Piliocalyx, orthotropous and descending ovules, inserted in each cell on a placenta nearly apical.
${ }^{1}$ Fonst. Char. Gen. 71, t. 36.-J. Gen. 323.Gzertn. Fruct. i. 174, t. 35 (part).-Lask. Dict. iii. 465 ; Suppl. iii. 336; Ill. t. 423.-DC. 1;odr. iii. 226 (part).-Spacn, Suit. à Buffon, iv. 141.

[^375]generally hermaphrodite ${ }^{1}$ and pentamerous. Their receptacle is coneave, obconical or nearly and widely open. Its margin bears five sepals, primarily imbricate, ${ }^{2}$ membranous, and as many alternate petals, imbricate in the bud. The latter are inserted outside the margin of a glandular disk which lines the cavity of the receptacle. The same is the case with the stamens formed each of a short ${ }^{3}$ free filament, inflexed in the bud, and a short bilocular introrse anther, dehiscing by two longitudinal clefts, afterwards versatile. They are indefinite in number, sometimes few, and appear, at adult age, disposed in a single series, though unequal. ${ }^{4}$ The gynæcium is composed of an inferior ovary, imbedded at the bottom of a receptacular cavity, united with it to a variable extent, above ${ }^{5}$ almost flat or slightly convex. It may have five oppositipetalous cells, or less, ${ }^{6}$ or many more, ${ }^{7}$ and it is surmounted by a style, the stigmatiferous extremity of which is truncate, or capitate, or peltate. In the internal angle of each cell are found ovules ordinarily

Leptospermum flavescens.

Fig. 290. Floriferous branch ((very numerous, more rarely indefinite in number. The mode of insertion is very variable. Sometimes they are arranged in two series, on a slight placentary projection, and sometimes in a circle on the margin of a peltate placenta, itself attached to the internal angle by a short horizontal or oblique foot.s ${ }^{\text {s }}$ They are anatropous, rectilinear, or curved. ${ }^{9}$ The fruit (fig. 293), the base of which is imbedded in the receptacular capsule, is a depressed, loculicidal capsule, the seeds of which, linear, cuneiform or angular, not unfrequently winged or ciliate, enclose a straight fleshy embryo, with elongate cotyledons. Leptospermum consists of small

[^376]trees or shrubs inhabiting, to the number of about twenty-five species, ${ }^{1}$ Oceania, and chiefly Australia. The leaves, simple and alternate,

Lepitospermum flavescems.

Fig. 291. Flower ($\left.\begin{array}{l}5 \\ 2\end{array}\right)$.

Fig. 293. Fruit (2 $\frac{2}{1}$).

Fig. 292. Long. sect. of flower.
often rigid and linear, punctuate ant odorous, are destitute of nervures or 1 -3-nerved, glabrous or pubesecat. The flowers ${ }^{2}$ are terminal or nearly so, or axillary, solitary or

Fig. 294. Florifurous hatach. grouped in small bi- or triflorous cymes, sessile or pedicellate and accompanied by imbricate bracts.

Agonis, of which some ten Australian species are known, was formerly confounded with Leptospermum ; it is distinguished by the stamens, often less numerous, and the ascending ovules, two to four in number, inserted on a placenta itself ascending; differential characters which, in this group, are of very little value, and which, doubtless, we should consider too insignificant to establish a distinct genus, if the flowers of Agonis were not grouped in small globular capitules, axillary and terminal. ${ }^{3}$

Bacciea (fig. 294) is also very near Leptospermum. It has the flower, with an androcium isostemonous, diplostemonous or formed of from eleven to trenty-five stamens. The ovules are one or two in each cell, oftener indefinite in number, with all the varieties of placentation observed in Leptospermum ; but they are immediately distinguished from the latter by their leaves being opposite

[^377](fig. 204) instead of alternate. They are also Oceanic shrubs, often cricoid. The embryo has small cotyledous relatively to the radicle which is thick and swollen. Hypocalymna, the ovarian cells of which enclose from one or two to an indefinite number of ovules, has been generically separated more especially because the stamens were thought to be monadelphous. But if the greater part of them are, in fact, slightly united by the base of the filaments, there are also some which are entirely independent. Scholtiuiu has also been distinguisked as a genus becanse the placenta bears from two to four orules and the receptacle scarcely rises above the ovary; we can only consider both as sections of the genus Bcecliea.

In Asturtert, which perhaps ought no longer to be separated from Bectien, all the characters of vegetation and of Horation are similar; but the stamens are pentadclphous, each greup corresponding to the intervals of the petals. In Baleustion, native, like Lstarten, of Australia, the leaves and flowers (rather large) are equally these of Buckea; but the receptacle has the form of a large urecolate sac at the bottom of which is the ovary, and at the throat are inserted the perianth and pentamerous andræcium.

Melatencu (fig.295, :296) gives its name to a small group of gencra,

Melaleuca fulyens.

Fig. 295. Flower (3).

Fig. 296. Long. sect. of Hower.
numerous in species, in which the flowers often have the stamens united in as many exserted groups as the flower has parts, and these groups are oppositipetalous. Meletencer has the same number of multiovulate, rarely uniovulate, eells, with the ovules inserted in the internal angle, in two or more series, arranged on a vertical or peltate placenta, with short, horizontal or more or less oblique support. There are some whose stamens are searcely united in bundles
at the base, and others where they are quite free, and yet we camnot separate generically one from the other. Hence the impossibility we find of retaining as a distinct genus M. puludosa aud some neighbouring species separated under the name of Callistrom. On the other hand, the staminal bundles are often united together at the base in a very short tube. This tube is exceptionally prolonged in Lamarchen, which we make only a section of Melutenea. This belongs to tropical Asia and Oceania. Beaufortit, all Australian, has the flower of Mrlalener, with the stamens united in oppositipetalous bundles; but the anthers are basifixed instead of being versatile as in the preceding genera. They open by clefts longitudinal or short and near the summit, sometimes reduced to pores. The ovarian cells enclose one or from two to four ovules, of which several may remain sterile or disappear altogether. In Culuthomus, the foliage, the habit, the mode of inflorescence are all those of Betufortic, and the anthers are basifixed, oblong or lincar, with parallel cells, dehiscing internally by longitudinal clefts. The ovules are numerous in each cell, with all the varieties of placentation observed in Meleleuct. They are all from western Australia, as are those of Eremert, only artificially separated, which have flowers solitary or two or three in number towards the summit of the branches, instead of lateral and sessile, like those of Caluthemens, and short basifixed stamens, with exterior longitudinal clefts. Fimier may have the inflorescence of Eremed, or capitules with flowers more or less numerous. The flower is nearly the same; but the receptacular tube, more elongate and lined by a disk of circular border, bears, exterior to the latter, numerons free stamens, like those of Cullistemen, with versatile anthers, not basifixed as those of Eremura. They form a trausition therefore between this group and the following (Aletrosideretr), of which they often have the flower.

Tristuniu alone among them has pentadelphous stamens, the bundles being oppositipetalous, sometimes short, sometimes louger than the corolla. The ovary, totally or only partly inferior, has three cells the ovules in which are indefinite in number; and, as in the greater part of the preceding genera, the placente which bear them are very variable in form, sometimes consisting of thick vertical cords, sometimes peltate and supported by a transverse or slightly oblique foot, with a head the periphery of which bears reflexed orules. The fruit is a capsule, exserted or enclosed, loculicidal, with seeds
elongate-cunciform or dilated on one side to a wing. Natives of Oceania, from Australia to the north of the Indian archipelago, abundant in southern Asia and New Caledonia, Tristania has alternate or, more rarely, opposite leaves, and flowers in axillary more or less ramified and compound cymes.

Metrosideros (fig. 297, 298) has, like the following genera, free exserted stamens inserted in the periphery of the receptacular orifice. It has been observed in the warm regions of south-eastern Asia and Oceania, from Malaya to New Zealand and as far as the Cape of Good Hope and in south-western America. The placenta consists of two ver-

Fig. 297. Flower (${ }_{1}^{2}$). tical lobes, thick and elongate, covered with ovules. It becomes salient, in the form of a short horizontal or ascending club, in M. stipularea, of which has been made the Chilian genus Tepualia, where it bears a small number of ascouding ovules, and in some Occanic species, as M. ciliuta, paradoxa, chisyanthu, ete., where the ovules are more numerous and, more frequently still, inserted over the entire surface of a shield-like dilatation of its free extremity. They have served as type of the genus Aleuthostemon and have, nearly always, alternate leaves, whilst the Metrosideros proper lave generally opposite leaves. The calyx valvate or slightly imbricate, is ordinarily regular in the true Metrositeros, often a little irregular in Xanthostemon. In a species of which the genus Plenrocclyptus has been made, the summit separates irregularly on one side at the time of blooming and rises like a small unequal lid. These plants cannot, in our opinion, form distinct genera, and we shall consider them only as sections of Metrosideros. The same will be the case, notwithstauding its cymes contracted to a pedunculate head, with M.glomulifere, distinguished under the generic name of Syncorpiu, whilst amoug Eucalyptus, we shall also find a few species presenting this same capitular arrangement of flowers and
fruit. What is more remarkable in this genus is that the situation of the ovary is extremely variable, with all the gradations possible from a total adherence to an entire independence of the gynecium completely superior, as is the case in certain Australian and New Caledonian species of Xunthostemon. Moorin is scarcely distinct from Metrosideros; it has five pointed sepals, slightly imbricate, five petals and somewhat numerous stamens, shorter than the calyx, with an ovary semi-superior, the three cells of which enclose inferiorly an ascending placenta on which rise ovules indefinite in number, it is true, but often inconsiderable. The fruit is loculicidal, and the leaves are opposite, peuninerved. It consists of small trees or shrubs from New Caledonia and the neighbouring isles. Lrillastrum, likewise New Caledonian, has nearly the flower of Metrosideros, tetramerous, with a very large number of stamens and two multiovulate ovarian cells. But the capsular fruit, forming with the thickened and hardened receptacle, a deep obeonical cup, is wide at the summit and sets free a single pea-shaped seed, with thick fleslyy embryo, and thick folded cotyleduns. The seminal coat is covered with a circle of scales, resembling an aril and corresponding to as many aborted seeds. The leaves are opposite, and the flowers axillary solitary or ternate at the summit of a common peduncle.

Eurctlyptus (fig. 299-303) has given its name to a small sub-series (Furulyptec) constituted by it and the gemus Anymphorco. The flowers have a concave receptacle the margin of which bears a gamosepalous calyx. In the genus Eucalyptns it is superiorly truncate entire or very rarely divided into four short and distant teeth. The name of the genus is derived from the corolla which here forms a hood analogous to that represented by the calyx of Calyptranthes, Acicalyptus, etc., and which, letaching itself circularly by the base, falls off in a single piece at the time of anthesis (it is extremely rare that it then divides into several segments). The stamens are very numerous and have versatile anthers, with cells dehiscing lougitudimally. The capsular fruit, imbedded in the receptacle, opens from the summit along the middle line of cells. The Eucalypts are odorous trees, nearly all Australian; there are very few in the Indian Archipelago. The leaves are frequently variable in form, according to the age of the tree ; the lower opposite and the upper often alternate. The flowers are axillary, solitary or in cymes. In E. Ledmami, type of a genus Symilhyomyitus, the contracted inflo-
rescence resembles a capitule, and the multiple fruit is here analogrous to that of Symerrpita in Metrosideros. Anyophora a near neighbour of Encollyptus, and, like most of them, Australian, has nearly the same flower; but the petals, membranous and much imbricated, are

Eucalyptus Clobutus.

Fig. 299. Habit (of a young tree).

Fig. 300. Dehiscingro bud,

Fig. 303. Fruit.
nevertheless very distinct ; the summit is sometimes prolonged into a sort of dorsal point. The calyx presents four or five distinct tecth. The other characters are those of Eucalyptus, of which Angophora has the gynecium; where the seed is known, it is solitary and apparently peltate.

This series further includes two Australian genera somewhat abnormal. One, Puctionesia, has flowers the sepals of which become large and more or less petaloid, with shorter petals, and, in each of

21
the two ovarian cells, an indefinite number of peadent or campylotropous and recurved ovules. The other, Diburni", has a perianth still more exceptimal, since, the corolla being entirely absent, the sepals, eight in number, are imbricate in two series. The cells of

Eucalyptus Globulus.

Fig. 301. Flower (2 ${ }^{2}$).

Fig. 302. Long. sect. of flower.
the inferior ovary are also two in number, and often incomplete. In the lower part of their internal angle is seen a placentary mass covered with anatropous ovules. In both genera the leaves are opposite and penninerved.

III. CHAMALAUCIUM SERIES.

Chumentarimm' (fig. 30t, 305) has flowers ordinarily hermaphrodite ${ }^{2}$ and pentamerous, with a hollow recepticle, very variable in form, obconical, tubular or ureeolate, at the bottom of which is imbedded the ovary, whilst its upper opening bears a calyx of five small sepals, entire or ciliate, often petaloid. The five petals, longer and inserted in the intervals, are rounded, concare, imbricate in the bud and ordinarily very caducous. The androctium is formed of two verticils of stamens, ${ }^{3}$ superposed, five to the sepals and five to the petals and formed each of a short filament, inflexed in the bud

[^378]the margin of the disk, in a single series; but in reality they belong to two verticils, and the oppositipetalous are primarily the more elevated. With the stamens alternate an equal number of tongues, often cqual to the staminal filaments, and ordinarily, for this reason, described as staminodes; they are only perhaps the lobes of the disk.
and enlarged at the summit, which supports the two adnate cells of an introrse anther dehiscing by two lougitudinal clefts. The ovary is unilocular, surmounted by a subulate style somewhat enlarged at its stigmatiferous summit, which is often surrounded liy long unequal and rigid hairs. From the lower part of the ovarian cell rises, sometimes along one of the partitions, ${ }^{1}$ an eccentric placenta, of variable length, bearing from two to ten ascending ovules in two

Chamælaucium uncinatum. parallel series with micropyle directed downwards and outwards. The fruit, surmounted by a persistent calyx, is dry, indehisecut and contains one or a few seeds, Chummlaurium comprises shrubs of south-western Australia, having ordinarily the aspect of a Heath, with opposite, rarely alternate, leaves, small and entire, without stipules, oftener odorous. The flowers are solitary in the axils of the leares or of the bracts, which replace them at the summit of the branches in such a manner that the entire inflorescence resembles a spike or terminal capitule. Each flower, sessile or supported by a short pedicel, is accompanied by two large and sinuous lateral bracteoles, at first envelopiug the bud. About ten species have been described. ${ }^{2}$

Some species of Darwinia (fig. 306-308) differ from Chumulaucium only in the form of their anthers; the latter being nearly globular, and opening near their organic summit, that is above and without, by two very short longitudinal clefts, or two pores more or less confluent within. The flowers are in terminal capitules and situated in the axil of narrow or often wide and coloured bracts, forming a petaloid involucre (fig. 306). The sepals are mutichous, sometimes glandular at the summit. These plants, like all of the series, are

[^379][^380]Australian. Actinorlinm is a Durwinit with tetramerous diplostemonous flowers and stamens not accompanied by sterile tongues. Ifommiouthers, on the contrary, lats these tongues in the intervals of

Fig. 307. Flower (3)

Darninia (Genctyllis) macrostegia.

Fig. 306. Inflorescence.

Fig. 30s. Long. sect. of flower.
its ten fertile stamens, for its flower is pentamerons, and in other respects it is quite that of a Domrinim; but the sepals are attemuted at the summit to a long subulate $p^{\text {rint }}$, as we shall find those of

Troticordin Brownia.

Fig. 309. Flower (4).

Hig. 310, Long. sect. of flower.

Celythere are ; and this character, which otherwise would be of the smallest importance, has been thought sufficient here to distinguish this quite artificial gemus. In Vortiondtin (fig. .on!), :310), everything
in the flower is equally that presented by Chemceluncirm (or Duruinia); but the sepals, from five to ten in number, are cut into long plumose or ciliate strips. The ovary encloses one ovule nearly basilar, or two ovules and upwards, and the two lateral bracteoles which

Fig. 311. Eloriferous branch. accompany the flower are wide, rounded, concave and imbricate, in such a manner as to form around the bud a complete accessory envelope; they are carly detached. Pileanthus has the flower of Verticordia, with ten sepals not divided and twenty or more fertile stamens, without tongues interposed. There is often one opposite each sepal and a bundle opposite each petal. The anthers are those of Chamolaucium, and the flowers, like those of Verticordia, are at first enveloped by two large concave and imbricate bracteoles. Lhotzliya has a receptacle in the form of a loug gourd surmounted by a narrow neck, dilated above to a cupule on which are inserted five obtuse

sepals, five petals and numerous stamens, unequal and disposed in several scrics, but withont glands interposed. Culythrix (fig. 311-31t) differs only in the form of its scpals, prolonged at the
summit into long acuminate points; it is, consequently, to Lhot:iliye (from which it can be separated ouly very artificially) what Homorouthers is to Durwini". Therpptomene has flowers and organs of vegetation strongly recalling certain species of Burlenand Leptospurmum, and thereby approach genera of the preceding series. The sepals, five in number, are persistent, as likervise are the five alternate petals, most frequently comnivent. It has five alternipetalous sitamens, or ten stamens disposed in two verticils, without sterile tongues interposed. The unilocular ovary contains a placenta nearly basilar, but eccentrie, or rising more or less on the partition and supporting from two to teu asecurling ovoles. The leaves are opposite, like those of biechect. From it have been distinguished Itomutornly.p, having a callucous perianth, stamens indefinite in number, and alternate leaves, like those of Leptorymmm, and Mhromy,tus, having persistent sepals, open petals, ten stamens, or only five facing petals, with an ovary the single cell of which is traversed from the base to the summit by a filiform and pauciovulate placenta.

IV. BARRINGTONIA SERIES.

Burvingtonice ${ }^{1}$ has regular flowers rarely pentamerous, nearly always tetramerous (fig. 315, 316). In the latter case, the concave receptacle, in the form of an obconical horn, rarely urceolate, is nearly filled by the imbedded ovary and bears on its margin a valvate or imbricate-decussate calyx and four petals, imbricate in the bud. The stamens are indefinite in number, inserted perigynously like the perianth. The filaments are united below in a short ring which may also athere with the base of the petals, free throughout their remaining extent, twisted or corrugate in the bud, straightened and exserted at the time of anthesis, and surmounted ${ }^{2}$ by a small bilocular introrse auther, dehiscing by two lougitudinal and often versatile clefts. The inferior ovary has two or four cells superposed

[^381][^382]to the petals. Its summit, nearly flat, is surmounted by a long style with an obtuse or slightly enlarged stigmatiferous extremity, and its base is surrounded by a circular collar, springing from the epigynous

Barringtonia (Stravadium) racenosa.

Fig 315. Long. sect. of flower.

Fig. 316. Gynæcium, with ovary open ($\left(\frac{1}{1}\right)$.
and more or less prominent disk. The placenta, which occupies the internal angle of each cell, supports two parallel series of transverse or obliquely descending ovules with their raphes facing each other. There are from one to four in each series, and besides a descending ovule is often found below, on the middle line, with micropyle superior and interior. ${ }^{1}$ 'The fruit, fleshy and more or less fibrous, indehiscent, oblong or pyramidal, surmounted by a persistent calyx, usually contains only one seed, without albumen, with a fleshy embryo, thick and undivided. ${ }^{2}$ Burringtonin comprises fine trees of the tropical regions of the old world. They have alteruate leaves, collected near the summit of the branches, simple, entire or dentelate, penninerved, without stipules and without glandular punctuations. The flowers ${ }^{3}$ are in spikes or clusters, often elongate and pendent, terminal or lateral. A score of species have been distinguished. ${ }^{\text {. }}$

[^383][^384]Close beside Barringtonict are ranged Cavegut and Planchonia which ought not, perhaps, to be generically separated, and all which belong to the warmest regions of Λ sia and the Indian A:chipelago. The former have the exterior stamens longer, and with the interior, destitute of anthers, with the undivided embryo of Pimmingtomia. The latter has the interior staminodes fertile and shorter than the stamens. The embryo has foliaccous and folded cotyledons, and a very long spirally-rolled radicle. Petersin of fienemu, a large tree of Angola, is also said to have nearly all the characters of a Pinirinytomic, and especially its flower ; but the alternate leaves are punctuate, and its floral receptacle bears, in the interval of the sepals, four large wings which only grow round the fruit in the form of vertical membranes, semi-orbicular and veined. ${ }^{1}$

The flowers of Gustaviu present a great resemblance to those of Berringtomiet. The inferior ovary is also lodged in the cavity of a turbinate receptacle the margin of which bears a calyx entire, or lobed, or 4-6-fid, and from five to eight imbricate petals. The stamens, very numerous, inserted round the margin of a circular epigynous disk, are free and all fertile, with a basifixed, elongate anther having two linear cells opening near the summit by a pore or short cleft. The inferior ovary is divided into four, five or six pluriovulate cells, and the indehiscent, fibrous fruit, encloses a small number of seeds, similar to those of Euyenie. It comprises fine trees or shrubs of tropical America; the leaves are alternate.

In ciustariu, the stamens form, above and around the ovary, a crown quite regular. Let these same stamens unite at the base and form a sort of tube, but unequal, because those on one side are longer than those on the other, and we have C'arinitume, consistiug of fine trees of tropical America, the inferior ovary of which, often trilocular, becomes, besides, quite a peculiar fruit. It is a sort of

[^385][^386]pyxis nearly cylindrical and traversed in the direction of its axis by a thick triangular columella surmounted by a woody operculum. The latter separates circularly from the rest of the fruit to liberate winged seeds, with contortuplicate embryo, furmed of a large radicle

Fig 317. Flower.

Fig. 318. Flower seen from above.

Fig. 320. Gynæcium.

Fig. 319. Long. sect. of nlower.

Fig. 321. Long. sect. of gynæcium.
and wide foliaccous cotyledons replicate upon themselves. All the stamens, more developed on one side of the flower than on the other, are fertile, and it is on this account chiefly that they have been separated from Courcturi. The latter have, at the summit of a large unilateral ligule, sterile stamens, the anthers of which disappear or are reduced to small dimensions. Couroupitu (fig. 317-321), from the same countries, has the same organs of vegetation as Ciustuviu and Curinience; but the androcium is still more irregular.

The stamens, all fertile, form at first a complete crown within the perianth; then the common support straightens itself, in the form of a thick fleshy tongue, on one side of the flower, having the appear-

Fig. 322. Flower.

Fig. 323 Long. sect. of flower.
ance of a sort of hood with its eavity over the summit of the gynacium, aud bears, after a tolerably long smooth surface, numerous fertile stamens, similar to those at the base. The fruit of Couroupita is globular or nearly so, coria-

Fig. 324. Dehiscing fruit ($\frac{1}{3}$). ceous and crowned with a sort of operculiform cap, but which does not separate at maturity, as in Couratari. The seeds have the same embryo as the last. In Lecythis (fig. 322-326), the pyxide fruit is often large and with very thick and woody coats; it opens by a lid like that of Couratari, but it ap-

Lecythis Zabucayo.

Fig. 325. Seed. F'ig. 326. Long. sect. of seed. proaches in form (fig. .324) that of Courompitu. The flower also bears a strong resemblauce to that of the latter; but those of the stamens which are inserted on the upper part of the great cuculliform ligule, are reduced to papilliform staminodes, instead of being fertile, like those of Comroupitu. The seeds enclose a fleshy and undivided embryo.

In the preceding genera, the sepals, often six in number, are distinct and more or less imbricate in young age. On the contrary, in Bertholletia, a fine tree of tropical America, the calyx is primarily a globular valvate gamophyllous sac, enveloping the rest of the flower and, at the time of anthesis, dividing from top to bottom ordinarily into two segments. The androcium is that of Lecythis, and the fruit opens at the summit by a small operculum. The triangular seeds (fig. 327, 328), which it contains in small number, enclose, under their resisting, rugose coats, a thick fleshy and undivided embryo.

V. NAPOLEONA SERTES.

Napuleona ${ }^{1}$ (fig. 329-333) has regular and hermaphrodite flowers, with concave receptacle. Its margin bears a calyx of five sepals, ${ }^{2}$ valvate in the bud, and a gamopetalous corolla with five lobes alternating with the sepals, folded in a peculiar manner in the but. It is lined with two concentric petaloid collarettes, which have been compared to the disks of Pasifflora, adherent at the base to the corolla and falling with it. The exterior is formed of more slender coloured filaments; the interior, of flattened and petaloid tongres, at first incurved. The andreecium is also united at the base with the corolla; it is formed of five bundles of stamens, superposed to the sepals. Each bundle generally contains four stamens, the two exterior alone being fertile, formed of a filament surmounted by a unilocular

[^387][^388]introrse anther dehiscing by a single longitudinal eleft. The filaments are petaloid and incurved in the bud in such a manner as to carry the anthers under the projection of the style, where they Napoleona imperialis.

Fig. 320. Floriferon lramh.

Fig. 330. Burl.

Fig. 332. Long, sect. of Hower.
remain fixed for sume time. ${ }^{1}$ Within the androecium is a circular glandular disk which surrounds the ovary. The latter is imbedded in the cavity of the receptacle, and hollowed into five oppositipetalous cells, surmounted by a short and thick style, soon dilated to a

[^389]flat pentagonal stigmatifcrous head, with salient oppositipetalous lobes. In the internal angle of each cell is a placenta supporting two vertical series of ovules finally descending, ${ }^{1}$ with micropyle in this case directed upwards and inwards. The fruit is fleshy, ${ }^{2}$ nearly globular, and surmounted by the remaius or the scar of the calyx; it encloses, imbedded in its pulp, a variable number of seeds, the coats of which cover a thick reniform embryo, with fleshy planoconvex cotyledons and short radicle lodged in the hilum. Napuleona comprises trees from tropical western Africa, with alternate glabrous penninerved leaves, without punctuations and without stipules, ${ }^{3}$ and axillary flowers, ${ }^{4}$ solitary or in few-flowered glomerules, nearly sessile, surrounded by short alternate imbricate bracts, glanduliferous liko the sepals, the shorter the lower they are. Six or seven species have been distinguished; there is perhaps only one. ${ }^{5}$

Aviterenthos brusiliensis, ${ }^{6}$ a tree of Para and Guyana, with alternate leaves, has nearly all the characters of Nippoteone; it differs in its expanded gamosepalous calyx, dentelate at the margin; a much louger style, with stigmatiferous head much less dilated; elongate ovules, much more numerous, in a semi-inferior ovary. Within the corolla and united inferiorly with it, are a great number of stamens, with slender filaments and introrse bilocular anthers.

VI? POMEGRANATE SERIES.

In this genus, ${ }^{7}$ which has served as a type for a distinct family, the flowers (fig. 3.34-3.38) are regular, hermaphrodite, with concave receptacle, obconical or nearly so, the bottom of which is filled with the aduate ovary, whilst the margin bears the perianth. The latter

[^390][^391]is formed of from four to cight sepals, coloured like the receptacle, ${ }^{1}$ and like it coriaccous, thirk, valvate, prsistent, and of the same number of alternate petals, inserted in the intervals of the sepals, membranous, corrugate, imbricate in the bud. The stamens are very

Fig. 338. Long. sect. of seed.

Fig. 335. Jong. sect. of flower.

Fig. 334. Floriferous branch ($\frac{2}{3}$)
numerous and inserted at varions levels on the interual surface of the tube formed by the receptacle above the ovary. Each is formed of a slender filament, at first incurved, and of a small bilocular introrse versatile auther deliscing by two loneritudinal clefts. ${ }^{2}$ The inferior ovary is surmounted by a style which, at first flexuose, enlarged to a cone at the base, terminates in a head covered with stigmatic papillæ. In the ovary are two series of superposed cells; ${ }^{3}$

[^392]two verticils have at first the same direction, corresponding to that of the placente originally in their internal angle. If they become exterior in the carpels of the uppor verticil, it is because the ovary has been reversed on the style (the stigmatiferous portion of which is aborted)
those of the upper series, five in number, ${ }^{1}$ have their placenta parietal; in those of the lower series, three or more rarely five in number, it is in the internal angle. The ovules on each placenta are numerous, multiseriate, anatropous. ${ }^{2}$ The fruit is a coriaceous corticate bery, surmounted by the persistent calyx and divided by membranous partitions into a variable number of irregular and polyspermous cells. The seeds, sessile or supported by a soft funicle, is distributed among them; this deforms ${ }^{3}$ the outer coat which is thick, fleshy, pulpy, and the only portion edible. Interior to this is a very hard coat. The embryo, destitute of albumen, has a short radicle and two foliaccous cotyledons, auriculate at the base, rolled spirally round each other, like that of a great many Combretacer. The Pomegranates, of which several species have been described, but of which there is probably only one, ${ }^{\text {t }}$ are shrubs of northern Africa and, as said, of westeru Asia, introduced into the warm and temperate regions of nearly the whole world. Their branches, sometimes spinous, are clothed with alternate or nearly opposite leaves or fasciculate at the nodal levels, obovate-oblong, entire, penninerved, without stipules. The flowers are axillary, solitary, or grouped in few-flowered cymes, with short pedicels.

This family is one of those which the older botanists suspected, so to speak, before even it was well defined. B. de Jussieu ${ }^{5}$ designated it in 1759 , under the name of Myrtus. Adinson, ${ }^{6}$ in 1763 , distinmuished a family of Myrtles, very natural and admitted by A. L. DE Jusised ${ }^{7}$ under the same name. R. Brown, ${ }^{s}$ in 1814 , gave it the name M!ytucer, soon followed by De Cavoolde, ${ }^{?}$ who included in this family forty-seven gewera, among which Crossostylis, Petulutomat (Burraldeia), Compomi (?), belong to other families. In 1841, Schater ${ }^{10}$ published a monograph, which has become a standard,
by a swing movement; so that the organic summit of this ovary is finally placed lower than its base.
${ }^{1}$ They are superposed to the sepals.
${ }^{2}$ They have a double coat.
${ }^{3}$ Whence the facets of their surface (fig. 337).
$4 P$. Granatum L. Spec. 676. - PoIr. and Turp. Arbr. Fr. 22.-Don, Edinb. New Phil. Journ. i. 134.-WIght and Arn. Prodr. i. 327. -Sims, Bot. Mag. t. 634, 1832,-Annr. Bot. Repos. t. 95.-Wight, Ill. t. 97.-Gren. et Godr. Fl. de Fr. i. 575.-P. sylvestris T.-P.

[^393] according to the consistence of their fruit, into Xopocerpicre and
 and Myptere, and relegated to distinct orders the ('hemeltureirew ${ }^{3}$ and the Lerythiclect ${ }^{4}$ (Burpingtomiere). In 1840, Evdlicheie ${ }^{5}$ reunited in one family the five sub-orders of Chamselanciee, Lerptospermee, Myptece, Burringtoniere, and Leerythidere, adding to it liranatece as allied to Myrturece, that is to say, besides the types which have been exeluded from the family, a total of sixty-seven genera (of which about a dozen are duplicates). In 1865, Beatham and Hooker ${ }^{6}$ described or indicated seventy-eight genera of Myptucere, some of which had just been established in France, ${ }^{7}$ in America, ${ }^{8}$ and in Australia, ${ }^{9}$ but especially in Germany, by O. Berg, ${ }^{10}$ the author who, in our day, has most studied this family. Bextiras aud IFonere have, besides, considered as doubtful genera of Mryptucere, Fotidiu, Cutustemma and Fropicoce, aud reunited to the Lythrosiucece the genera P'enien and Sonnerutin. By attaching to other generic types, previously established, Asterten, Tuniron, Lamarehee, Regelin, Phy/ matoctorpes, Syncurpia, Tepualia, Sauthustemom, Culycolpus, and Cuplueranthus, which they retained as distinct, and by restoring to this family (not without some doubt) the two geucra Sonneratin and Fretidil, we reduce the number of genera ${ }^{11}$ it includes to sixty-four distributed in the six following serics:
I. Myftre.e. ${ }^{12}$ - Fruit fleshy (or very rarely drupacous). Ovarian cells $2-\infty,{ }^{13}$ disposed regularly around the axis. Leaves opposite, purctuate.-19 genera.
II. Leptospermee. ${ }^{14}$-Fruit dry, generally capsular. Ovarian cells $2-\infty$ disposed regularly around the axis.- 18 genera.
III. Cifmelatcie.e. ${ }^{15}$ - Fruit indehiscent, generally monosper-

[^394][^395]mous. ${ }^{1}$ Orarian cell single, more or less excentric. Leaves ordinarily ericoid, punctuate.-11 genera.
IV. Barringtonief. ${ }^{2}$ - Fruit indehiscent or pyxid, often woody, coriaceous or fibrous. Androcium regular or irregular (Lecytheer ${ }^{3}$). Leaves alternate, generally non-punctuate. ${ }^{\ddagger} 13$ genera.
V. Napoleone.e. ${ }^{5}$-Fruit fleshy, cortical, inferior. Calyx valvate. Corolla gamopetalous, valvate-folded. Andrœcium regular. Authers 1, 2-locular. Leaves alternate, non-punctuate.-2 genera.
VI. Punice.e. ${ }^{6}$-Fruit cortical, coriaceous, inferior. Seeds extermally fleshy. Cotyledons spirally rolled. Calyx valvate. Corolla polypetalous folded. Androcium regular, pluriseriate. Ovarian cells 2 -seriate, multiovulate. Leaves alternate, non-punctuate.-1 genus.

The Myrtucece are plants from warm countries. There are some in New Zealand, in Chili, and in the Mediterramean region, but the greater part belong to tropical regions. In the south of Europe we find only one Myrtle and the Pomegranate, and the latter has duubtless been introduced, as have also several species from temperate America and Australia, which are cultivated in the open air in the Mediterranean region. All the C'hamelanciere are Australian, and also the greater part of the genera belonging to the Leptospermece. Among the latter are several genera belonging to other parts of Oceania, and especially to the Indian Archipelago: such are MelaIenct, Tristonin, Leptospermum, Birckea, Metrosideros; the last is found in Iudia, at the Cape, and in Chili. The Eucalipts are almost all Australiau; but the genus is also represented in a very restricted manner in the Indian Archipelago. Acicalyptus, Philiorulye, and Spermolepis have as yet been observed only in the Viti isles and in New Caledonia. There is only one American Leptosperm, Tepmalia (Metrosideros). The distribution of Myrter is much more varied and extended; thus there are Myrtles in all parts of the world, and

[^396] VOL. VI.
${ }^{5}$ Endl. Gen. 745 (1839).-H. Bn. Payer Fam. Nat. 371, sect. 7.-Belvisece R. Br. Trans. Linn. Soc. xiii. 222 ; Misc. Works (ed. Benn.) i. 388, not.-Bolvisiacece Lindl. Veg. Fingd. 728, Ord. 280.-J. G. Ag. Theor. Syst. Pl. 132.-Asteranthere Desf.
6^{6} Granatea Don, Edinb. N. Phil. Journ. (1826) 134.-Endl. Gen. 1236.-H. Bn. Payer Fam. Nat. 371, Fam. 161. - Lythrariactarum gon. anom. B. H. Gen. 775, 784.

Eugenia in four. The genera Decaspermum, Rhodomyrtus, Rhodamnia and Fenitia alone are limited to the tropical regions of Asia and Oceania. All the other gencra of this series are exclusively American; but many of them, as Psidium and Pimenta, are cultivated in the old world. To the latter belong the Berringtonicel with regular andrecium, except Gustaria and Givias which, like the Lecythece with irregular androcium, are from tropical Anerica. Of the two Napeleonce known, belonging each to a monotypal (?) genus, one is American and the other African. Finally, of sixty-four genera, nincteen are exclusively American ; three ouly are common to the old and new world, viz.: Myprtus, Eugenin, and Metrositheres. ${ }^{1}$

Affinities.-The Myptucece. have very numerous affinities, very close especially with the Rhicophoracece, chiefly with those of which the ovary is inferior. The number, ordinarily reduced, of the stamens and ovules, is chiefly what distinguishes the flowers of the latter, whilst the fruit is characterized by its structure and the mode of germination of its seed. The organs of vegetation are often the same in both families ; but the Myptacere have not the interpetiolate stipules of the Rhinophorece. The Combretucere with opposite leaves have sometimes the flower of the Myrtacect; but the unilocular ovary and the placentre scarcely salient in its cavity easily distinguish them. The embryo is often constructed like that of the Pomegranates, the flower of which is quite different and has petals not without reason compared with those of the Lythrariucere. These latter lave ordimarily a receptacular tube of special organization, and the calyx is most frequently valvate, like that of the Pomegranates; but we shall find that the ovary is generally free at the bottom of the receptacular tube, whilst in the Pomegranates, which have nearly the same perianth, the ovary is completely "adherent." The fruit, the seed and the embryo are equally different, and the opposite-leaved Myrtacece have ordinarily punctuate leaves. The Melustomucece are distinguished from the Mystucel, either by the nervation of their leaves, or by the organization of their authers, or by the relative position of the ovary in the receptacular cavity, or by all these characters united. The Melastomacee lave besides almost always an

[^397]American Schizocalyx of Berg, a genus not adopted by all (B. II. Gen. 720, in. 59).
iadefinite number of stamens. Ordinarily, the Myrtucee are compared only with families trith an inferior ovary; this is because it is not generally known that certain of them have an ovary almost completely superior, as is the ease in several species of Tristemia and Mrtionithos of the section Xrathustemon. Then let the cells of this ovary be more or less incomplete, and the stamens united in fascicles; let the leaves also be opposite and punctuate, and it will be difficult to decide if the plants in which these characters are united belong to the Myprtueet or to the Hypericarece. The latter then may be defined, as we shall see, as Myptucece with a superior ovary, and the same, consequently, may almost be said of the Clusiacece, which, as is known, it is very difficult to separate absolutely from the Hyprericacece. We therefore place the Mry-tuccee at nearly an equal distance from the Iihiaghturacer, the Combretaceer, the Lythruriucere, the MEelastomacere, and the Hypericacers.

Uses. ${ }^{1}$-These are very numerous, the Myptaceer being generally odorous plants, rich in stimulating, sometimes irritant essences, collected in numerous punctiform reservoirs scattered throughout the bark, the leaves and even certain parts of the flower and fruit. They are moreover touis and astringent from the tanuic matter contained in their bark, fruit, etc. Compared with this the wood is ofteu inert and without medicinal properties; not that it is always inodorous. That of the American G'ustavia is reported to have a cadaverous odour, and in Fatiditi ${ }^{2}$ the smell is said to be intolerable. The wood of Melclence of the Indian Arehipelago is often very hard and much employed in building. The first place is given to that of M. Lencudendron ${ }^{3}$ and of M. Cajeputi. ${ }^{4}$ In New Calcdonia, the former, very abundant in fertile lands, furnishes the wood for all buildings and for a certain number of domestic purposes. The Australian Tristanim, chiefly T. weriifolier, ${ }^{5}$ has also excellent wood. In the island of Banca, that of T. obovata is employed for making char-

[^398][^399]oual. ${ }^{1}$ Callistrmon suligmus also furnishes the Australians with an excellent wood for building. That of Metrosideros reven is one of the Iron woods of the Moluceas; it is highly resistant and said to be imperishable. In the South Sea islands the natives employ that of M. polymorpa Gisudicir. for making charcoal; and that of a New Zealand species, MI. Unxifulia, ${ }^{2}$ has received the name of Ligmem citce. M. stipularis, ${ }^{3}$ a Chilian species, has also a very useful wood. In New Calodonia, several species of Metrosideros of the section Xinthostemom are renowned for the hardness of their flexible wood, suitable for cartwright work, particularly M. rubra ${ }^{4}$ and $f^{\prime \prime}$ bescons. ${ }^{5}$ That of $M \%$ pleuroculyptus ${ }^{6}$ is dense, red veined with black; that of M. prencheri, of a dark red colour, has a fine and hard grain. Two of the most beautiful Myrtucere of this country, remarkable for the qualities of their juice, have also an excellent wood. The first is Arillustrum gummiferum, ${ }^{7}$ the fibrous bark of which is easily removed in large pieces, excellent for making huts and roofs. The wood is reddish, hard, fibrons, imperishable in water, esteemed for earpentry. In its fissures is sometimes deposited the dark and brittle gum which this tree produces naturally. The other is Schizocaly, rulbiginosu, ${ }^{5}$ the milky and sticky junce of which hardens in the air into a sort of gum, and the wood, which is of a beautiful violet-red colour, works very well. The trees of the Leptospermere, most remarkable in this respect, are, without doubt, the Eucalypts. Nearly all are Australian, and nearly all useful for their wood, which is often excellent for building, sometimes very hard, imperishable, aud valuable for its rapid growth. Some species may be particularly mentioned as uniting most of these conditions. The best known, to

[^400]387.-РАNCh. op. cit. 253.
$\overline{7}$ Panch. ex Br. et Gr. Ann. Sco. Nat. sér. 5 , ii. 136 ; xiii. 376 ; Bull. Soc. Bot. Fr. x. 574.— Spermolepis gummifera Br. et Gr. loc. cit.Panch. op. cit. 251 (Chénegomme).
${ }^{3}$ Br. et Gr. Ann. Sc. Nat. Sér. 5, xjii. 380.Spermolepis rubiginose Br. et Gr. Bull. Soc. Bot. Fr. х. 574 ; Ann. Sc. Nat. sér. 3, ii, 136. Perhaps (see p. 359, note 10) this plant does not belong to the American Schizocalyx.-Panci. op. cit. 257 (vulg. Gommier). Eugenia ovigera Bin. et Gr. (Ann. Sc. Nat. sér. 5, iii. 216, n. 5) appears to belong to the same genus as the preceding. Its hard wood, with red sap and black heart, is excellent also for caxtwright work (Panch, op, cit. 258).
which we shall return when we speak of the properties of its leaves, is certainly E. Glolutus (fig. 299-303) or Blue Gum of Australia, but beside or above it we may mention, among others, E. stellulutu,
 phlou, rolnsta, viminnlis, rostiata, resinifera, diversirolor, culophylla, citriontorn, eximia, marginatn, etc., all most remarkable species, and many of which will be hereafter referred to as suitable for other uses. ${ }^{1}$ There are many Mystere with useful wood, and first the common Myrtle, Myitus communis (fig. 277-283), the aged stems of which are used for making small household objects ; it is also employed in turnery. In tropical Asia that of Engenia malaceensis is esteemed for making domestic articles, as also that of E. lineata and linearis, used in cabinet-work ; that of E. aromatira, designated in Java under the name of Cupper wood, and especially of the Clove (fig. 258, 28!), which unfortunately does not attain large dimensious, but is useful for making smail articles and boxes to preserve delicate oljects. In Sunth America a great many species of Eugenin are employed for their rood: E. Luma and E. Temu, Chilian species; E. I'itro, a species from the southern parts of the same country, ete. In New Caledonia, are noted as plants with useful woorl, several species of Engenin, lately described under the name of Syyyginm, ${ }^{2}$ chiefly S . Tutrightum, multipetalum, nitidum, Ponehori, mayapense, and a Engeniu (Pteromyrtus) desiguated by the name of Cerymphyllus: permectipls. E.origcre, ${ }^{3}$ of the same country, has a very hard wood with dark heart. E. littorulis has a remarkable wood for turnery and toy making. That of E. Hecleclii is reddish, with a close grain; that of E. Bictelembidy i A. Grar has also good qualities for joinery and cabinet-work. In this respect the colouy ${ }^{\text {b }}$ offers many useful products, not to speak of the serocarpous Myrtacea mentioned above.

Burringtoniu often has a soft and yielding wood. That of B. ulluu, however, is used in the Moluccas for cabinet-work; but that of Lerethis and the neighbouring genera is often of good and fine quality and reuders great service to industry aud domestic economy in the tropical regions of Suuth America. Thus that of L. Ollaria (fig. 324), the trunk of which is said to be colossal, is used for building in Venezuela and Brazil ; likewise, in Guyana, that of L.

[^401][^402]amara, grandiffora. Zabucayo (fig. 325, 326), Iddimon, and, in Brazil, that of L. Pismis, gromdifolie, and pmerifolio. The Brazilian Couratouri is useful for civil and naval construction ; the wool is hard and resisting, particularly that of O. estrellensir, Tenari, domestice, and leytelis. At Cayenne use is made for the same purposes of O. guianensis, of Couronpita grianensis (fig. 317 321), and of some neighbouring species. The wood of Bertholltian escelsa is also esteemed for building. That of the Pomegranates is not much used; it is however beautiful, easily polished, and pretty articles for the toilet and of fine cabinet-work are made of it.

The greater part of the Myrtacea mentioned above have many other uses. A large number owe it to an essence with which most of their organs are charged, especially the leaves and bark, and which renders them odorous, aromatic, stimulant. By distilling the leaves and flowers of the common Myrtle ${ }^{1}$ (fig. 277-283), a cosmetic called Eur deunge was formerly prepared. The fruit and leaves were then employed as tonies and stimulauts. In Tuscany the seeds were used as pepper. All these parts were at the same time considered as slightly astringent, and in the south of Italy the leaves were even used for tanning. ${ }^{2}$ Many Myrtles, from the abundance of their pungent essence, are employed as spices and condiments. One of the most noted in this respect is the Allspice (Pinmenta commmis ${ }^{3}$) of the Antilles, the very odorous fruit of which is exciting, aromatic, with a peppery flavour. From the leaves, an essence is also extracted, which is used for the same purposes as the pericarp, and has been substituted for the Clove; it is also employed in perfumery and medicine. ${ }^{6} \quad P$. acris ${ }^{5}$ has analogous properties and uses. Its bark

[^403]is tonie, stomachic, digestive, and slightly astringent; it is employed as a condiment and often substituted for Cinnamon and Clove. The lafter is the proluct of Eugenior aromatien ${ }^{1}$ (fig. 2S8, 2S9), a native of the Moluceas, but now introduced and cultivated in the tropical regions of both worlds. The Clove, the part most used as spice and as medicine, it is the bud gathered before the expansion of the corolla. Its agreeable stimulating odour is very remarkable. It is used as a digestive, masticatory, odontalgic; an oil of cloves is obtained by distillation. The floral peduncles are also employed in perfumery. The fleshy and odorous fruit is used for the same purposes, and a preserve is made of it with sugar and with wine. ${ }^{2}$ The buds of Myrtus psendoctryophyllus ${ }^{3}$ are employed for the same purposes in Mexico, but their properties are less energetic. A large number of other Myrtles have an odorous pungent bark, more or less astringent. We may mention Culyptrenthes arometica, ${ }^{4}$ of Brazil, a substitute for cloves; C. pminimluta, ${ }^{5}$ serving the same purposes in Peru; C. ubsentre, ${ }^{6}$ the fruit of which is sold in Rio Janeiro as aromatic and astringent; O. Sehlechtendaliana and Schiedeana, ${ }^{7}$ which plays the same part in domestic ceonomy in Mexico; Myrcia corineer, ${ }^{8}$ of the Antilles, the leaves of which, with the odour of citron, are astringent, and employed as a hemostatic, antidiarrhetic, while the bark is used for dyeing brown and black; Myrtus comphorata, ${ }^{9}$ of Chili, which yields by distillation an etherial esseuce, employed for the same purposes as Cajeput; Eugenin Chelien, ${ }^{10}$ used in Chili in the treatment of diarrhoetic, rheumatic, and ophthalmic affections; E. ungustifolia, ${ }^{11}$ of the Antilles and Venezuela, the root and aromatic seeds of which are prescribed in the treatment of stomatites, and

[^404][^405]the bark of which is employed in the treatment of pains produced by the rough evening winls; E. fietyonns,? of Jamaica, the aromatio leaves of which are recommended for pains and contusions ; F. disticha, ${ }^{2}$ the fruit and perfumed leaves of which bear the name of wild coffce in the Antilles; E. glatrota, ${ }^{3}$ which, in the same islands, has a certain reputation as aromatic and acidulous ; E. raminhilis, ${ }^{4}$ reputed in Brazil as salutary in cases of diarrhœa, flux, and vesical eatarrh ; E. Vellurit ${ }^{5}$ and Arvaluite, ${ }^{6}$ which have a bark esteemed in the same country as aromatic and astringent ; E. dumetorum, ${ }^{7}$ having the same uses among the Cochinchinese; E. coryophyllea, ${ }^{\text {b }}$ reported to produce the bark introduced into Europe under the name of Cassise cotryoplyplatw; E. weylanica, ${ }^{9}$ renowned as a stimulant, antirheumatic, and antisyphilitic; E. guineensis and terebinthacea, having a similar reputation in Senegal and at the Cape ; E. Jambos ${ }^{10}$ (fig. 286, 287), the bark of which is reputed in the Indian Archipelago as a good astringent; L. Tincutu and linearis, employed in Java for making gargles for the throat; E. maluccensis, ${ }^{11}$ having all the properties of E. Jembos, as likewise E. densiflura ${ }^{12}$ and atuet $;^{13}$ most of the Guyaras, which, in tropical Ameriea, have commonly the same uses; Der"spermum rullrum, ${ }^{1 t}$ in Molucca applied to gum affections; Myptus ugni, ${ }^{15}$ an aromatic and stimulant species which the Chilians esteem in the form of tea, and $M T$. mmmuleria and micropilyllu, also employed by them for the same purpose ; M. picro-
${ }^{1}$ W. Spec. ii. 964.-DC. Prodr. n. 151.-Rosenti. op. cit. 927.-Myrtus fragrans Sw. Fl. Ind. Occ. 914.
${ }^{3}$ DC. Prodi: n. 96.-M. disticha Sw. Fl. Ind. Occ. 894.-Sims, Bot. Mag. t. 867.--Linnl. Coll. t. 19.-M. horizontalis Vent. Malm. t. 60.
${ }^{3}$ DC. Prodr. n. 97 .-Nyrtus glabrata Sw. Fl. Ind. Occ. 903 (not Bl.).
${ }_{4}$ Mart. ex Rosenth. op. cit. 928 (Guabiroba).
5 Berg, Mart. Fl. Bras. Myrtac. 255, д. 110. -i E. campestris Velloz.
${ }^{6}$ Berg, ex Rosenth. op. cit. 928.-E.crenata Telloz.

7 DC. Prodr. n. 184. - Myrtus dumetorum Poir.-M. trinervia Lour. (not Sw.),-Nelitris trinervia SpRENG, Syst, ii. 488.
${ }^{8}$ Syzygium (?) caryophyllaum Gertn.-DC. Prodr. n. 14.-Rosenth, op. cit. 930.
${ }^{9}$ Syzygium zeylanicum DC. Prodr. iii. 260, п. 15.-S. Belluta DC. Prodr. D. 26 ?-Myrtus zeylanica L. Spec. 675.
${ }^{10}$ L. Spec. 672.-F. Jamboo Roxb. Cat. Hort. Calc. 38.-Myrtus Jambosa H. B. K.-Jambosa vulgaris DC. Prodr. iii. 286, n. 1.-Mralacca-

Schambu Rueed. Hort. Malab. i. t. 17 (Jamerosier, Jambosier domestique, Jamberosade, Pommierrose).
${ }^{11}$ L. Spec. 672.-Lamk. Dict. iii. 196.-Corr. Ann. Mus. ix. 292, t. 25, fig. 2. -Jambosa Malaccensis DC. Prodr. n. 6.-Ноок. Bot. Mag. t. 4408.-J. nigra Rumpir. Herb. Amb. i. t. 37, 38, fig. 1.-Nati-Schambu Rheed. Hort. Malab. i. t. 18 .
${ }^{12}$ BI.. Bijdr. 1087.-Jambosa densiflora DC. Prodr. iii. 287, n. 13.-Iosentr. op. cit. 932 (Jambon).
${ }^{13}$ Roxb. Cat. Hort. Calc. 37.-Rumph. Herb. Amb. i. 126, t. 38, fig. 2.-DC. Prodr. n. 17.Cerocarpus aqueus Hassk.
14 Netitris rubra BL.-Caryophyllaster ruber Rumpr. N. alba BL. and polygama Spreng. have analogous properties.
${ }^{15}$ Mol. Chil. (éd. fr.) 133.-DC. Prodr. iii. 239, n. 9.-C. Gay, Fl. Chil. ii. 379.-Eugenia Ugni Hook, and Arn, Bot. Misc. iii. 318.-Bot. Mag. t. 4626 (Uni, Murtello). The fruit is called Murta.
carpa and ammio, of southern Brazil and La Plata, having aromaticbitter properties; M. depentperote, a Brazilian species, the bark of which is used in the treatment of flux ; M. P'imente, oblongate, and pimentoider, of the Autilles, substitutes for Pimente acris and officinalis: Campomanesit ryanea, aurea, aprica, obverst, and numerous other species, ${ }^{1}$ which, in South America, are used for preparing stimulant, digestive, astringent, anticatarrhal, and other infusions; C. triflora, ${ }^{2}$ in Para, often prescribed in the treatment of head affections, etc. etc.

Several xerocarpous Myrtaceæ have also medicinal properties, and nearly all are aromatic. Leptospermum is rich in odorous essence. One species, Is. flarescens ${ }^{3}$ (fig. 290-293), on that account and for its uses in Australia, has received the name of L. Thea. ${ }^{4}$ In New Zealand, from L. scoparimm, ${ }^{5}$ Cook, in his celebrated voyage, prepared a theiform infusion for his crew, which preserved them from scurvy. Burliea fiutescens, ${ }^{6}$ a native of south-eastern Asia, has numerous uses. Its branches and leaves placed upon clothes preserve them from the attacks of insects; it is also reputed a diuretic and abortive. Melalenea is also very odorous; the oldest known is M. minor, ${ }^{7}$ the principal of those which, in Java and the Moluccas, produce the oil of Cajeput. The latter is an essence, generally green, with a somewhat agrecable and very penetrating odom and acrid taste, employed from time immemorial, in Chinese India, internally and externally, for pains, rheumatism, nervous affections, malignant fevers, and cholera; it is an energetic stimulant, and also, it is said, a potrerful analgesic. Numerons species sometimes distinguished from M. Tevcudeutron, ${ }^{8}$ sometimes united with it as forms or varieties,

[^406][^407]such as M. viridiffora ${ }^{1}$ or Niameli of New Caledonia, abound in this comentry and the neighbouring isles, as far north as the Indian Archipelago. An essence is extracted from it having all the properties of Cajeput. Mrlatencu, besides oil, bark, and leaves, furnishes the population of these isles with building timber and textile cortical fibre, and, in utility, is to this country what Eucotyptus: is to Australia and Tasmania. At first the properties of only E. Glubulus ${ }^{2}$ (fig. 299-303), or Blue Gum of Tasmania, were known in Europe; ${ }^{3}$ it grows also in the province of Victoria in Australia, and is one of the largest trees known, attaining a height of more than 230 fcet. Although its growth is rapid, from 12 to 20 feet in a year, its wood is hard and imperishable. Its leaves are rich in essence and also in tamin. The essence, which is a sort of camphor, called rucalyptol, as also the porrder, the alcoholic extract, and the distilled juice of the leaves, have a multitude of therapertic uses, in the treatment of chronic affections of the bladler, of the bronchial tubes, of the digestive organs, of the joints, ete., and especially in fevers. From it are prepared peetoral and digestive infusions, 1ntions, sirrups, and pectoral sweetmeats; the leaves are smoked like tobaceo. The uses of this ${ }^{4}$ and of some other species, ${ }^{5}$ already mumerous, will probably bo multiplied, when these trees, so aseful for improving the salubrity of low and marshy countries, are introduced and planted in considerable numbers in the south of Europe and north of Africa, where
${ }_{1}$ Grertn. Fruct. i. 173, t. 35.-DC. Prodr. n. 3. [No distinct specific character separates this plant from the preceding ; but Brongniart and Gris have retained it (Ann. Sc. Nat. sér. 5, ii. 139).]

2 And these plants would doubtless still have been unknown in our country but for the energetic and patient initiative of P. Ramex, from whom it has been vainly sought to take away the merit of having propagated and brought under cultivation E. Globulus and many other species.
${ }^{3}$ Labill. Toy. i. 153, t. 13 ; Pl. Nouv.-Holl. ii. 121.-DC. Prodr, iii. 220.-Hook. F. Fl. Tasm. i. 133.-F. Muell. Fragm ii. 68 ; Pl. Fict. Suppl. t. 16,-Benth. Fl. Austual. iii. 225 (Blue Gum).
${ }^{4}$ On eucalyptol, see Cloez (Compt. Rend. Acad. Sc. 28 mars 1870). Among other works on this plant, its uses and its produnts, see Ramel, Rev. Mlarit. et Col. (1870).-Gubler. Bull. Therap. (aout 1871).-Bouillon, Thès. Fac. Méd. Far. (1872) n. 324.-Camplon, Thès. Fic. Med. Par.

[^408]they may attain the same development as in their native country. The Australian Aurfophore has nearly the same properties as Euenlyptres. Netrositemos remen is reputed in the Moluceas to have analogous virtues. Besides a kind of iron-wood, a gum-resiu little used, and an estecmed vegetable chareoal, it furnishes a bitter astringent bark, prescribed for catarrh and diarrhea. The Pomegrauate ${ }^{2}$ (fig. 334-338), is also a very astringent plant. This property is especially marked in the pericarp, ${ }^{3}$ which is used to tan skins and morocco leather, and which, with the salts of iron, produces an ink of good quality. It is also used for dyeing yellow. The bark of the stem is astringent, as likewise the buds and the flowers, formerly much employed in human and veterinary medicinc. Its root especially is in repute as a cure for tapeworm, and has for half a century recovered the ancient renown it had for a time lost. Its bark is the most active part and is employed almost exclusively as an authelminthic. The red sweet and acidulous part of the pomegramate which is eaten, and from which refreshing drinks are prepared, represents the exterior hypertrophiate and pulpy coat of the sced. In Nupoleona imperialis ${ }^{4}$ (fig. 329-333), there is likewise, under the bark of the fruit, a soft pulp enveloping the seeds, ${ }^{5}$ which is eaten as refreshing in tropical western Africa. There are many sarcocarpous Nyrtecere with edible fruit, and the cultivation among us of some (Chilian species as fruit trees has been proposed. In Brazil are eaten the berries of Engenin inocn'pa, Uvallu, Vanthieriunt, Nhanien, clule is, Guabiju, itacolumensis, pisiformis, Mypobatana, supreatereitlaris, oboveta, piriformis, cominhilis, Vellosience, Amabide, ${ }^{6}$ celulin, furmosu, strictu, Lustchnutiuna, ${ }^{7}$ dusyllusta, sulueata, Pitanga, ligustrince, Michelii, brasiliensis, psendu-Psidium, dysenterice ; in Guyana, the fruit of E. stuposa, pumilo, Cutinya, ${ }^{8}$ etc. ; in Chili that of k. Derminii, apiculata, Lume, Temu; in the Antilles, that of E. I'umirri, cuncata, distiche, fragrans, lincata, etc. Many species in Australia, India, Cochinchina, tropical Africa, and in the Polynesian

[^409][^410]isles, have likewise edible berries. The same is true of certain species of the Brazilian Mypria, particularly of M. truneifora, ethlis, Jubertionlue, ${ }^{1}$ ete. It is to the genus Engenine that we have referred Jtrmboser, the fruit of which is so estemed for its aroma, such as J. mulgaris² (fig. 286, 287), domestica, armatica, linerta, puriturasem.s, ete. ${ }^{3}$ Sy:.!ginm, the berries of several of which are esteemed, for example, S. Erylunicum, ${ }^{4}$ Temboltnu, ${ }^{5}$ grinerense, ${ }^{6}$ and many others; ${ }^{7}$ Jossinim, which, chiefly J. lucita ${ }^{\text { }}$ and mespiluides, ${ }^{\text {a }}$ are eaten in the Mascarene isles. Metherin tomentuser and glomerate, Brazilian species, have also edible berrics. But the most known of the Myptarere, in this respect, are the Guyava trees, chiefly Psidinm. promiferum ${ }^{10}$ (fig. ㅁ84, 255) and piriferum, ${ }^{11}$ mmilum, coriaceum, alliidum, and a host of others, ${ }^{12}$ often cultivated as fruit trees in most tropical regions. The Guyavas are sweet and refreshing; they are eaten raw or candied, and some of their varieties are highly estecmed in warm errutries. Several species of Myptus, Campomuursic, ${ }^{13}$ cte., also produce alimentary fruits. Among the Barimgtwier, the edible portion is more gencrally the embryo. It is for that that the seeds of Chrerym diborect ${ }^{14}$ and of some species of $L_{\text {Lerely }}$ Hhis are sought. In other respects, the properties of the Burfingtomien, especially of the Leceythert, are extremely diverse, and cannot be

[^411]piriformis Gerrex. Fruct. i. t. 38 (G. blane, Poirier des Indes).
${ }^{11}$ L. Spec. 672,-Descourt. Fl. Ant. ii. t. 72. —DC. Prodr. iii. 233, n. 10.-Bot. Reg. t. 1079. This species and the preceding have been united by Raddi [Men. (1821) 2], under the name of P. Guayava (Bera, Mart. Fl. Bras, Myrt. 396, n. 3t, t. 5, fig. 114). P. Araça Raddi (ex Berg, loc. cit. n. 35, fig. 113) is very near to it and has the same uses.
${ }_{12}$ P. Guajabita A. Ricir, from Cuba (Guajabita del Pinar) and P. densicomum Mart. cinereum Mart. euneatum Cambess. (Araça), incanescens Mart. grandifolium Mart. Laruotteanum Cambess. microcarpum Cambess. rufum Mart. radicans Bera (Uvaca do campo), and montanum Sw. from Jamaica (Citronnelle, Alnandron). P. Cattleyanum (Sabine, Trans, Hort. Soc. iv. 315, t. 11; -Lindl. Collect. t. 16), valued for its edible fruit, is P. variubile Bero and P. littorale Radm (Araça de Praya).
${ }^{13}$ Rosenth, op, cit. 937.
${ }^{14}$ Roxb. Pl. Comom. iii. 14, t. 218 ; Fl. Ind. ii. 638.-Rosentir. op. cit. 239.
stated in a geueral manner. Cinsturiu speciost, ${ }^{1}$ of Columbia, has a fruit reputed to be ieteric. G. superbu, ${ }^{2}$ from the same country, and (i. firstumse, ${ }^{3}$ from Guyana, are employed topically for liver complaints. Cr. brensilitua ${ }^{4}$ has a bitter and aromatic root, prescribed for liver complaints and as a curative of abscesses. Lecythis has, not unfrequently, alimentary seeds: those of L. Ollaria ${ }^{5}$ (fig. 321) furnish a useful oil. The liber is used for making a sort of paper and bauds for tying up various objects, especially cigars. The seeds of L. lanceolutu, ${ }^{6}$ a native of Brazil, and transported thence to Madagascar and the Mascarcne isles, has seeds rich in a fatty matter, used for preparing emulsions and in the treatment of affections of the urinary glands; they are narcotic. The seeds of L. grondigtore Aubl. ${ }^{7}$ and Pisonis Cinus. ${ }^{5}$ have similar qualities. L. Zubueayo ${ }^{5}$ (fig. 325, 326), a species from Guyana, has a textile bark serviceable for making many articles of domestic use. L. umara, Ildatimon, and Inticiftora Aubl., from the same country, have bitter seeds; only apes eat them. L. parrifolia ${ }^{10}$ and gremifolia, ${ }^{11}$ of Brazil, have the same uses as L. Ollcricu. C'ouroupita quilunensis ${ }^{12}$ (fig. 317-321) attaius great dimensions; but the wood is of little value, being wanting in solidity. The fruit is well known under the name of Cennor bull fruit; ${ }^{13}$ the negroes eat the refreshing pulp and the seeds, vulgarly called Andos almonds. In Jamaica the fruit of

[^412][^413](irias cmulifforn,' or Anchon'y pear, is gathered before it is ripe and preserved with oil and with salt. Bertholletin, perertwe ${ }^{2}$ produces the Brazil $114 t^{3}$ of commerce. These seeds (fig. $3: 27,32 S^{\prime}$) are in shape that of a quarter of an apple, with hard rugose striated cnvelope, covering a large undivided edible embryo, rich in a sweet oil which soon turns rancid. The fibrous bark is useful, sometimes supplying the place of tow. Several Bursingtomines yield useful products. ${ }^{2}$. specioset ${ }^{4}$ of tropical Asia, has oleaginous seeds and fruits ${ }^{5}$ which are eaten green as vegetables. The Indiaus throw them into the rivers to intoxicate the fish. B. ratemensele ${ }^{6}$ (fig. 315,316), an Asiatic and tropical oceanic species, has bitter aromatic astringent sceds, used in the treatment of affections of the skin, of the digestive organs, and of the liver. The bitter root is also prescribed for intermittent fevers. B. rubric ${ }^{7}$ is a large Indian tree, the fruit of which has astringent qualities; the seeds and leaves, macerated in warm water, are likewise used in a similar manner. B. cocciner, ${ }^{\text {s }}$ of India, Cochinchina, and the Moluccas, is edible; the young leaves are eaten cooked and in salad. Those of D. alla ${ }^{9}$ are likewise caten raw. The bark of this species is used for dycing black.

The number of ormamental shyitucere is considerable. The common Myrtle and the Pomegranate were long the only species of this family cultivated for decorative purposes. Later were introduced into our warm conservatories, specimens of Engpinio ${ }^{10}$ (chiefly of the section Jumbosa), Pimentu, then Linisingtomice, ${ }^{11}$ (instucier, ${ }^{12}$ and

1 L. Spec. 732.-DC. Prodr. iii. 296.—Hook. Bot. Mag. t. 5622.-Anchovy Puar Sloan. Hist. Jan. ii. 122, t. 217.-P. Br. Jam. 245.-Lun. Hort. Jam. i. 19.
${ }^{2}$ H. B. Pl. EXquin. i. 122, t. 36.-Poit. Mém. Mus. xiii. 148, t. 4, 8.--DC. Prodr. iii. 293.Schomb. Pioc. Hort. Soc. i. 71, t. 3, 4.-Dart. Retise, iii. 1130, n. 11.-Guib. Drog. Simpl. éd. 6, iii. 271.-Mér. et Del. Dict, Mat. Méd. i. 579. -H. Bn. Dict. Eucycl. Sc. Méd. ix. 18\%.-Berg. Li,ncea, xxvii. 460 ; Mrart. Fb. Bras, Mlyrt. 478, t. 60, 61 (Iuria, Nha, Nī, Tuca, Touka).
${ }^{3}$ Limandes d"Amérique, du Para, du Rio-Negro, du Rio-Grande, Castarios de Maranhéo.
${ }^{4}$ L. FIL. Suppl. 312.-DC. Prodr. iii. 288, n. 1.--Rosenth. op. cit. 938.-Butonica speciosa Lamk, Dict.i. $521 .-$ Mitraria Commersoni Gmel. -Commersona Sonner. Foy. Guin. i. 14, t. 8, 9. -Butonica Iumpr. Herb. Amboin. iii. t. 114.

[^414]and temperate houses, several Myrtles ${ }^{1}$ and Mctinsideros, ${ }^{2}$ the Guyavas, Tristunicu and Encolyptus; ${ }^{3}$ then a series of charming Australian plants, with foliage generally persistent, often ericoid, such as Derroinie, ${ }^{4}$ Tertienorlia, ${ }^{5}$ Calythrix, Thryptomene, Berflect, Iteptospermum, Fïnzer, Callistemen, Melalenen, Branfortin, Burci:honsin, Caluthemnns, Reyeliu. They were highly prized at the begiming of the century and cultivated in considerable number, as they are still in England, Germany, and Holland: the greater part are very suitable for the decoration of winter gardens; but many are difficult to preserve. Encalyptus, which, in our conservatories, attains but little development, ornaments gardens and promenades in the south.

[^415]Serres, xxi. 69.
*Bot. Mag. t. 4858, 4860, 5468.
${ }^{5}$ Ilid. t. 5286.

GENERA.

I. MYRTEA.

1. Myrtus I.-Flowers hermaphrodite regular ; receptacle concave, turbinate or subcampanulate, scarcely or slightly produced beyond germen aduate within. Sepals 4, 5, marginally inserted, sumetimes broadly foliaceous, somewhat imbricate or not contiguous and open. Petals 4,5 , alternate, imbricate, patent. Stamens ∞, inserted with perianth, ∞-seriate; filaments linear-filifiorm, sometimes complanate at base; anthers short, introrse, 2 -rinose, either basifixed or versatile. Germen inferior; style filiform simple, at stigmatose apex not incrassate or more rarely capitcllate ; cells in germen $2-5$, complete or incomplete at apex. Ovules in cells ∞, ∞-seriately inserted in internal augle of simple or 2-lamellate placonta, small, anatropous. Fruit baccate, crowned with persistent culyx or its sear, $1-\infty$-spermous. Seeds subreniform; testa membranous or osseous; radicle of hippocrepiform or somewhat involute cmhryo terete very long; cotyledons shorter or very small.-Trees or oftener shrubs, odorous, glabrous or pubescent; leaves opposite exstipulate peuninerved, pellucid-punctulate, small or rather large, submembranous or coriaceous; flowers axillary pelunculate, solitary or cymose 3-7, more rarcly os ; the lateral oftener longer-pedicellate; lnacteoles under the flower small or very small, more rarely broad foliaceous. (South of Europe, western Asia, Oceania, south-west. und cxtra trop. America.)-See p. 308.
!. Rhodomyrtus DC. ${ }^{1}$-Flowers of Myptus; cells of germen 2-4, gencrally divided into 2 cellules by spurious vertical septa; each cellule divided between on ovules by tramserse septules ${ }^{2}$ springing

[^416]from the placenta. Fruit baccate or subdrupaccous, divided into ∞ 1 -spermous (sometimes pyreniform) cellules ; seeds in cells solitary, subhorizontal suborbicular or reniform ; embryo, etc., of Alyitus. Trees or shrubs, rillose or tomentose; leaves opposite, penuinerved or 3-plinerved; flowers ${ }^{1}$ axillary, solitary or 2 , 3 -nate, sometimes ∞, in rather long cymiferous raceme. ${ }^{2}$ (Trop. south. and cast. Asia, Indian Archip. ${ }^{3}$)
3. Decaspermum Fonst. ${ }^{4}$ - Flowers nearly of Myptus, hermaphrodite or polygamous, 4 - 5 -merous; cells 4 , 5 , divided into 21 - or pauciovulate cellules by spurious vertical centripetal septa. Fruit baccate, crowned with calyx, radiately septate; cellules l-spermous; seeds, ete., of Myptus.-Small trees or shrubs; leaves opposite penuinerved; flowers axillary spurionsly ramose; cymes sometimes in ramose foliate raceme. ${ }^{5}$ (Trop. Asia and Oceania. ${ }^{6}$)
4. Pimenta Linnl. ${ }^{7}$-Flowers nearly of Myrtus, 4-5-merous; germen : 2 , 3 -celled. Ovules in cells few ($2-4$) or solitary, inserted under apex descending ; micropyle superior lateral. Berry, etc., of Myptus; embryo spirally iuvolute, 1-9-cyelical.-Highly fragrant trees; leaves opposite coriaceous ; flowers ${ }^{\text {s }}$ in very compound ramose and many-flowered cymes axillary to uppermost leaves. (Trop. America. ${ }^{9}$)
5. Myrcia DC. ${ }^{10}$ - Flowers of Pimenta (or Myrtus), 5-merous or more rarely 3, 4-merous ; cells of germen 2, 3 (or more rarely 4,5), 2-ovulate. Ovules collaterally ascending. Fruit baceate, oftener crowned with persistent calyx and other characters of Myprtus; coty-
${ }^{1}$ Rather large, showy, oftener pink.
${ }^{2}$ A genus scarcely distinct from Myrtus, with cells of germen transversely and vertically locellate.
${ }^{3}$ Spec. 4, 5. Wight, Icon. t. 522.-Miq. Fl. Ind.-Bat. i. p. i. 477.-F. Muell. Fiagm. ii. S6, t. 13 (Myrtus),-Don, Gen. Syst. ii. 829 (Neli-tris).-Benth. Fl. Hongk. 120; Fl. Austral. iii. 272.-Sims, Bot. Mag. t. 250 (Myrtus).
${ }^{4}$ Char. Gen. 73, t. 37 (1772).-J. Gen. 324, 453.-Porr. Suppl, ii. 459.-Nelitris Gertw. Fruct. i. 134, t. 27 (1788).-DC. Prodr. iii. 231. -Endl. Gen. n. 6313.-B. H. Gen. 716, n. 62. - Ноок. Fl. Ind. ї, 469.
${ }^{5}$ The name Forsterianum is certainly incorrect (since the number of seeds is very different), but having priority and in the absence of proof it must be retained.
${ }^{6}$ Spec. 4, 5. Wight, Icon. t. 521 (Nelitris). -A. Gray, Unit. St. Expl. Exp. Bot. i. 547, t. 60 VOL. VI.
(Nelitris)--Seem. Fl. Tit. 80 (Nelitris).-Miq.
Fl. Ind.-Bat. i. p. i. 470 (Nelitris).-Benth. Fl. Austral. iii. 279 (Nelitiv), Walp. Anu. ii. 623 ; iv. 830 (Nelitris).

7 Collect. sub n. 19.--Berg, Linnaa, xxvii. 422.-B. H. Gen. 717, n. 56.-Anomis Berg, loc. cit. 416.
${ }^{8}$ Small ; often in 3-parous cymes.
${ }^{9}$ Spec. 2. L. Spec. 676 (Myrs). -Sw. Obs. 202 (Myrtus) ; Fl. Ind. Occ. ii. 909 (Mryrtus).DC. Prodr. iii. 243, n. 3 (Myrcia), 285, n. 181 (Eugenia),-Bot. Mag. t. 1236, 3153.
${ }_{10}$ Dict. Cl. d'Hist. Nat. xi. ; Prodr. iii. 242.Endj. Ger. n. 6317.--Spach, Suit. à Buffon, iv. 163.-B. H. Gen. 716, n. 53.-Cerquievia Berg, Limuca, xxvii. 5.-Gomidezia Berg, op. cit. 6 ; xxix. 207.-Calyptromyrcia Berg, Linnaa, xxvii. 34.-Aulomyrcia Berg, op. cit. 35 ; xxix. 216 ; xxx. 654,-Calycampe Berg, op. cit. xxvii. 129.
ledons of rather large embryo contortuplicate.-Trees or shrubs; leaves opposite; flowers ${ }^{1}$ cymose, few or oftener densely compoundcymose ; bractcoles fens, caducous or more rarely rather large foliaceous, persistent. (Trop, and subtrop. America. ${ }^{2}$)
6. Rhodamnia Jack. ${ }^{3}$-Flowers of $1 I_{y j t u}$., 4 -merous; germen 1locular. Ovules ∞, inserted on 2 parietal placentic. Fruit baceate, crowned with calyx. Seeds ∞, often few ; cotyledons of hippocrepiform embryo short. Other characters of MIy,tus.-Small trees or shrubs; leaves opposite ovato-lanceolate, 3-nerved or 3-plinerved, sometimes white beneath; flowers ${ }^{4}$ axillary fasciculate or more rarely solitary; bracteoles 2, small, caducous, inserted at top of pedicel. (Trop. south-east. Asia, trop. east. Oceania. ${ }^{5}$)
7. Fenzlia Endl. ${ }^{6}$-Flowers nearly of Myptus; receptacle ovoid, not produced beyond germen. Petals and stamens of Myptus; anthers versatile. Germen 1-2-locular; orules in cells 2, 3, subhorizuntally superposed ; style slender, apex small stigmatose. Fruit subglobular or ovoid, drupaceous, sparsely fleshy, crowned with openreflexed calyx. Sueds 1, \frown, enclosed singly in osseous endocarp; testa thin; embryo very long spirally rolled.-Shruhs cano-tomentellose; leaves opposite obtuse penninervel ; flowers ${ }^{7}$ axillary solitary pedunculate; bracteoles 2, linear-subulate iuserted at top of peduncle. (Australia. ${ }^{8}$)
8. Feijoa Berg. ${ }^{9}$-Flowers nearly of Myptus; sepals 5, imbricate. stamens ∞, ∞-seriate; filaments free short unequal, straight or some slightly incurved or inflexed in the bud, finally by anthesis elongate and fur exserted, thickly subulate; anthers ovate introrse. Germen completely or incompletely t-locular ; placente 2-lamellate, sometimes free within. Ovules ∞, Ω-seriate. Other characters of

[^417][^418]Myrtus or Psilinm. Fruit baceate oblong, crowned with persistent calsx; "seeds angular albuminous; cotyledons of straight embryo foliaceous flat; radicle elongate." ${ }^{1}$ A shrub ; leaves opposite coriaccous penninerved, nitid above, cano-tomentose below ; flowers² pedunculate, few at summit of ramules, but " finally growing laterally from branch." (Brazil. ${ }^{3}$)

9? Marlieria Camb. - Flowers nearly of Myptus (or Mypria); receptacular tube produced beyond germen adnate within. Calyx closed in bud or slightly open at apex and +5 -lobed (Rubuchia ${ }^{5}$), oftener at anthesis disruptly 4 -5-lobed. Petals $t, 5$, or more rarely 0 . Stamens ∞, ∞-seriate ; anthers versatile. Germeu 2-4-locular; ovules in cells $\stackrel{\sim}{2}$, ascending. Fruit, sometimes crowned with base of calyx, ete., of Mypfus; cotyledons of incurved embryo contortuplicate. -Trees or shrubs; leaves and inflorescence of Mysiciu.') (Trop. and subtrop. America. ${ }^{7}$)
10. Calyptranthes Sw. ${ }^{8}$-Flowers nearly of Myrtus (or Murlicriu) ; calyx turbinate, closed in bud, finally at anthesis, circumscissus at base and calyptrately deciduous. Petals $1-5$, small, very small (or 0). Ovules in 2, 3 cells of germen 2 or more rarely ∞ (IVitrenthes ${ }^{9}$). Fruit baccate, seed, etc., of Myptus; cotyledons of iucurved embryo contortuplicate.-Trees and shrubs; leaves and infloresceuce of Myrcia. (Trop. America. ${ }^{\text {. }}$)
11. Campomanesia R. \& Pav. ${ }^{11}$ - Floters nearly of Calyptranthes; calyx 5 -lobed or more rarely 4-6-lobed, sometimes patelliformly dilated at base ($P_{\text {alicert }}{ }^{19}$) ; lobes either conspicuous rather obtuse, or

[^419][^420]very small or subnil in bud; limb at anthesis often longitudinally fissus between lobes. Petals 4-6, patent. Stamens ∞, ∞-seriate; authers ovate or oblong, sometimes apiculate (Acrandrer ${ }^{1}$). Germen 4-10-locular ; orules ∞, inserted on 2-lamellate or little prominent subpeltate placenta; style simple, capitate or oftener peltate at stigmatose apex. Berries, etc., of Myrtus ; embryo elongate and spirally involute; radicle very elongate; cotyledons rather short.--Trees or shrubs ; leaves opposite penninerved ; flowers axillary, solitary, few or ∞ cymose. (Trop. and subtrop. America. ${ }^{2}$)
12. Psidium L. ${ }^{3}$-Flowers nearly of Campomancsia; receptacle campanulate or piriform. Calyx closed in bud, sometimes crowned with foliaccous lobes (P sidiopsis ${ }^{4}$); lobes oftener 4,5 , before anthesis short, wide (or 0) ; at anthesis often fissus or disrupted to the base. Petals 4, 5. Stamens ∞; anthers oblong or narrow linear. Germen 2-8-locular ; style at apex peltate or capitate; ovules ∞, inserted on entire, subpeltate or 2-lamellate placenta. Berry various in form, crowned with persistent calyx or its scar. Seeds ∞, reniform ; testa thick hard; embryo curved or hippocrepiform, sometimes cyclical; radicle elongate ; cotyledons small.-Trees or shrubs rarely undershrubs, glabrous or oftener tomentose ; leaves opposite penninerved; flowers ${ }^{5}$ axillary or lateral, solitary or $3-\infty$ cymose, 2-bracteolate. (Trop. and subtrop. America. ${ }^{6}$)
13. Myrrhinium Schotr. ${ }^{7}$-Flowers nearly of Myptus, 4 -merous; stamens 4 , alternipetalous, or $5-8$, in pairs; filaments ${ }^{5}$ very long, ㄹ. plicate in bud; anthers introrse. Germen 2-locular, style elongate,

[^421][^422]plicate in bud, seareely eapitellate at stigmatose apex. Ovules in cells ∞, peltately inserted in rays on orbicular $\stackrel{2}{2}$-lamellate placenta. Berry ovoid, crowned with calyx; seeds 1,2 , curved or cochleate; embryo conformably curved; radicle longer than indistinct cotyledons. -A small tree or shrub; leaves opposite, penninerved nitid; stipules (?) setaceous very small, caducous; flowers in 2-parous cymes springiug from the wood ; lateral pedicellate. (Subtrop. S. America. ${ }^{1}$)
14. Eugenia Michelt. ${ }^{2}$-Flowers of Myptus ; receptacle globose, ovoid, obconical, turbinate or tubular (Caryophyllus ${ }^{3}$), long attenuate at base (Clavimyptus, ${ }^{4}$ Cupheranthus ${ }^{5}$), externally either glabrous, or angular or thickly alate (Pteromyrtus ${ }^{6}$). Sepals 5, or oftener 4, imbricate or more or less widely foliaceous (Phyllocalyx ${ }^{7}$), rarely very short dentiform. Petals 4,5 , or very rarely $6-\infty$ (or 0), sometimes more or less connate in a hood (Syzygium ${ }^{s}$), sometimes thick coriaceous, deciduous. Stamens ∞ (of MIyptus), or free, or obscurely $4-5$-adelphous in bud (Caryophyllus) ; anthers often versatile; cells parallel or rarely divaricate. Germen inferior, 2- or very rarely 3locular ; style slender, scarcely or not at all incrassate at stigmatose apex. Orules in cells ∞, rarely $2-4$ (Myrciaria ${ }^{9}$). Fruit baccate (sometimes (?) drupaceous), rarely coriaceous or corticate. Seeds generally 1 , or few, variously inserted, globose, ovoid or variously compressed and angular; cotyledons of fleshy exalbuminous (some-

[^423]Fruct. i. t. 33.-DC. Prodr. iii. 261.-Spach, Suit, à Buffon, iv. 171.-Ende. Gen. n. 6321.
${ }^{4}$ Bl. Mus. Lugd.-Bat. i. 113, t. 49.-Mfacromyrtus Mre. Fl. Ind.-Bat. i. p. i. 439.
${ }^{5}$ Seem. Fl. J'it. 76.-B. H. Gen. 724, n. 74. -Qaslondia Vieill. Bull. Soc. Linn. Norm. x. 96. -B. H. Gen. 1006, п. 77.
${ }^{6}$ Cuj. typ. Caryophyllus pterocarpus Vieill. Herb. ex Br. et Gr.-Syzygium pterocalyx Br. et Gr. Ann. Sc. Nat. sér. 5, xiii. 386.
₹ Berg, Linnca, xxvii. 306 ; xxix. 245.PPlinia L. Gen. n. 671. - Stenocalyx Berg, Linnca, xxvii. 309.-Hexachlamys Berg, loc. cit. 345.
${ }^{8}$ Ggratn. Fruct. i. 166, t. 33.-DC. Prodr. iii. 259.-SPACH, loc. cit. 170.-Endl. Gen. n. 6320.-Acmena DC, Prodr. iii. 262.-Spach, loc. cit. 170.-Endl. Gen. n. 6322.-Microjambosa BL. Mus. Lugd.-Bat. i. 11 \%.

- Berg, Linnca, xxvii. 320 ; xxix. 249 ; xxx. 702 ; xxxi. 259 ; Mfart. Fl. Bras. Myrt. 358, t. 36, 37. -Siphoneugenia Berg, Linncea, xxvii. 344 ; Mart. Fl. Bras. Myyrt. 378, t. 38.
times multiple ${ }^{1}$) embryo thick plano-convex, hemispherical or cllipsoid, ${ }^{2}$ sometimes unequal ; raticle short straight or incurved more or less incumbent.-Trees or shrubs; leaves opposite " peuninerved, sometimes memlnanous, often coriaceous and other characters of Myptus; flowers ${ }^{\text {b }}$ axillary solitary or in eymes or short raceme; ${ }^{5}$ in-
 trum ${ }^{7}$); bracts and bracteoles oftener small and calucous. (All trop. and subtrop. regions. ${ }^{8}$)

15. Acicalyptus A. Grar.'-Flowers nearly of Emprnin; receptacle tubular clarate. Calyx gamophyllous entire conical, circumscissus at base deciduons. Petals t, free or coherent, deciduons. Stamens germen, etc., of lingenin; ovules ∞, incurved anatropous. Fruit fleshy (?).-Gtabrous trens or shrubs; leaves of Eugenia; flowers in subcorymbose eymes at apex of ramules. (Newo Cutedonia, Viti 1sles. ${ }^{10}$)

16? Piliocalyx Br. \& Gr. ${ }^{11}$-Flowers nearly of Acicalyntis; reeoptacle shorter. Calyx calyptrately deciduous. Petals small unequal, more or less adherent. Germen 2-locular; ovules in cells $\infty(4-10)$,

[^424]bosa), t. 16 (Syzygium).-Mra. Fl. Ind. Bat. i. p. i. 440,446 (Syzygium),-Tнw. Enum. $P l$. Zeyl. 114, 115 (Jambosu), 116 (Syzygium), 118 (Acmena).—Griseb, Fl. Brit. W.-Ind. 235 (Caryophyllus, Syzygium, Jambosa), 236 (Eugenia).Hook. f. Handb. No-Zeal. Fl. 74,-Benth. Fl. Hough. 118 (Syzygirm), 119 (Acmena), 120 (Jambosa) ; Fl. Austral. iii. 280.—Br. et Gr. Ann. Sc. Nat. sér. 5, iii. 215, 219 (Jambosa), 221 (Syzydium), 224 (Curyophyllus) ; xiii. 385 (Syzygi-(mm).-F. Muend. Fl. Fict. t. suppl. 18 (Syzugi-(m).-Bot. Rg. t. 627, 1033 (Jambosa),-Bot. Mag. t. 473 (I'linia), 867, 1696, 2230 (Jambosa), 4558 (Jossinia), 4526, 4626, 5040, 5480(Acmena). -Walr. Rep. ii. 172 (Jossinia), 178 (Calyptranthes, Syzygù(m), 181 (Acmena), 191 (Jambasa); v. 751 (Syllysizm), 752 (Calyptranthes, Syzygium) ; Ann. ii. 626 (Jossinia), 629 (Calyptranthes, Syzygium), 630 (Gelp)wa), 631, 632 (Jambosa), 639 (Clavimyrtus), 640 (Microjambosa) ; iv. 832 (Jossinia), 833 (S'yzygium), 839 (Caryophyllus), 840 (Acmena), 841 (Jambosa), 849 (Macromyrtus).
${ }^{9}$ Unit. St. Expl. Eirp. Bot. i. 551, t, 67 ; Bonplandia (1562), 35.-B. H. Gen. 708, n. 31.
${ }^{10}$ Spec. about 3. Br. et Gr. Ann. Sc. Nat. sér. 5. iii. 227.--Wali, Aun. iv. 853.
${ }^{11}$ Am. Se. Nat. sér. 5, iii. 225; Nouv. Arch. Mus. iv. 26, t. 10.-B. 11. Gch. 1006, n. 7 s.
descending from apex of internal angle, orthotropons; micropyle inferior. Fruit fleshy; seeds . . ? - -Trees or shrubs; leaves opposite or subopposite ; flowers in terminal compound cymes. (New Culedonia. ${ }^{1}$)

17? Aulacocarpus Bera. ${ }^{2}$-Flowers . . .? " Fruit drupaceous depressed globose, crowned with 5 -fid calyx, 1-5-pyreuous. Sceds in subligneous pyrenes solitary obovoid; testa thick; embryo of Engenin."-Trees or shrubs; leaves opposite wide penninerved; fruit axillary glomerate, shortly pedicellate. ${ }^{3}$ (Tiop. America. ${ }^{4}$)

18? Calycorectes Bera.5-Flowers nearly of Engenia; calyx subconical, valvate, hiant at apex, 4-6-fid. Stameus ∞, inserted higher than germen in receptacle dilated to cupule, and there ∞ seriate. Germen adnate within to bottom of turbinate receptacle; cells $2, \infty$-ovulate. Fruit baceate, erowned with persistent calyx ; seeds, embryo, ${ }^{6}$ etc., of Eugenic.-Trees or shrubs; leaves opposite pemninerved; flowers axillary solitary or cymose, variously pedicellate. ${ }^{7}$ (Trop. America. ${ }^{8}$)

19? Shizocalyx Berg. ${ }^{\circ}$--Flowers nearly of Calyeorectes; receptacle very concave, produced higher above germen in cupule and bearing higher ∞ stamens ∞-seriately inserted. Sepals 4,5 , tomentose without, imbricate at free apex and there as also in bud somewhat open. Germen 2-locular and other characters of Calyenectes. Fruit. . ? ?-Trees; leaves opposite, ofteuer tomentose, penninerved ; flowers axillary pedunculate solitary; peduncles 2-bracteolate. (Brazil, New Caledonia? ${ }^{\text {10 }}$)

[^425][^426]
II. LEPTOSPERMEA.

20. Leptospermum Forst.-Flowers hermaphrodite or more rarely polygamous; receptacle depressed obeonical or turbinate, at base covering germen aduate within. Sepals 5, marginally inserted, imbricate, often at last not contiguous. Petals 5, alternate, imbricate, finally patent. Stamens ∞, when adult apparently 1 -seriate, shorter than or subequal to petals ; filaments unequal, dilater at hase ; anthers small introrse, varsatile; cells parallel, longitudinally rimose. Germon adnate to receptacle within, inferior or partly free, plane or convex at vertex, radiately sulcate and chlandular or impressed ; cells $3-5$, or more rarely $6-12$ (sometimes effete) ; style central, short or elongate, capitate or peltate at stigmatose apex. Ovules in cells ∞ (sometimes ferr), inserted on 2-lamellate short or more or less prominent sometimes vertically 2 -scriate, sometimes transverse or more or less obliquely peltate placenta, horizontal or descending, sometimes recurved. Capsule girt with alnate receptarle, enclused or exserted above, loculicidal. Seeds in eells 1 - (mostly sterile), cither linear, or cuncate-angular, in some cases naked, in others ciliate or alate at margins or angles; coat thin ; cotyledons of straight exalbuminous embryo longer than radicle.-Simall trees or oftener shrubs glabrous or incanescent, odorous; leaves alteruate exstipulate small rigid pellucid-punctate, 1-3-nerved or reinless; flowers axillary or torminal, solitary or $2-3$-nate, sessile or shortly pedicellate; hracts rather broad, imbricate, falling loffore anthesis; bracteoles smaller, sometimes longer persistent. (Trop. Occomin, Austrotia, New Zectumd.)—Sce p. 314.

21? Agonis DC. ${ }^{1}$ - Flowers nearly of $L_{\text {er }}$ ptospermum, stamens 10, 2 -seriate or ∞. Germen, ete., of L (eptospermum; ovulesin cells $\stackrel{2}{\sim}-4$, inserted on ascending more or less dilated placenta and suberect; micropyle inferior.-Shrubs or small trees; leaves alternate, oftener narrow ; flowers eapitate; eapitules axillary and terminal globose, densely glomeruliferous; each flower !-huactcolate." (West. Australia. ${ }^{3}$)

[^427][^428]22. Bæckea L. ${ }^{1}$-Flowers nearly of Leptospermum; sepals 5, persistent. Stamens $5-10$, or ∞; filaments either filiform or searcely complauate (Envyomyrtus ${ }^{2}$), or all or 5 petaloidly dilated (Rinaid ${ }^{3}$), sometimes at base partly conuate (IIypoculymna ${ }^{\text {) }}$) ; anthers various in form. Germen 2, 3-locular; ovules 1, 2, superposed, or 3 (Schett:in ${ }^{5}$), or $2-4$, or ∞, either collateral, inserted on vertical more or less prominent and 2-lamellate placenta, or disposed in a ring around peltate more or less stipitate placenta. Fruit, etc., of Leptospermum ; cotyledons of exalbuminous embryo small ; slender collum inflexed to thick radicle.-Ericoid glabrous shrubs; leaves opposite; flowers ${ }^{6}$ axillary, cymose or spuriously umbellate or capitate, rarely solitary, bracteate and bracteolate. (Australia, New Caledonia, Indian Archip. south-east. Asia. ${ }^{8}$

23? Astartea DC. ${ }^{9}$-Flowers of Buclica; stamens ∞, 5 -adelphous; groups alternipetalous.-Ericoid slrubs; leaves, small opposite glabrous, and other characters of Bceckea; flowers ${ }^{10}$ axiliary solitary or cymose few; pedicels 2-bracteolate. ${ }^{11}$ (West. and trop. Australia. ${ }^{12}$)
24. Balaustion Ноoк. ${ }^{13}$-Flowers rather large ; receptacle very concave suburccolate; disk lining receptacle and produced beyond in a thin entire submembranous ring interior to base of stamens and

[^429][^430]free. Sepals 5, rather broad, imbricate, persistent, with as many alteruate imbricate finally patent petals inserted at mouth of receptacle. Stamens ∞ (of Becfeat), inserted with perianth. Germen inferior, aduate to bottom of receptacle, plane or depressed at apex; style simple, at stigmatose apex capitate, shortly 3 -lobed. Ovules iu cells $3-\infty$, inserted around peltate placenta. Fruit inferior capsular, loculicidal at vertex ; seeds...?-A low glabrous shrub; ${ }^{1}$ leaves opposite ericoid linear ; flowers ${ }^{2}$ axillary solitary pedunculate; bracteoles 2, membranons, inserted under flower at top of slender peduncle. (Western Australia. ${ }^{3}$)
25. Melaleuca L. ${ }^{4}$-Flowers hermaphrodite or polygamous ; receptacle campanulate or urceolate. Sepals 5, free or conuate at base, more or less scarous, imbricate, sometimes circumscissile at base deciduous (Astriomyptu* ${ }^{5}$). Petals 5 , alternate. Stamens ∞, in 5 groups, oppositipetalous, free or at base, sometimes higher, connate in tube (Lemmerchec ${ }^{6}$) ; filaments of each group to a greater or less height conuate with each other or sulfree (('allistrmon ${ }^{7}$) ; anthers versatile, 2-rimose. Germen inferior or in part superior ; cells 3-5, ∞-ovulate or very rarely (Comothemus ${ }^{s}$), l-ovulate; placentx very variable in form, either vertical, ¿-lamellate, or peltate, transverse or oblique, more rarely subbasilar. Capsule more or less enclosed by persistent woody receptacle, loculicidal at vertex ; seeds perfect linear or cuncate ; cmbryo straight.-Odorous trees or shrubs ; leaves alternate or rarely opposite, rigid, either rather broad, 3-co-nerved, or linear rigid, enervate or obscurely penninerved ; flowers ${ }^{3}$ sessile in the axils of the floral leaves or bracts solitary and in spikes or capitules not terminal, the branch extending beyond. ${ }^{10}$ (Australiu, Vero Caledonia, Indian Archip. ${ }^{11}$)

[^431][^432]26. Beaufortia R. Br. ${ }^{1}$-Flowers nearly of ILelalenca, 5 -mernus; groups of stamens oppositipetalous. Authers basifixed (not rersatile); cells transversely 2 -valvate at vertex (Eubenufurtic ${ }^{2}$) or dorsally opposite, extrorsely rimose or subporous at apex (Regelia ${ }^{3}$), more rarely connate at back and dehiscing extrorsely and transversely. Germen, ete., of Nelalenen ; ovules in cells 3-5, or :-4, inserted on subpeltate ascending placenta (Phymatocurpu.s ${ }^{4}$), or 4 , inserted in pairs on peltate or subpeltate placenta (Regeliit), oftener 3-5, of which 2 or 4 are abortive; the fertile fifth asecuding; micropyle extrorsely inferior (Euberufortic ${ }^{5}$). - Rigid shrubs ; ${ }^{6}$ leaves alternate or opposite; flowers sessile, capitate or spicate terminal, or, the branch projecting, not terminal. ${ }^{7}$ (West. Australia. ${ }^{8}$)
27. Calothamnus Libile. ${ }^{\text {- - Flowers nearly of Melateuea (or }}$ Beaufortia), $4-5$-merous; stamens in 4 , 5 , groups, oppositipetalous, highly connate; filaments inferior sometimes anantherous; anthers basifixed erect, oblong or linear ; cells parallel introverted, longitudinally rimose. Germen, ete., of Mchaleuta, 3-4-locular; ovules ∞; erect or ascending, inserted on subglobose or more or less peltate placenta. Capsule and seeds of Melalenca.-Glabrous or pilose shrubs ; leaves alternate narrow rigid, plane or terete ; inflorescence ${ }^{10}$ of Melalenca; fruit more or less, immersed in eularged rachis. ${ }^{11}$ (West. Australia.)
S.-Labild. Pl. N.-Holl. t. 165-169, 171-173.Sneet, Fl. Austral. t. 10, 29 (Metrosideros).Field et Gardn. Sert. t. 74. - Reichb. Ic: Exot. t. 31, 82, 112, 113.-F. Muell. Fragm. ii. t. 15. -Bexth. Fl, Austral. iii. 118 (Callistemon), 123 (Lamarchea, Melaleuca), 163 (Conothamnus).Mog. licg. t. 393 (1838), t. 7 (Callistemon), t. 103, 410, 477.-Bot. Mag. t. 260, 1761, 1821, 2602 (Callistemon), 1860, 1935, 2268, 3210.- Watp. Rep. ii. 161 (Lamarchea), 162, 165 (Callistemon); v. 745, 748 (Conothammus) ; Ann. ii. 618 (Callistemon), 621, 622 ; iv. 824,825 (Callistemon).
${ }^{1}$ Ait. Hort. Kew, ed, 2,iv. 418.-Endi. Gen. n. 6295.-Schav. Nov. Act. Nat. Cur. xxi. p. i. t. 1 A.-Spact, Suit. à Buffon, iv. 114.-B. H. Ge2. 705, n. 24.-Schizoplewa Lindl. Swan Riv. App. ix.-Endl.Gen. x. 6296. - Manglesia Lindi, loc. cit. t. 3 A.
a Beanfortia of authors.
${ }^{3}$ Schau, Noz, Act. Nat. Cur. xxi. 11.-B. II. Gen. 706, 7. 25.
${ }^{4}$ F. Meeld, Fragm。iii. 120,-B. H. Ger. 706, n. 26.

[^433]28? Eremæa Lindu. ${ }^{1}$ - Flowers nearly of Celothammus (or Melalruea) ; stamens in 5 groups, oppositipetalous, most sometimes free; anthers erect basifixed; cells dorsally apposito, extrorsely rimose. Germen 3-locular; ovules in cells few or ∞, inserted in 2-lobed placenta more or less longitudinally vertical or subbasilar and ascending.--Shrubs generally ericoid; leaves alternate, 1-5-nerved or cnervate ; flowers terminal, solitary or few (2, 3), bracts imbricate involucrate. Other characters of Melateuca or Kunsea. ${ }^{2}$ (West. Austratia. ${ }^{3}$)

29? Kunzea Reichb. ${ }^{4}$-Flowers nearly of Eremwn ; receptacle rather long, lined with disk. Stamens ∞, free; anthers versatile (of Cullistemon). Ovules in cells $\infty, 2-\infty$-seriate recurved. Capsule, enclosed in receptacle, loculicidal, and other characters of Mela-lrucu.-Shrubs generally ericoid; leaves alteruate small rigid entire; flowers in axils of upper leaves solitary or oftener in terminal capitules (sometimes, from extension of branch, not terminal. ${ }^{5}$ (Erctica trop. Australia. ${ }^{6}$)
30. Tristania R. Br.'-Flowers hermaphrodite; receptacle subplane or concave, hemispherical or turbinate campanulate, glandular or more or less pilose within. Scpals 5, subvalrate or imbricate. Petals 5 , alternate, membranous or more or less coriaceous, imbricate. Stamens on, shortly or oftener (Eutristcmice ${ }^{8}$) long 5-adelphous; groups oprositipetalous; filaments free above, either erect (N criow^{\prime} hylhum 9), or more or less inflexed (Eutristunia, Lophostemum ${ }^{10}$); anthers short, versatile. Germen inferior (Lophostemon, Neriophyllum), or more or less superior, for the greater part free (Eutristemiu),

[^434]3-locular ; style simple, at apex truncate or more or less dilated stig. matose. Ovules in cells ∞, iuserted on a vertical or thick squamiform or peltate (Eutristunia) entire or more or less 2-lobed placenta, horizoutal or descending, straight recurved or reflexed. Capsule free or more or less adnate to receptacular tube, loculicidal above; valves septate within, ∞-spermous. Seeds cuneate or attenuate above or alato-dilated; cotyledons of straight exalbuminous embryo planoconvex, louger than ascending radicle.-Trees or shrubs glabrous or with various integument; leaves alternate or subverticillate, more rarely (Neriophyllum) opposite, oftener coriaceous; flowers ${ }^{1}$ in axillary or terminal more or less ramose, sometimes corymbiform cymes, bracteate. (Australia, New Caledonia, Indian Archip. ${ }^{2}$)
31. Metrosideros Banes. ${ }^{3}$-Flowers hermaphrodite; receptacle concave, of various form; sometimes subplane. Sepals 5, slightly imbricate or valvate, more or less connate, sometimes unequally lacerate or calyptrately solute (Plcurocalyptus ${ }^{4}$). Petals 5, alternate, imbricate. Stamens ∞, longer than petals, free or subfree; anthers short, versatile. Germen inferior, semi-superior or superior; cells 3, complete or incomplete. Ovules ∞, sometimes few (Tepualius ${ }^{5}$) or I (Surcynniu ${ }^{6}$) transverse or ascending or descending, inserted in a vertical or capitate, clavate or peltate (Xenthustemon ${ }^{7}$), transverse or oblique, entire or more or less 2-lobed placenta. Fruit capsular, or more or less aduate to receptacle loculicidal or sometimes irregularly dehiscent above. Seeds ∞, oftener ascending, imbricate, linear or occasionally cuneate, more rarely semi-orbiculate; cotyledons of exalbuminous embryo plane, plano-convex or plicate, longer than radicle.-Trees or shrubs, sometimes scandent, glabrous or tomentose; leaves opposite or alternate, rarely subverticillate, penninerved; flowers ${ }^{8}$ cymose ; cymes axillary or terminal more or less compound,

[^435]more or less stipitate，sometinies collected in spurious capitules （ぶyncarpi（a）．${ }^{2}$（Decanio firmu Indian Aschipelugo to New Zenland，${ }^{3}$ South Africa，Chili．${ }^{4}$ ）

32？Mooria Moxtrouz．${ }^{5}$－Flowers nearly of Metmasileres，5－ merous；sepals slightly imbricate．Petals 5 ，scarcely longer，imbri－ cate．Stamens ∞ ，generally subequal to petals free；authers versatile．Germen partly sometimes almost entirely free，3－locular． Ovules in cells ∞ ，oftener few，inserted on placenta obliquely ascending from internal angle，ascending．Capsule more or less adnate to receptacle，loculicidal．Seeds sometimes attenuate or alate； cotyledons of exalbuminous embryo longer than radicle，oblong．－ Shrubs or small trees，more frequently much branched；leaves oppo－ site pominerved，glahrus or tomentose ；flowers ${ }^{6}$ solitary or oftener more or less compoundly cymose，terminal or axillary at apex； other characters of Metrosideros．${ }^{7}$（New Caledonia．${ }^{8}$ ）

33？Arillastrum Paxon．＂－Flowers nearly of Metrositepes（or Tristanice，4－merous；receptacle concare subcampanulate．Sepals decussately imbricate．Petals inbricate，finally patent，subcoriaceous， exterually ferruginous puberulous．Stamens ∞ ，in 4 oppositipeta－ lous groups；the exterior sterile；anthers of fertile ones oblong introrse．Germed inferior，internally adnate to receptacle，2－locular ； placentix rather prominent，a－lobed，∞－ovulate．Fruit capsular，ad－ nate within to thick woody subcampanulate receptacle，crowned with 4 thick or broad cuneate teeth（sepals），opening loculicidally at apex and finally incompletely 2 －valvate．Seeds ∞ ，of which 1 generally

[^436][^437]mature subspherical in each cell ; cotyledons of exalbuminous subspherical embryo broad reflexed replicate; coat loaded and involved with remaining sterile membranous squanose ovules. ${ }^{1}$ - A remarkable tree, yielding a gummy juice; trunk large ; leaves opposite penuinerved punctulate; indumentum ferruginous; flowers ${ }^{2}$ glomerate in upper axils at top of peduncle dilated and compressed at apex, 3-nate, bracteolate. ${ }^{3} \quad$ (Neru Caledonia. ${ }^{4}$)
34. Eucalyptus Lher. ${ }^{5}$--Flowers oftener 4-merous; receptacle very concave, campanulate or turbinate. Calyx continuous with margin, oftener short, truncate, entire at apex or remotely 4 -dentate. Petals inserted with calyx and highly counate in herbaceous or coriaceous hood circumscissile and deciduous at anthesis or rarely (Eudesmin ${ }^{6}$) more or less evidently solute. Stamens ∞, ∞-seriate; filaments free, incurved or spirally twisted in bud; anthers small, versatile; cells parallel, longitudinally rimose. Germen inferior, adnate within to bottom of receptacle, flat at vertex, $9-4$-locular; style short or more or less elongate filiform, scarcely or not at all dilated at stigmatose apex. Orules in cells ∞, often horizontal, sometimes partly sterile. Fruit capsular, interually aduate to indurate and at mouth truncate receptacle, loculicidal at vertex. Seeds ∞, often 2 -morphous, ${ }^{7}$ angular or linear-cuneate; cotyledons of straight exalbuminous embryo plane or complicate, longer than ralicle.-Aromatic trees, sometimes lofty, often glaucous; leaves (pposite or altermate, ${ }^{8}$ entire penuinerved coriaceous pellucil-punctate; flowers ${ }^{9}$ axillary, in pedunculate, umbelliform or capituliform cymes, $5-\infty$, sometimes rarely solitary; fruit either free, or more rarely (Symphyomyrtus ${ }^{10}$) connate with each other ; bracts narrow or memloranous and falling long before anthesis. (Australiu, Ind. Aichip. ${ }^{11 \text {) }}$

[^438]globose short; but the superior often linearelongate and (always i) sterile.
${ }^{8}$ Often in the same tree; the inferior opposite, the superior alternate.
${ }^{9}$ White or pale golden, sometimes purplish, often rich in odorous nectar.
${ }^{10}$ Schau. Pl. Preiss. i. 126.
${ }^{11}$ Spec, about 150. Gertn. Fruct. i. t. 34, fig. 1 (Metrosideros),-Cav. Icon. t. 340-342.-Sm. Pl. N.-Holl. t. 13, 42, 43 ; Exot. Bot.t. $84 .-$ Labill. Voy. t. 13, 20 ; Pl. N.-Holl. t. 150-154. DC. Mém. Myrtac. t. 4-11.-Bonpl. Malm. t. 13. -Sweet, Fl. Austral. t. 24 (Eudesmia).-Link et Otto, Abbild. t. 45.-Coll. Hort. Rip. App. 4, t. 1.-Miq. Fl. Ind.-Bat. i. p. i. 398.-Ноок. Icon. t. 405, 611, 619, 849, 879.-F. Muell.
35. Angophora Cav. ${ }^{1}$--Flowers nearly of Euentyptus; calyx gamophyllous, 5 -costate, membranous at margin, remotely 5-dentate; teeth rather prominent. Petals 5, distinct, connivent in a globe, highly imbricate, deciduous at base. Stamens gynecium and capsule of Euculyptus; ; seeds ${ }^{2}$ in cells 1, ovate plano-compressect, peltately atfixed; cotyledons of straight exalbuminous embryo orbicular-cordate, plane or at margin alternately replicate; radicle very short straight.-Trees or shrubs; leaves, generally opposite, coriaccous, and other characters of Euculyptus; ${ }^{3}$ flowers in terminal compoundramose corymbiform cymes. (East. Australia. ${ }^{4}$)
36. Backhousia Hook. \& Harv. ${ }^{5}$ - Flowers oftener 4 -merous; receptacle decply cupular or obconical, adnate at base to germen within. Sepals 4, ofteu subpetaloid, persistent. Stamens ∞; filaments free, sleuder, ∞-seriate; anthers versatile. Germen free to a variable extent, 2-locular ; style slender simple, scarcely dilated at stigmatose apex ; ovules ∞, inserted on longitudinal or subapical placenta, transverse or descending, nearly straight or recurved. Fruit capsular, more or less free, girt with persistent periantl, 2coccous, indehiscent (?) ; seeds cuncate or oborate; cotyledons of straight embryo straight or (where known) conduplicate; radicle shorter. Small trees or shrubs ; leaves opposite ; flowers ${ }^{6}$ in axillary compound umbelliform or capituliform eymes; bracts very caducous. (East. Australia. ${ }^{7}$)
37. Osbornia F. Muerd. ${ }^{8}$ - Flowers generally 8-merous, apetalous; receptacle concave turbinate, not produced beyond germen aduate within. Sepals 8, sub-2-seriate, persistent. Stamens ∞, few-seriate;

Journ. Linn. Soc. iii. 81 ; Pl. Vict. Suppl. t. 16, 17 ; Fragm. ii. 32, 171 ; iii. 57, 130, 152 ; iv. 51, 159; v. 14, 45 ; vi. 25 ; vii. 41 ; viii. 142, 184.Bentio. Fl. Austral. iii. 185.-Bot. Reg.t. 947.Bot. Mag. t. 2087, 3260, 4036, 4266, 4333, 4637, 6151.-Walf. Rep. ii. 163, 924 ; v. 743 ; Am. ii. 619 ; iv. 824.-Tir. Innusch, Ein Beob. an Eucalyptus Globulus, Zeitschr. f. d. ges. Naturwiss bd. xlvii. (1876); and on the uses of this species: Chemical Protucts of the Eucalyptus, J. of All. Sci. ed. Simmonds, vii. 148 (Oct. 1876).
${ }^{1}$ Icon. iv. 21, t. 338, 339.-DO. Prodr. iii. 222.-Spach, Suit. à Buffon, iv. 134.-Endz. Gen. n. 6301.-B. H. Gen. 707, п. 20.
${ }^{2}$ Where known.
${ }^{3}$ From which genus it differs only by its soIute petals and form of seeds (? if constant)

(B. H.).

${ }^{4}$ Spec. 4. Gertn. Fruct. i. 171, t. 34 , fig. 2 (Metrosideros).-Pers. Enchir. ii. 25 (Metroside-ros).-Sm. Trans. Linn. Soc. iii. 267 ; Exot. Bot. t. 42 (Metrosideros).-Andr. Bot. Repos. t. 281 (Metrosideros).-Vent. Malmais. t. 5 (Metroside-ros).-Lodd. Bot. Cab. t. 106 (Metrosideros).Link. En. Hort. Berol. ii. 31 (Eucalyptus).--F. Muell. Fragm. i. 31 ; iv, 170.-Benth. Fl. Austral. iii. 183.-Bot. Mag. t. 1960 (Metrosideros). -Walp. Rep. ii. 164, 920 ; Ann. iv. 825.
${ }^{5}$ Bot. Mag. t. 4133.-B. H. Gelz. 711, n. 40.
6 White or pale greenish.
7 Spec. 4. F. Muell. Fragm. i. 78 ; ii. 26. 171. -Benth. F?. Austral. iii. 269.
${ }^{3}$ Fragm. Phyt. Austrat. iii. 30.-B, H. Gen. 711, n. 41.
anthers small, versatile, 2-rimose. Germen inferior, 2-locular, style simple, at stigmatose apex rather obtuse. Ovules in subcomplete or incomplete cells $\infty, 2$-seriate. Fruit dry (?) indehiscent, crowned with calyx ; sceds 1,2 , obovoid ; coats thin; cotyledons of straight embryo plano-convex and longer than radicle.-A glabrous shrub; ${ }^{1}$ leaves opposite obovate-oblong penninerved coriaceous; ${ }^{2}$ flowers axillary or terminal, solitary or glomerate, 3-nate, hoary tomentose ; bracteoles caducous. ${ }^{3}$ (Trop. Australia. ${ }^{4}$)

III. CHAM.ELAUCIE E.

38. Chamælaucium Desf.-Flowers hermaphrodite or sometimes polygamnus ; receptacle concave, obconical or campanulate, sometimes 5-10-costate. Sepals 5, marginally inserted, short, imbricate, finally patent, smetimes ciliate or subpetaloid. Petals 5, alternate, longer, orbicular, concave, imbricate. Stamens 10 , inserted 2 -seriately with perianth and alternating with as many elongate incurved glandular squamules ("staminodes") ; filaments short thick incurved, free or very shortly connate at base ; anthers short or subglobose extrorse ; cells adnate to thick connective, dehiscing by a short longitudinal fissure. Germen inferior, adnate to receptacle within, l-locular; style erect, oftener shorter than the perianth, often stigmatose and variously dilated under apex, barbate with rigid glandular simple hairs. Ovules in cell ($6-10$, sometimes 2 -scriate, inserted on subbasilar or oblique eccentric placenta, ascending, anatropous; micropyle extrorsely inferior. Fruit crowned with persistent calyx, dry, indehiscent; sceds ascending 1, 2 ; cmbryo . . ? ?-Ericoid pellucidpunctate odorous shrubs; leaves opposite or rarely alternate, linear entire; flowers axillary to leaves or to bracts inserted at top of twigs, sessile or shortly stipitate, solitary or few cymose; inflorescence terminal sometimes capituliform ; bracts widely scarions enclosing the bud and falling before or at anthesis. (South-west. Australia).-See p. 321.
39. Darwinia Rudge. ${ }^{\text {.-Flowers nearly of Chamelaucium, 5- }}$
${ }^{1}$ Except flowers.
${ }^{2}$ Nearly of Lumnitzera.
${ }^{3}$ Gen. connecting the Myrtacece with the Rhizophoracece and Combretaces.
${ }^{4}$ Spec. 1. O. octodonta F. Muell.-Benth. Hoot. Ic. n. 1041 ; Fl. A iustral. iii. 271.

VOL. VI.
${ }^{5}$ Trans. Linn. Soc. xi. 299, t. 22 (not Dennet.) —Dow, Edinb. New Phil. Journ. (Apr. 1829), 84.-Schau. Myrt. Xeroc. t. 2 D.-Endl. Gen. n. $6282 .-\mathrm{B} . \mathrm{H} . G_{e n} .697$, п. 2.-H. Bn. Adansonia, xi. 3 (incl. : Genetyllis DC. Schuermannia F. Mueli.
morons; sepals .), broad petaloid (Schuermamniu'), cutire or ciliate, sometimes minute squamiform ((ienetyllis ${ }^{2}$) or subuil. Stamens 10 , $\ddot{\sim}$-scriate, ${ }^{3}$ altrruating with an equal number of glands; ${ }^{t}$ anthers subglobose, dehiscing subdorsally by pores or very short fissures. Germen inferior, l-locular; style geucrally clongate subulate, under apex imbarbate or oftener barbate. Orules in cells 2, or rarely 4 , occasionally ${ }^{5}$ inserted on parietal placenta, ascending, anatropous; micropyle extrorsely inferior. Fruit crownel with perianth, indehiscent. Seed I ; embryo fleshy (undivided? ${ }^{\text { }}$).-Odorous shruks; leaves alternate or rarely opposite, entire or ciliate, pellucid-punctate, articulate; flowers in axils of upper leaves solitary or terminal capitate (Conetyllis ${ }^{7}$) and there often involucrate with leaf-like (coloured) bracts; bracteoles lateral. (Australia. ${ }^{8}$)

40? Actinodium Schau. ${ }^{9}$-Flowers ${ }^{10}$ of Dervinia, 1 -merons; receptacle 4 -gonal ; glands between stamens 0 .-An cricoid shrub; leaves alternate lincar; capitules terminal, involucrate with membranous coloured bracts ; bracteoles scarious. Other characters of Darwinia. ${ }^{11}$ (Trop. Australia. ${ }^{12}$)

41 : Homoranthus A. CENN ${ }^{13}$-Flowers ncarly of Duminiu, 5.merous; receptacle tubular, 5-costate; sepals loug subulate and petals long superior. Stamens, alteruate glandules and germen of Durwinia; ovules 4-8, inserted on short basilar cccentric placenta. Fruit . . .?An cricoid shrub; leaves opposite, lincar- 3 -quctrous; flowers at summit of twis' $2-1$, solitary in axils of bracts; bracteoles broadly scarious ('nclosing buds and falling befure anthesis. ${ }^{14}$ (Linst. Anstralia. ${ }^{15}$)

[^439][^440]12．Verticordia DC．－Flowers nearly of Chumemteminm，recep－ tacle externally 5－10－costate．Sepals：5，patent，decply divided into bristly plumose or pectinate－ciliate lobes（sometimes in addition $\overline{5}$ exterior alternate，herbaceous or deeply ciliate scarious and reflexed）． Petals 5 ，entire，or fimbriate．Stamens 10 ，alternating with as many glandules；anthers short，poricid or shortly rimose．Germen 1 － locular ；ovules 1， 2 or more rarely $3-10$ ，inserted on basilar or eccen－ tric placenta，crect or ascending，anatropous or peritropuns；micropyle extronsly inferior．Fruit crowned with calyx，indehiseent（？）．Seed 1 ；embryo fleshy（undivided？${ }^{3}$ ）．－Shrubs；leaves opposite or very rarely alternate，often cricoid，etc．，of Chomuchucilm；flowers in upper axils solitary or in spikes，racemes or terminal corymbs；brac－
 before anthesis．Other characters of Chumentucium．${ }^{5}$（Anstrulia．${ }^{5}$ ）

43．Pileanthus Labirl．＂－Flowers nearly of Chemmluncium， sepals 10 ，petaloid，subequal，entire，patent．Stamens 20 and upwards， one interior to each sepal ；the rest $4-\infty$ interior to cach petal ；filit－ ments dilated or 2 －fureate at apex ；anther－cells longitudinally rimose， contiguous or very remote in fureate filaments．Germen，ete，of Chumetaucimm ；orvles 6－10，inserted on eccentric basilar placenta，〇－seriate．－Ericoid shrubs ；leaves oftener opposite linear， 3 －quetrous or terete ；flowers terminal corymbose ；upper leaves 1 －florous；brac－ teoles broad scarious enclosing bud，falling early circumscissus above the base．（South－west．Australia．${ }^{\text { }}$ ）

44？Lhotzkya Schau．${ }^{9}$－－Flowers $\begin{gathered}\text { e－merous ；reeptacle lageniform }\end{gathered}$

[^441][^442]dilated below and there enclosing germen adnate within, higher produced to a long tubular neck and at apex dilated to a cupule bearing at the margin the perianth and the stamens. Sepals 5, obtuse or retuse, not aristate. Petals 5. Stamens ∞, ∞-scriate. Germen inferior, 1-locular; ovules 2, ascending, inserted on placenta extending from base to apex of cell. Fruit dry, crowned with calyx, indehiscent; sced 1 ; cotyledons of straight exalbuminous embryo minute.-Ericoid shrubs ; alternate and sometimes opposite leaves, etc., of Calythrix. ${ }^{1}$ (Australia. ${ }^{2}$)
45. Calythrix Labill. ${ }^{3}$-Flowers (nearly of Lhotiliyui); receptacle long lageniform ; neck sometimes very narrow tubular, above cupularly dilated and bearing perianth inserted on margin. Sepals ${ }^{4} 5$, patent, scarious at margin and mucronate or oftener far produced to a setiform arista. Petals 5, entire, deciduous. Stamens ∞ (often $25-30$), ∞-seriate ; the interior shorter; filaments inserted with perianth, unequal; ${ }^{5}$ anthers short introrse, versatile. Germen inferior, adnate within to receptacle, 1-locular ; placenta springing from dissepiform bottom of germen and extending to its apex. Ovules 2, subbasilar, collaterally erect anatropous; micropyle introrsely ${ }^{7}$ inferior. Fruit often crowned with calyx and receptacle, dry, indehiscent. Seed 1, erect; cotyledons of thick straight embryo very short.-Ericoid shrubs or undershrubs; leaves alternate, semiterete or 3-4-quetrous, articulate at base and there sometimes furnished with 2 minute lincar caducous stipules; flowers ${ }^{8}$ axillary or capiiately corymbose at summit of twigs ; floral leaves often changed to bracts; bracteoles 2, lateral, persistent, subfoliaceous or often scarious, imbricate. ${ }^{9}$ (Australia. ${ }^{10}$)

[^443]${ }_{5}$ The 5 smaller oftener alternipetalous.
${ }^{6}$ Septum sometimes incomplete.
${ }^{7}$ Opposite inscrtion of septum.
8 White, pink, or yellow.
${ }^{9}$ A genus differing from Lhotzkya only in the form of the sepals.
${ }^{10}$ Spec. about 34. Lindl. Svo. Riv. App. 5, t. 3 B.-A. Rich. Toy. Astrol. Bot. t. 16.-Field et Gardn. Sert. Pl. t. 38.-Schau. Pl. Preiss. i. 104.-Meisen. Journ. Limn. Soc. i. 46.-Turcz. Bull. Mosc. (1847) i. 164; (1849) ii. 20.-A. Cunn. Bot. Mrag. t. 3323.-F. Muell. Trans. Inst. Vict. iii. 42 ; Fragn. i. 12, 146, 222 ; iv. 36, 177 ; vii. 40 ; viii. 182.-Bente. Fl. Austial. iii. 39. -Bot. Reg.t. 409.-Walp. Rep. ii. 157; v. 733 ; Am, ii. 616.
46. Thryptomene Endl. ${ }^{1}$ - Flowers 5-merous ; receptacle short, cylindrical, turbinate or hemispherical. Sepals 5, entire, patent, persistent (petaloid). Petals 5, connivent, persistent. Stamens 5-10, alteruipetalous; ${ }^{2}$ filaments short inflexed; anthers introrse, sometimes crowned with globular apiculate connective; cells distinct, at apex poricid or shortly rimose. Germen inferior, adnate within to receptacle ; ovules in cell $\stackrel{2}{ }$, ascending (of Calythrix) or more rarely $4-10$, inserted on a more or less elongate dissepimentiform parietal placenta; style slender simple, at apex capitate stigmatose. Fruit dry, l-2-spermous, indehiscent or spuriously 2-coccous. Seeds globose or hemispherical ; radicle of exalbuminous embryo very thick; cotyledons minute inflexed to apex of slender neck.-Ericoid glabrous shrubs ; ${ }^{3}$ leaves opposite entire, small or minute, thick pellucidpunctate; flowers axillary, solitary or more rarely few cymose; pedicels articulate under flower; bractooles 2 lateral, partly scarous, deciduous. (Australia. ${ }^{4}$)

47? Homalocalyx F. Muell. ${ }^{5}$-Flowers nearly of Thryptomene; 5 -merous; perianth caducous. Stamens $\infty(8-20)$; anthers versitile. Germen iuferior; ovules 2, inserted on eccentric subbasilar placenta. Fruit ...? Other characters of Thryptomene ${ }^{6}$ (or Lhotzliya). --Ericoid glabrous shrubs; leaves alternate or rarely opposite, closely packed entire (small) ; flowers axillary solitary subsessile; bracteoles \gtrsim lateral, broad marginally or entirely scarious, generally persistent. (Warm Australia. ${ }^{7}$)

48? Micromyrtus Bexth. ${ }^{8}$-Flowers nearly of Thryptomene; sepals 5, persistent (sometimes 0). Petals 5, small, patent, deciduous, more rarely persistent. Stamens 5, oppositipetalous, or 10 ; anthers small, 2 -rimose. Germen 1-locular; ovules $\mathfrak{Z}-4$, descending from apex of filiform placenta extending from bottom to top of cell, collateral. Fruit, seed, embryo, etc., of Thryptomene. - Ericoid shrubs;
${ }^{1}$ Ann. Wien. Mus. ii. 192; Nov. Stirp. Mus. Findob. Dec. 72 ; Gen. n. 6277.-Schau. Myrt. Xeroc. t. 6 A.-B. H. Gen. 700, n. 10.-Paryphantha Schat. Limea, xvii. 235. - Astrea Sceav. loc. cit. 238 (not Kl.)-Eremopyxis H. BN. Adansonia, ii. 328.
${ }^{2} 1$ or 2 stamens before each sepal.
${ }^{3}$ Habit of Breckea or Leptospermum.
${ }^{4}$ Spec. 17. Schau. Pl. Preiss. i.102.-A. Cunn. Bot. Maq.t. 3160 (Breckea):-DC. Mém. MIyrt. t. 14 (Brecker), 一Hoow. F. Hook. Fitw Jomm?. V. 299, t. S; Fl. Tasm. i. 128.-Tuncz. Bull. MOosc. (1847)

[^444]leaves orposite entire (small) ; flowers 'axillary solitary; peduncles short or very short, 2-bracteolate. (Australia. ${ }^{2}$)

IV. BARRINGTONIA.

49. Barringtonia" Fonst.-Fluwers hermaphrodite, 4- or rarely j-morous; receptacle concave obeunical or saceiform, seareely or nut at all produced beyoud the gromem alnate within. Calyx valvate, finally 2-4-fid (Butonicu ${ }^{9}$) or imbricate 3-t-lobed (Strotmentim, ${ }^{5}$). Petals 4, 5, epigynously inserted and alternating with sepals, imbricate. Stamens ∞, at base emmato with petals in a short ring and falling with them; filamentsotherwise free, exsertel; ; mithers small, versatile or rarely subbasifixed, 吴rimose. Disk epigynous surrounding with a short ring the top of the germen and hase of style. Germen inferior, 2-4-locular ; style simple, often subulate, scarcely or not at all dilated at stigmatose ajex. Ovules in cells ${ }^{2}-\infty$, trans verse or descending, a-scriate, or the inferior descending; micropyle introrscly superior. Fruit fleshy or oftener filmous, often 4 -angular, crowned with persistent calyx, indehiseent. Seed generally by abortion 1, testa oftener thick; embryo exalbuminous fleshy mudivided enticatc.-Trees or shrubs; leaves alteruate, often crowded at top of twigs, eutire, crenate or scrate, penninerved impunctate ; flowers in racemes or spikes, sometimes broken or very elongate; bracts small caducous; bracteoles 2, very small or 0. (Trop. regions of old world.) -See p. 326.

50 ? Planchonia BL. ${ }^{6}$ - Flowers nearly of Pariingtmin, 4 -merous; sepals 4 , imbricate. Stamens os ; anthers small, versatile ; the interior longer arantherous. Germen 3 -t-lucular; cells so ovulate. Berry corticate, crowned with calyx. Seeds few; funicle elougate; cotyledons of involute circinate embryo foliacenus plicate ; radicle very long clavatespirally convolute.--Trees; leaves alternate crenate impuctate and other characters of liowingtonio; ${ }^{\top}$ flowers terminal, "shortly racemose ; bracts and bracterles not caducous, oblong. (Indich Archip. ${ }^{.{ }^{40} \text {) }}$

[^445]51 ? Careya Roxb. - Flomers nearly of Buringtonin, 5 -merous. Stamens ∞; the exterior longest and the innermost short sterile anmonthers; the intermediate fertile; anthers small, versatile. Germen 4-5-locular; ovules ∞, \gtrsim-seriate, etc., of Barringtonia. ${ }^{2}$ Berry glubose corticate, crowned with calyx ; seeds ∞, nestling in pulp. Embryo undivided (of Barringtonia).--Lofty trees or sometimes subshrubby ; leaves alternate collected at top of twigs impunctate ; flowers ${ }^{3}$ interruptedly spicate or racemose lateral. (First Indin, trop. Australia. ${ }^{4}$)
52. Petersia Welw. - "Flowers nearly of Burrinytomin, tmerous; receptacle ovoid-turbinate, externally herbaccous-1-alate. Sepals 4, alternating with wings, imbricate. Stamens all fertile; anthers sub-2-dymous; cells rivaricate. Germen inferior ; cells 2, os -ovulate. Fruit fibrous oblong, ${ }^{6}$ furnished externally with 4 longitudinal membranous semiorbicular veined wings; seeds 1-4; embryo ...?-A large tree; leaves alternate, peuminerved membranous pellucid-punctate; flowers ${ }^{7}$ in short dense racemes solitary in upper axils or gathered in a terminal corymb; bracts and brateteoles few caducous." ${ }^{8}$ (Trop. west. Africa. ${ }^{9}$)
53. Fœtidia Cumaris. ${ }^{10}$-Flowers hermaphrodite apetalous, 3-1merous, very rarely 5 -merous ; receptacle turbinate, enclosing adnate germen. Sepals $3-5$ marginally inserted, thick coriaceons, valvate or reduplicate-valvate, persistent. Stamens ∞, epigynous very crowdel, ∞-seriate; filaments free, unequal; ; ${ }^{11}$ anthers ovate or oblong, versatile; cells parallel, longitudinally rimose. Germeu inferiur, 2-5-locular; cells cqual in number to scpals and alternating with them ; style central erect slender, at apex stigmatose shortly 3-i)branched; brauches open-recurved. Ovules in cells ∞, inserted on

[^446]tonia).-1Benth. Fl. Austral. iii. 289.-Whlp. Rep. ii. 192.
${ }^{5}$ Ex B. H. Gen. 721, n. 61 a (not Kı_).
6"Or with wings broadly obcordate $\left\langle 2 \frac{1}{2} \mathrm{in}\right.$. long, 2 in. broad)."

7 Rather small.
s "A genus allied to Baringtonia, differing in punctate leaves, wings of calyx, and fruit and anthers." (B. H.)
${ }^{9}$ Spec. 1. P. africana Welw.-Laws. Oliv. Fl. Trop. Afr. ii. 439.
${ }^{10}$ Ex J. Gen. 325.—Lamk. Dict. ii., 457 ; Ill. t. 419.-DC. Prodr. iii, 295.-Endl. Gen. n. 6328. -II. Bn. Payer Fum. Nat. 369.- B. H. Gen. 724, n. 73.-Baker, Fl. Maurit. 120.
${ }^{11}$ The larger the nearer they are to the middle of the sepals, often inflexed in the bud.
a transverse or oblique capitate parietal placenta, anatropous, sessile or stipitate. ${ }^{1}$ Fruit turbinate coriaceous, enlarged at flattened vertex, 1-1-locular; seeds ∞; ${ }^{2}$ cmbryo...? - Glabrous trees; ${ }^{3}$ leaves alternate, collected at top of twigs, petiolate, entire, coriaccous penninerved, at vernation convolute; flowers ${ }^{4}$ axillary solitary or few cymose pedunculate. ${ }^{5}$-(Mascarene isles, Malacca. ${ }^{6}$)

54? Sonneratia L. F. ${ }^{7}$-Flowers hermaphrodite, 4-S-merous; receptacle subcampanulate, enclosing adnate germen and produced higher bearing at margin $4-8$ thick valvate 3 -angular sepals. Petals 0 , or $4-8$, small, linear or long filiform, sometimes spathulate. Stamens ∞, filaments slender, ∞-seriate, incurved in bud, finally reflexed; anthers reniform or hippocrepiform, versatile, 2-rimose. Germen adnate at depressed apex or more or less free, ∞-locular ; style slender simple, plicate in bud, at apex stigmatose obtuse or minutely capitate. Orules in cells ∞, inserted on interual placenta, recurved, often ascending, imbricate. Fruit baceate, coriaccous, increased by persistent calyx, ∞-locular, iudchiscent (?) ; cells on-spermous. Sceds more or less nestling in interior pulp, long curved ; testa thick very hard; cotyledous of exalbuminous embryo foliaceons convolute; radicle terete elongate.-Glabrous trees and shrulbs ; leaves opposite petiolate exstipulate, oblong or subelliptical, cutire coriaceous thick; nerves searcely or not at all conspicuous; flowers ${ }^{9}$ axillary solitary or terminal 3-nate. ${ }^{10}$ (All trop. shores of old world. ${ }^{11}$)

55 ? Grias L. ${ }^{12}$ - " Flowers $t-5$-merous; receptacle turbinate not

[^447]that stipules are wanting, and that least of all is it Legnotideca). Tombea Br. et Gr. loc. cit.
${ }^{8}$ Habit of some Rhizophorce.
${ }^{9}$ Large, white or pink. 」
${ }^{10}$ A genus of Iythrariece. (B. II.)
${ }^{11}$ Spec, 3, 4. Sonner. Voy. 16, t. 10, 11 (Pa-pagate),-Rumpr. Herb. Amboin. iii. t. 73, 74 (Mangium).-Rheed. Hort. Mal. iii. 43, t. 40 (Blatti).-Wioht and Arn. Prodr. i. 327.Wight, Ic. t. 340.-Mie. Ill. Ind..Bat. i. p. i. 485 ; Suppl. 316.-BL. NLus, Lugd.-Bat. i. 336. -Benth. Fl. Austral. iii. 301.-Walp. Rep. ii. 170 ; Ailn. iv. 691, 830.
${ }^{12}$ Gen. n. 659.-J. Gen. 257.-I LAMK. Dict. iii. 45.-Sw. Obs. 215.-Sm. Rees Cyclop. 15.-DC. Prodr. iii. 296.-Endl. Gen. n. 6335.-B. H. Gen. 722, n. 65.-Miers, Trans. Lim. Soc. xxx. 171,298, t. 36 c.
produced heyoud germen aduate to cavity within. Calyx inserted on margin cyathiform, at first subentire, finally divided, irregularly 2-4lubed. Petals t, or more rarely 5 , patent. Stamens so, inserted on thick subeupular disk; filaments unequal, ∞-seriate; the interior smaller ; all thick counivent in a globe involute; anthers small ; cells distinct rimose. Germen inferior, t-locular; style short, at apex cross-rayed-4-lobed; ovules in cells $2-4$, descending. Fruit fleshy, crowned with calyx ; seed oftener l, descending; testa thick; embryo ...?Lofty trees; leaves alternate, collected at top of twigs, entire or simuate pemincrved epunctate; flowers cymose on trunk or branches, shortly pedicellate. ${ }^{1 "}$ (Trop. America. ${ }^{2}$)
56. Gustavia L. ${ }^{3}$-Flowers $1-6$-merous ; receptacle turbinate or subhemispherical. Sepals $1-6$, counate at base or higher, persistent. Petals 5-8, subequal, imbricate. Stamens ∞, regularly ∞-seriate; filaments equally urceolately commate at base, inflexed in bud; anthers basifixed linear, sub-4-locellate; cells parallel, dehiscing by longitudinal or sometimes short poriform cleft. Germen inferior, admate within to receptacle, at apex flat or depressed, 4-6-locular; style central very short, aper stigmatose rery shortly lobate or sulcate. Ovules in cells ∞, auatropous ; funicle short or 0 . Fruit fibrous, crowned with calys or umbilicate at apex, indehiscent. Sceds oo (oftencr few), suspended by means of an elongate incrassate plicate arilliform funicle; testa hard; cotyledous of exalbuminous embryo thick, sometimes unequal; radicle short.-Trees or shrubs; leaves alternate, ${ }^{4}$ entire or serrate peunimerved, oftener impunctate; flowers solitary or few cymose ; perluncle articulate, sometimes 2-bracteolate to middle. (Trop. America. ${ }^{6}$)

57? Cariniana Cissm. ${ }^{7}$-Flowers nearly of Custavia, 5-6-mcrous. Stamens ∞, unequal, ∞-seriate ; filaments connate at base to a more

[^448][^449]or less clongate cupule adnate within to bottom of corolla, above fieco and there incurved or occasionally produced to a short ligule ; anther's of all fertile, more or less inenrved in the bud. Germen inferior, $3-5$-locular ; ovules in cells ∞, ascending. Fruit oblong cylindrical, dehiseing by an apical often hemispherical circumscissile opereulum. Secds few, inserted round a central columu on incrassiate subbasilar sporophores, loug-wiuged below. Embryo exalbuminous contortuplicate ; radicle very large cylimdrical arcuately ascending ; cotyledons broadly foliaccous contortuplicate incumbent.---Trees ; leaves alternate, oftener serrate; flowers in terminal ramose racemes ; bracts and bracteoles small, caducous. ${ }^{1}$ - (Trop. America. ${ }^{2}$)
58. Couratari Aubl, ${ }^{3}$ - Flumers of Ctriminnt, oftener 6 -merous; ligule of androceium elongate, loaded externally at apex with crowiled stamens sterile (?) but here and there provided with small (well defiued) anthers. Fruit, ete., of ('triminnu; operenlum nearly equal to pericarp. Seeds circumalate ; embryo callominous contortuplicate. -Lofty trees; leares alternate entire; inflorescence, ete., of Cerviniana. ${ }^{4}$ (Trop. America. ${ }^{5}$)
59. Couroupita Aubl. ${ }^{6}$-Flowers nearly of Conituri, Gamerons; ligule of andrecium clongate large incurved fleshy subpetaloid cucullate. Stamens nearly all either subbasilar, or fertile at top of ligule; anthers of all basifixed erect, longitudinally \quad-rimose. Germen large partly superior, $5-8$-locular; style short thick; cells jo-ovulate. Fruit subylobose coriaccous-woody, indehiscent, ring-marked with scar of marginal reecptacle, umbilicate at apex. Seeds ∞, imbedded in pulp, exalate; embryo, ctc., of ('unruftri-D'rees; leaves alternate,

[^450]$172,301, t, 36 \mathrm{~B}$), of which one Amazonian species is described (C. anomala Mrers) as having a 6 -merous flower, unknoton to us, a nerved helmet-shaped ligula, produced at apex to an incurved subulate lamina, allied to this!
${ }^{5}$ Spec. about 7 (ex Mrers). Velloz. Fl. Flum. จ. t. 86 (Lecythis)-Cambess. A. S.-II. Fl. Bras. Mer. i1. 274, t. 159.
${ }^{6}$ Guian. $\mathbf{6} 08$, t. 282.-Port. Mén. Mus, xiii. 152, t. 78.-DC. Prodi. iii. 293.-Tubp. Dict. Sc. Nat. Atl. t. 227-229.-Spacir, Suit. à Buffion, iv. 196.-Endl. Ger. n. 6334.-H. Bn. Payer Fam. Nat. 370.-B. H. Gen. 722, n. 67.-Mrers, Trans. Liun. Soc. xxx. 139, 188, t. 33 B.--Portoppidana Scor. Introd. X, 8\$9.-Elscholtzia Iiscri. (not W.).
entire or serrate；stipules minute，caducous；flowers 1 in large racemes spriuging from the trunk and branches；bracts and brac－ teoles caducous．（Trop．America．${ }^{2}$ ）

60．Lecythis Loffi ${ }^{3}$－Flowers nearly of Couratari，3－fi－merous； ligule of androcium large petaloid，at apex once or twice（sometimes contrarywise）cucullate．Androcium of Consotari（or Couroupita）； stamens interior at top of ligule sterile，anantherous or with small effete anthers，sometimes（Alluntomet ${ }^{\mathrm{H}}$ ）aggregated in a mass．Germen inferior or partly superior， $2-6$－locular；style short and other cha－ macters of Couroupita．Fruit clothed with externally adnate calyx， globose or cupuliform，sometimes subeylindrical，coriaceous or woody； operculum on both sides conical or convex，more rarely（Eschuceilere ${ }^{\text { }}$ ） concave within．Scells few，stipate on a thick fleshy arilliform funicle， sometimes narrow elougate very rugose（Allantomu），externally gla－ brous or variously reticulate castate；embryo undivided fleshy．－ Trees，sometimes immense；leaves alternate，entire or serrate ；inflo－ rescence，${ }^{6}$ etc．，of Couroupita．（Trop．America，Africa，${ }^{7}$ trop．and east．islands．${ }^{8}$ ）

61．Bertholletia 11．B．${ }^{9}$－Flowers nearly of Iepethis；calyx gamophyllous，at first closed；lubes very short to apex；finally un－ equally 2 － 4 －fid，deciduous．Petals unequal or subequal．Stamens at top of cucullate ligule sterile．Germen inferior ；cells 4,5 ，pauci－ ovulate．Fruit broadly subglobose woody，to a large extent exter－ nally stipate to adnate receptacle and girt with its margin，dehiscing by a small circumscissile operculum．Seeds on（oftener about 20）， obovoidly 3 －quetrous；testa very hard rugose；cmbryo fleshy undi－

[^451][^452]vided.-A lofty tree; leaves alternate impunctate; flowers ${ }^{1}$ in terminal ramose glomeruliferous racemes; bracteoles subfoliaceous oblong-cuneate, caducous. (Trop. America. ${ }^{2}$)

V. NAPOLEONE \mathbb{E}.

62. Napoleona Pat. Beauv. - Flowers hermaphrodite regular; receptacle turbinate, cuclosing germen adnate within. Sepals 5 , marginally iuserted, 3-angular, valvate. Petals 5, alternate, inserted with calyx, connate in orbicular shortly 5 -lobed corolla; lobes longitudinally multiplicate, valvate, denticulate at apex. Disk interior to corolla duplex petaloid, cousisting of 2 concentric crowns; the exterior composed of lacinire subulate-ligulate subfree or connate ouly at base; the interior conuate in multilobed tube inflexed at apex; both comnate with base of corolla and androcium and fulling with them. Stamens oftener 20 ("more rarely $25-\infty$ "), in 5 alternipetalous groups; the stamens of each group generally 4 , of which the 2 exterior are fertile, the interior anantherous; the filaments of all petaloid ligulate incurved; anthers of the exterior adnate introrse, 1-locular, 1-rimose. Germen inferior, 5 -locular; cells oppositipetalous; style erect short thick, 5 -gonal, at apex dilated-peltate, 5 -angular, stigmatose along 5 furrows. Ovules in cells ∞, generally few (4), 2-seriate, finally descending, with mierongle introrsely superior, or slightly ascendiup, with micropyle extrorscly inferior. Fruit baceate corticate, crowned with calyx ; seeds few imbedded in pulp; cotyledons of reniform embryo plano-convex fleshy; ralicle short retracted to hilum of cotyleduns.-Gilabrous trees; leaves alternate, eutire or obscurely sinuate, peminerved, epunctate; flowers axillary, solitary or few glomerulate; bracts under flower few, decussate-imbrieate, larger from the lower to the higher, often on both sides (as the sepals and sometimes the leaves) bearing an clliptic gland sessile to margin. (Torp. west. Africa.) -See p. 331.
63. Asteranthos Deme.-Flowers ncarly of Nupoleona; receptacle shorter. Calys gamophyllous membrawous, sinuate denticulate at margin. C'orolla widely rotate, ∞-plicate, destitute of crown within. Stamens ∞, connate with corolla at base, ∞-seriate ; filaments fili-

[^453]form ; anthers basifixed, 2 -locular, introrsely 2 -rimose to margins. Germen semi-inferior; style clongate, apex capitate shortly lobed. Ovules in cells ∞, elongate, anatropons, descending. Fruit ...?A tree; branches slender; leaves alternate entire penninerved epunetate and other characters of Napoleome; flowers axillary solitary shortly stipitate; bracteoles 2, caducous. (North Braill, Gmima.) —See p. 333.

VI. PUNICE E.

64. Punica T.-Flowers hermaphrodite; receptacle obconical or turbinate, enclosing germen aduate within and produced higher and widened fleshy (coloured). Scpals 5-7, continuous with margin of receptacle, thick, valvate, persistent. Petals $\bar{n}-\bar{\imath}$, inserted in hollows of sejals, obovate-lanceolate, imbricate corrugate, early deciduous. Stamens ∞, inserted within on receptacle, ∞-seriate; filaments slender incurved; anthers small introrse, 2 -rimose, versatile. Germen inferior, ∞-locular; style flexuose, dilated at conical base, apex capitate stigmatose. Cells 2-seriately superposed; placenta of (often 5) upper alternipetalous parietal ; of lower (often 3-5) axile. Ovules in each placenta ∞, anatropous, ∞-scriate. Fruit corticate thickly enriaceous, crowned with calyx; cells ∞, irregularly superposed; septa unequal membranous. Sceds ∞, unequally compressed ; exterior coat pulpy ; interior woody; cotyledons of exalbuminous emliryo broadly foliaceous, auriculate at base, spirally convolute; radicle short subcentral.-A branched shrub, often spinescent; leaves opposite, alternate or subfasciculate, obovate-oblong obtuse entire; flowers axillary, solitary or few cymose; pedicels short or 9 . (North Africa (?), Levant (?).)-See p. 333.

LV. HYPERICACEA.

In this small family, which derives its name from that of St. Joln's Wort (Itypricum) (fig. 3.39, 344-35:), and which formerly included only the plants attributed to that genus, II. guimense and rempense, with the analogous species forming the genus Fismiar (fig. $340-343$), present the most complete types for our first study. In these the flowers are regular, hermaphrodite, nearly always pentamerous. Their convex receptacle bears at first five sepals, thick, but abruptly thinned at the margin, along which they are quincuncially imbricate (fig. 342). With them alternate five petals, twisted or more rarely

Tismia graanensis.

Fig. 341. Flower ($\frac{1}{4}$).

Fig. 340. Bud.

Fig. 343. Long. sect. of flower.
imbricate in prefloration, internally covered with hairs, sometimes much developed. The stamens are very numerous, but collected in five oppositipetalous bundles consisting of one large tongue from which are detached at different heights above, slewder tilaments, each surmounted by a small bilocular anther, introrse at first, but carly

[^454][^455]reflexed, dehiscing by two longitudinal clefts. ${ }^{1}$ In the intervals Hypericum perforatum.

Fig. 339. Habit.
between the staminal bundles, and consequently of the petals, are
${ }^{1}$ Pollen "ellipsoid 3-plicate; in wator, sphe-micrantha" (H. Mour, Am. Sc. Nat. sér. 2, iii. rical with 3 bands. Tismia baccifera, guianensis, 329).
found an equal number of hypogynous seales. The gynæcium, free and superior, is composed of an ovary with five alternipetalous cells, ${ }^{1}$ surmounted by a style almost immediately divided into five branches, the stigmatiferous extremity of which is dilated to a small head. Near the internal angle of each orarian cell is a placenta the two vertical lobes of which are covered with an indefinite number of small oblique or transverse anatropous ovules. The fruit is a berry, sometimes but little fleshy, and the seeds which it contains enclose under their coats a fleshy embryo, without albumen,

Fig. 342. Diagram. straight or curved, with short radicle and elongate cotyledons, flattened or semi-cylindrical. Vismia consists of some fifteen species ${ }^{2}$ of trees or shrubs growing in the tropical regions of America or Africa. The leaves are opposite, entire, without stipules, glabrous or downy, with translucid reservoirs of essential oil. The flowers ${ }^{3}$ are at the extremities of the branches in clusters of cymes more or less ramified.

The two genera Haronga and Psorospermum, growing in Madagascar and tropical western Africa, differ very little from Tismict, of which they have the flower and organs of vegetation. The fruit of IIaromyu ${ }^{4}$ is a drupe of five stones, and in cach of the ovarian cells, complete or incomplete, there are generally two or ravely three ascending, anatropous ovules, with the micropyle iuferior and exterior. It consists of shrubs with opposite leaves and very numerous flowers, ${ }^{5}$ collceted in terminal eompound or corymbiform aymes. Lsually only one species is clescribed. ${ }^{6}$ Psoronpromum ${ }^{7}$ has in each orarian cell only one or two ovules, directed like those of IInromyn. ${ }^{\natural}$ The fruit is wholly fleshy, but the embryo has convolute cotyledons. It consists of trees and shrubs, similar to Vismia in
${ }^{1}$ Complete or incomplete.
= Aurl. Guian. t. 311, 312 (Hypericum).-H.
B. K. Nov. Gen. et Spec. v. 181, t. 454 (Vismia).
A. S.-H. Fl. Bras. Mer. i, t. 68.-Griseb. Fl.

Brit. W.-Ind. 111.-Hook. F. Niger, 243.-Olir.
Fl. Trop. Afr. i. 160.-Walp. Rep. i. 391; v.
144 ; Anr. ii. 188 ; iv. 363 ; vii. 333.
${ }^{3}$ Yellow.
${ }^{4}$ Dur.-Tin. Nor. Gen. Madag. 15.-DC. Prodr. i. 541 (part).-Spacir, Suit. à Buffon, v. 355 ; Amn. Sic. Nat. sét. 2, v. 350.--Endl. Gen. m . 5468.-Payer, Fam. Nat. 79.-B. 11. Gcn. 167, n. S.-Baker, F\%. Mnurit. 15.- IIarongana

Lamk. Ill. t. 645.-Arongana Pers. Enchirid. ii. 91 (part).
5 The anthers are' at first introrse, and aro early reversed (fig. 312).
${ }^{6}$ II. madogascariensis Crions. IIypér. 34; DC. Prodr. i. 541.-Oliv. Fl. Trop. Afr. i. 160.Arunganapaniculata Pers. loc. cit.-PPsorospermum leonense Turcz. Bull. Mosc. xxxvi. 578.

7 Spach, Ahn. Sc. Nat. sér. 2, v. 157, 350 ; Suit. à Buffon, v. 351.-Endl. Gen. n. 5467.B. H. Gen. 167, 980.
\& Which perhaps might rather be made only a section with endocarp not hardened.
foliage, with more numerous but generally.smaller flowers; ${ }^{1}$ about a dozen species ${ }^{2}$ have been described. ${ }^{3}$

The name of Cratorylere has been given to a small group of plants belonging to this family, characterized chiefly by their pericarp and seeds. The former is capsular, loculicidal, and opens in five pannels, Hypericum (Eremanthe) calycinum.

Fig. 344. Flower.

Fig. 345. Long. sect, of flower ($\frac{2}{1}$).
and these sometimes divided into two halves at the partitions which separate. The sceds are ascending and surmounted by a vertical wing; the cotyledons of the contained embryo are generally louger than the radicle. The group consists of tropical trees and shrubs of the old world, with a yellow juice, opposite leaves, covered with glandular punctuations, pentamerous flowers, with triadelphous stamens. Cirutorylon ${ }^{\text { }}$ is Asiatic ; in cach ovarian cell are four or more ovules in two vertical series. ${ }^{5}$ A dozen species ${ }^{6}$ have been described. Elicea articulatu, ${ }^{7}$ a shrub of Madagascar, with terminal cymes, has ouly

[^456]two ovules in each orarian cell; it is consequently to Ciratorylon ${ }^{1}$ what Haronga is to Tismia.

The St. Johu's Worts ${ }^{2}$ (fig. 399, 34-353), forming more than three-fourths of the fimily and distributed among a great number of

Hypericumı hyrcinum.

Fig. 318. Seed.

Fig. 346: Dehiscing fruit ($\binom{2}{\mathbf{7}}$.

Fig. 347. Fruit, valves detached.

Fig. 349. Long. sect. of seed.
genera, ${ }^{3}$ have, with the general characters of Tismin and the neighbouring genera, some particular traits which have served to distinguish a tribe of Hyprricece. These are:

Fig. 350. Flower. petals internally glabrous and without appendages; a fruit dehiscing at the interlocular partitions or placentæ; and seeds not winged, the embryo of which, straight or curved, has cotyledons ordinarily longer than the radicle. In certain species with rather large flowers, cultivated in our gardens, and of which the genus Eremanthe ${ }^{4}$ (fig. $344,345)$ has been made, the flowers are formed like those of Tismiu,
${ }^{1}$ Of which it ought to constitute (5) only a section.
${ }^{2}$ Hypericam T. Inst. 254, t. 131.-L. Gen. n. 902.-Adans. Fam. des Pl. ii. 444.-JJ. Gen. 255. -Lamk. Dict. iv. 143 ; Suppl. iii. 693 ; Ill. t. 643.-DC.Prodr. i. 543.-Choisy, Prodr. Monog. Hyper. 37, t. 3-9.-Spaci, Suit. à Buffon, v. 383; Aan. Sc. Nat. sér. 2, v. 356.-Endu. Gen. n. 5464. -Payer, Organog. 1, t. 1 ; Fan. Nat. 77.-13. II. Gen. 165, n. 2 (incl.: Adenosepalum Spach, Adenotrias SpacII, Androsamum All. Brathydium Spach, Brathys MIut. Campylopos Spach, Campylosporus Spach, Coridium Space, Crossophy?lum Spach, Drosanthe. Spach, Drosocarpium

[^457]with five imbricate sspals, five alternate petals, twisted, five bundles of oppositipetalous stameus with introrse anthers, ${ }^{1}$ and an ovary with five alternipetalous cells, complete or incomplete and multiovulate, surmounted by an equal number of stylary branches, capitate and stigmatiferous at the summit. The fruit is a septifragal capsule, the five valves of which have at the centre five polyspermous placentary plates. The seeds enclose under their multiple coats, ${ }^{2}$ a fleshy and straight embryo, without albumen. These plants are sub-shrubby or herbaceous. Their leaves are opposite, without stipules, charged with punctiform and pellueid reservoirs filled with odorous essence. Their flowers are in cymes at the top of the branches.

With the same organs of regetation, certain other St. John's Worts, of which the genus Androstrmum ${ }^{3}$ has been made, have the same

Hypericum (Triadenia) AEgyptiacum.

Fig. 351. Flower.

Fig. 352. Long. sect. of flower.
flwer, except that their gynocium is trimerous, the two lateral carpels being absent. The fruit may be a little fleshy at the time of maturity; then however it opens in three valves like a capsule.

In Hypremen proper, ${ }^{4}$ the fruit is capsular, and the gyncecium is reduced to three carpels; but so are also the bundles of stamens ; so that there is only one auterior, oppositipetalous, and two lateral, superposed to sepals 4 and $5 .{ }^{5}$

Now, with the three earpels and three staminal bundles of the true Hymerienm, let the flower have three glands alternating with the bundles of stamens and analogous to those of Iismitr, and we shall

[^458][^459]have specimens of Ityperioum, such as II. virgimium, Elodes, agyptincmm (fig. 351-353), which have been propused as types of as many separate gencra, under the names Elonden, ${ }^{1}$ Elodes, ${ }^{\text {a }}$ and Trimdenia. ${ }^{3}$

In II. Drummomdi, a species from Florida, the flowers are those of Hypericum (such as Brathys, for example) ;

I!pericum agyptiacum.

Fig. 353. Flower, perianth removed ($\frac{4}{1}$). but the type is quaternary instead of quinary. The four sepals are imbricate and nearly equal to each other; whence the generic name Isophyllum, ${ }^{4}$ which has been proposed for this plant.

The flower is equally tetramerous in other American species, such as H. amplexicaule, multicaule, pauciflorum, Crux Andrea, etc.; but of the four decussate sepals, the two more interior are much less developed than the two others; of these the genus Ascyrum ${ }^{5}$ has been made.

With all these variations in the flower, ${ }^{6}$ the St. John's Worts present as common characters: opposite leaves,

[^460] nosporits (Spach, loc. cit. 355) has thick and
generally punctate ; definite inflorescence; numerous stamens; septicidal or septifragal (not loculicidal) fruit; seeds destitute of wing and an embryo without albomen. About two hundred species ${ }^{2}$ have been described; it will doubtless be necessary to reduce them by one fourth. They are found in both worlds; more freguent in the temperate regions of the northern hemisphere, they are less numerous in the southern and in the mountains of tropical countries; there are few in south Africa and Australia, and they are wanting, it is said, in the arctic and antarctic regions.

This small family was established by A.-L. de Jussieu in $1789{ }^{2}$ under the name of Hypericu, St. John's Worts ; it included Ascyrum, Brathys, and IIypericum. Chorsy published at Geneva, in 1891, the Prodrome d'une Monographie des Mupericinées, and wrote the exposition of this family for the Prodromus of A.-P. de Candolde; ${ }^{3}$ it there comprised Haronga, Tismin, Androscemum, Hypericum, Lancretice, ${ }^{4}$ Ascyrum, Carpodtontos, and Eurriphia. ${ }^{5}$ Twelve years later Spaci, ${ }^{6}$ studying this family fundamentally, distinguished twenty-six genera, and afterwards ${ }^{7}$ twenty-eight, nearly all dismembered from the old geaus Hypericm. In 1861, Themmanu's ${ }^{8}$ re-established this genus in its former integrity, and was followed therein, the following year, by Bentiam and Hooker, ${ }^{9}$ who described the genus Emeludersmite and retained only eight genera, reduced here to seven by the union of Aseyrum to IIypericum. The species comprised, numbering about two hundred, are pretty equally distributed over both worlds, especially the St. John's Worts, which, wanting only in the arctic and antarctic regions, are found in all five divisions of the worll. Haronga and I'sornspermum are from tropical western Africa, the native country of Eudulesmin, and from Madagascar where Eliepe grows. Ciruto-

[^461][^462]xylon is entirely from tropical Asia, and Vismiu from central America, except four or five African specics. In our view, according to what has been said above, ${ }^{1}$ these plants are Myrdecee with a convex receptacle and a gynecium constantly free. We at the same time recognize their affinities with the Cistucete, near which Adnsson ${ }^{2}$ formerly placed them, and we shall see that it is almost impossible to distinguish them absolutely from the Clusiacea.

Uses. ${ }^{3}$-The IIypericaceere are rich in essential oil and gum-resinous juices, often balsamic. In addition a bitter extractive principle exists in the bark of many species. In the American speeies of Vismia, particularly V. Caperosa, ${ }^{\frac{1}{4}}$ micrether, ${ }^{5}$ longifolin, ${ }^{6}$ Tatifolia, ${ }^{7}$ sessifolit, ${ }^{5}$ laccifera, ${ }^{9}$ and caypunensir, ${ }^{10}$ the resinous juice, yellow or reddish, has drastie properties ; it is sometimes brought to Europe under the name of American grum-gutta. V. gniunensis, ${ }^{11}$ (fig. 340)343), bearing in Guyana the name of Fever tiece, ${ }^{12}$ has also a purgative juice useful in the treatment of skin diseases. Its wood is employed in building, and huts are covered with its inner bark. In Sierra Leone and Angola Psurospermum febrijuynm ${ }^{13}$ has the same internal uses as Vismia guianensis. Cratoxylon Hornschuchii ${ }^{14}$ is considered diuretic and slightly astringent in Java. The St. John's Worts formerly had a similar reputation in Europe. They were esteemed as balsamic, bitter, vermifuge, vulnerary, etc. Sometimes they were also employed in dyeing and in the preparation of leather. The most celebrated was IHypericmm perforetum ${ }^{15}$ (fig. 3:39, 350), which has been prescribed for madness, dysentery, and pains in the joints. Its leaves and flowers dye yellow, and the Swedes colour corn-spirit with

[^463][^464]its buds. An odorons oil distilled from its leaves was formerly employed in medicine. ${ }^{1}$ II. Androstrmm ${ }^{2}$ was in equal repute under the name of Hereloll. ${ }^{3}$ It was preseribed for insanity, burns, hemorrhage, wounds. IF. hircinnm ${ }^{4}$ (fig. $346-34^{4}$), the odour of which is so strong, was used in the treatment of dysmenorrhea and strangury ; II. Coris, montunmm, ciliatum, etc., as astringents and balsamics. Many other European species ${ }^{5}$ have analogous properties. In the United States, a stomachic tincture is prepared from I. cirginicum, ${ }^{6}$ the flowers chietly being employed. In Brazil II. Inteiusculum ${ }^{7}$ is extolled as alexipharmic and $I I$. comutum ${ }^{8}$ as uscful in cases of angina and stomatite. H. Serrothre, ${ }^{9}$ of North America, is said to be vulnerary. At Quito H. laricifolium ${ }^{10}$ is considered astringent; its flowers are used for dyeing a saffion yellow. At Bourbou an odorous balsam is extracted from II. lunceolntum, ${ }^{11}$ prescribed in gouty and syphilitic affections. In the North of Europe II. Elodes ${ }^{12}$ is used to dye red and yellow. Species of IIypericum of the section deryrm ${ }^{13}$ hare been employed as astringents and resolutives; the seeds are considered purgative. Some evergreen and subshrubby species of this genus are cultivated in our gardens as ornamental. ${ }^{1+}$
${ }^{1}$ It forms an ingredient of several balsams, The petals contain a yellow principle, soluble in water; the pistil and fruit, a reddish resinous substance, soluble in oil, alcohol, etc.
${ }^{2}$ L. Spec. 1102.-Gurb. loc. ovt. 617.-H. bacciferem Lamk. Fl. Fr. iii. 151.-H. Bn. Dict. Eircycl. Sc. Med. iv. 322.-Androscmum officinate All. Fl. Fedem. ii. 47.-Lindl. Fl. Med. 117.losenth. op, cit. 750.- d. vulgare Gritn. Fruct. i. 282, t. 59, fig. 2.
${ }^{3}$ Parcour, Herbe des grands bois.
4 L. Spec. 1103.-Gren. et Gomur. Fl. de Fr. i. 320.-Andioscmum foetidum Spacir.
${ }^{5}$ H. quadrangulum L. tetrapterum Fries. crispum L. olympicum L. origanifolium W. humifu\sin L. empetrifolizm W. etc. (Rosente. op. cit. 749).
${ }^{6}$ L. Spec. 1104.-Andr. Bot. Repos, t. 552.DC. Prodr. iii. 546, n. 30.-Elodea virginica Nutt.-E. companulata Pursh.

7 A. S.-H. Pl. Us. Bras. t. 62 (Alecrim braro).
${ }^{7}$ Lamk. Dict. iv. 168, n. 5 .--A. S..H. op, cit. t. 61.-Rosenth. op, cit. 750.-Brathys conmata Spach (Orelha de gato).
${ }^{9}$ Michx. Fl. Bor.-Amer. ii. 81. - Siarotlira gentianoides L.-S. hypericoides NuTt.-Rosenth op cit. 7 brl.
${ }^{10}$ J. Ann. Mrus. iii. 160, t. 16, fig. 1.—Brathys laricifulia Spach.
${ }^{11}$ Lavik. Dict. iv. 145, n. 3.-Campylosporus reticulutus Spaci (Ambiville, Fleur jount).
${ }^{12}$ L. Spec. 1106.-DC. Fl. Fr. iv. 866.-Elo, des palustris Spaon, Amn. Sc. Nat. sér. 2, v. 171. -Grex. et Godk. Fl. de Fr. i, 320.-H. pulchrum L. elegans Steph. Richeri Vill. (barbatum All.) have also been used in dyeing.
${ }^{13}$ Especially A. hypericoides L. and stans Michx.
${ }^{1+}$ Bot. Mag.t. 137, 146, 178, 3277, 4949, 5693. Carr. Rev. Hort. (1875) 170, c. ic.

GENERA.

1. Vismia Vandell.-Flowers hermaphrodite regular'; receptacle cunvex. Sepals 5 , thick subeoriaceous, abruptly attenuate at margin, shortly imbricate. Petals 5, alternate, oftener villose above, twisted in prefloration. Stamens ∞, in 5 bundles, superposed to petals ; filaments free at apex ; anthers short introrse, afterwards reflexed and retrorse, longitudinally @-rimose. Scales 5, hypogynous, alternipetalous. Germen free, 5-locular; cells complete or incomplete alternipetalous; style branches 5, distinct from base, at apex capitellate stigmatose. Ovules in cells ∞, inserted in internal angle, anatropous. Fruit baccate, indehiscent. Seeds ∞, ascending or subhorizontal, inserted on placenta with lobes often spongy, subeylindrical ; cotyledons of straight or more rarely incurved exalbuminous embryo plane or semiterete; radicle short.-Trees or shrubs; with yellow or red juice; leaves opposite exstipulate, entire, glabrous or tomentose beneath, peminerved glandular punctate; flowers in terminal more or less compound racemose cymes. (1top) America, trop. west. Africa.)-Sec p. 382.
2. Haronga Dcr.-Tn.-Flowers nearly of Vismic, hermaphrodite, 5 -merous; ovules in each cell (complete or incomplete) few (2 , 3), ascending ; misropyle extrorsely inferior. Fruit drupaceous (small) globose ; pyrenes 5, 1 2-spermons. Seedsterete ; cotyledous of exalbuminous embryo plane elongate ; radicle shorter.-A slirub; leaves entire and other characters of Vismia; flowers (small) crowded in a terminal very raceriose-decompound raceme. (Trron). Africa, Madagascar.)-See p. 384.

3? Psorospermum Spach.- Flowers nearly of Vismia; ovules in each cell (complete or incomplete) 1, 2, ascending; micropyle
extrorsely inferior. Fruit baceate, indehiscent. Seeds few ascending; cotyledons of straight embryo convolute.-Trees or shrubs often stellately pubescent ; habit, leaves, etc., of Vismin ; flowers crowded (smaller) in very compound eymiferous racemes. (Trop. Aficiea, Malaccu.)-Sce p. 384.

4? Endodesmia Bexth.'-Flowers hermaphrodite, 5-merous ; sepals 5 , coriaceous, imbricate, afterwards not contiguous. Petals 5, alternate, unequal at base, sometimes thimer subauriculate, twisted. Stamens ∞, in 5 bundles, inserted within petaloid tube, 5 -dentate at apex; authers crowded (small) introrse apiculate, 2 -rimose. Germen superior, girt at base with short thick hypogynous disk, l-locular; style slender eccentric, apex stigmatose not iucrassate. Ovule 1, inserted under ipex of cell descending; funicle rather thick; micropyle extrorsely superior. Fruit drupaccous oblong ; mesocarp thin; endocarp crustaccous, externally resinous-cellulose. Seed descending; cotyledons of exalbuminous embryo fleshy; radicle very short, supe-rior.-A shrub; leaves opposite coriaceous ; primary nerves pinnate very close lineate parallel ; flowers in ramose corymbiform cymes. (Trop. west. Africa.) -See p. 385.
5. Cratoxylon Bl.-Flowers nearly of Vismin, 5-merous ; sepals 5 , imbricate. Petals 5, alternate, contorted or imbricate, at base naked within or more rarely appendiculate (Tritesmis). Stamens so (of Vismict, 3-allelphons. Glaudules 3, squamiform, alternating with bundles. Germen 3-locular; styles 3, stigmatose at apex. Ovules in cells (complete or incomplete) 4- $\infty, 2$-seriately ascending ; micropyle extrorsoly inferior. (apsule loculicidally 3-valvate; valves septiferous in middle. Seeds ∞, produced above to ascending dorsal wing ; cotyledons of straight embryo generally longer than radicle.Trees or shrubs; leaves opposite entire (herbaceous) pellucid punctate, flowers axillary solitary or oftener eymose, sometimes in terminal cymiferous raceme. (Asia and trop. Oceania.)-See p. 385.

6 ? Eliæa Canbess. ${ }^{\text {- }}$-Flowers nearly of C'rutorylon, 5 -merous; petals at base minutely appendiculate withim. Bundles of stamens and alternate glandules 3 ; connective minutely glandular at apex. Ovules in incomplete cells (3), $\stackrel{\sim}{c}$, ascending ; micropyle extrorsely inferior. Seeds, etc., of Cratocylon ; valves of capsule 3, loculicidally

2-partite; exocarp fimally separating from mesocarp,-A shrub; leaves, inflorescence, etc., of Cratoxylom. (Madagascar.) - See p. 385.
7. Hypericum 'I'.-Flowers \boldsymbol{T}-morous or more rarely (Aseyrmm) 4-merous; sepals curual or sometimes very unequal (the interior much smaller), imbricate, glabrous or slanduliferous; glandules often capitate stipitate (nigreseent). Petals same in number alternate, naked within, oftener contorted, rarely imbricate. Stamens on, in 5, or:3 (or more rarely (-8) oppositipetalous bundles; filaments long or more rarely very shortly connate below in bundles, sometimes subfree (Brathys.) ; anthers small, intrurse, O-rimose. Glandules hypogynous alternating with bundles of stamens 3, or 0 . Germen free; cells 3-5, sulicomplete or oftencr more or lesis incomplete; styles same in number free or rarely connate below, at apex more or less dilated stigmatose. Ovules on cach placenta ∞, more rarely few, anatropous. Fruit capsular, or fleshy before maturity (Audios(ctmum), septicidal or sometimes more rarcly rupturing; phacente solute from axis or finally from valves. Secels exalate 0 , sometimes rather fleshy or cellulose without ; cotyledons of straight or rarely incurved, cylindrical or obloug cmbryo shorter than terete radicle or sometimes very short.-Odorous shrubs undershrubs or herbs; leaves opposite or more rarely verticillate, simple entire or glandularserrate or dentate, peminerved, pellucid-punctate, exstipulate; flowers terminal, more rarely axillary, solitary or oftener in simple or racemosely compound cymes regular or l-lateral from base or above. (Termperate and dearm monnteinons regions of buth hemi-spheres.)-Sce p. 386.

LVI. CLUSTACEE.

I. CLUSIA SERIES.

In this family, which also bears the name of Ginttifirer, because it includes the phant which produces the Gum-gutta (fig. :3.5t, :378),

Garcinia Morclla.

Fig. 354. Floriferous and fructiferous branch.
we may first study Clusia ${ }^{1}$ (fig. 355-360), the flowers of which are polygamous or diœcious. The receptacle, slightly convex, bears first
${ }^{1}$ L. Gen. n. 1154.-Adans. Fam. des Pl. ii. 355.-J. Gen. 256.-Lamk. Dict. ii. 52; Suppl. ii. 302 ; Ill. t. 852 --CAmbess. Mém. Arus. xvi. 420.-Chors. Hém. Soc. Lim. Par. i. p. ii. (ex DC.) ; DC. Prodr. i. 558 (part).-Spach, Suit. à Buffon, v. 310.-Endl. Gen. n. 5438.-Pl. et

Tri. Ann. Sc. Nat. sér. 4, xiii. 318.-B. H. Gen. 170, n. 1.-H. Bn. Payer Fam. Nat. 269 (incl. : Androstylium Mie. Arrudea A. S.-H. Astrotheca Miers, Cahotia Karst. Cochlanthera Chors. Criura B. H. Lipophyllum Miers, Oxystemon PL. et Tri. Polythecandra Pl. et Tri. Quapoya Aubl.
a certain number of imbricate folioles, generally smaller and thicker as they are more exterior. The interior are larger, membranous, coloured; ${ }^{1}$ these are the petals varying in number from four to cight or ten. The more extcrior or sepals, often decussate, ${ }^{2}$ are from four to ten in number, and often persist at the base of the fruit. The stamens are numerous in the male fluwers (fig. 357). 'Ihey are furnished with filaments free or united to a variable extent, forming

Clusia rosea.

Fig. 355. F'emale Hower seen from above ($\frac{1}{2}$).

Fig. 350. Female flower seen from below.
sometimes a column of very various height and sometimes a nearly globular mass. Anthers may be wanting in the interior and exterior, or, where developed, may be cxserted or immerged, and open in a very variable manner ; ${ }^{3}$ they are formed of two or of a great number of cells or cellules. ${ }^{4}$ In the centre of the andrœcium, there may be a rudimentary gynæcium more or less prominent. In the female
(part), Sphucrandra l'l. et. Ter. Triplandron Bexth. Xanthe Schreb.).-Cenchramidea I'suk. (ex Adans. luc. cit.).
${ }^{1}$ White, pink, or yellow.
\& They often graduate imperceptibly to bracts, and these are numerous and decussate in Arvolen (A. S.-H. Fl. Bras. Mer. i. 31S, t. 66 ;-Eshl. Gen. n. 5439 ; Pl. et Tur, Aun. Sc. Nal. Rér. 4, xiv. 230), referred by MM. Bentham and Ilower to the section Phloriantilera of the genus Clusia. It is the same in the sepals of Oxystemon (l'L. et 'Tri, Ann. Se. Nut. sér. 3, xiii. 314; xir. 226), referred by the same authors to the sect. Euclusia of the genus Clusia.
${ }^{3}$ On these characters are based the threes sections retained in this grenus (B. II. loc. cit.) : "1. Euclusia (Pl. et Tri.). Exterior stamens numerous fertile with linear free anthers, inte-
rior stamens sterile and united in a spherical mass.-2. Spharandra (1'L et Tri.). Stamens all united in a solid spherical or elongate mass with anthers imbedded in the summit adnate or slightly prominent. To this are referred the sections of the authors cited: Omphalanthera, Gomphanthera, Phloianthera, and Iectinostemon, with its 6 sub-sentions or distinct types.-3. Criuva. Staminal filaments short, free, or more or less united at base. 'To this are referred the sections of the authors cited: Cordylandra, Clusiastrum, Stauruchasia, Cruviopsis, Crinva, and Anandrogyne."
4. In C. insignis the pollen-grain is a "flattened sphere, with three very short folds similar to the pores." (H. Монl, Aun. Sc. Nat. sér. 2. iii. 329.)
flowers, the sterike stamens are definite in number (from 5 to 10) or indefinite; they surround the base of the ovary, and are free or united to a certain extent. The gyniecium is sessile, with a 4-10celled ovary, surmounted by a style rarely erect and cylindrical, much more frequently divided from the base into a variable number (4-10) of thick radiating reflexed entire or crenated lobes. In the internal angle of each cell are numerous transverse or slightly oblique and anatropous ovules, with the micropyle turned from the side of the placenta. ${ }^{1}$ The fruit is spherical or ovoid, coriaceous or fleshy, but finally septicidal, with thick valves which separate from an angular column, charged with seeds. The latter variable in number, sometimes few, as in C. Panampanari ${ }^{2}$ (fig. 359, 360), are small, covered with a fleshy aril, complete or incomplete, and enclose under their coats a large fleshy and macropod embryo, with cotyledons very small rela-

Clusia Pana-panari.

Fig. 359. Fruit (\$).

Fig. 360. Transverse sect. of fruit. tively to the thick ovoid radicle (fig. 358).

This genus has been divided into numerous sections, ${ }^{3}$ according to the character of the andrœcium. This may serve to distinguish Chusia proper, ${ }^{*}$ with exterior and interior stamens sterile and anthers free and liuear, Criuva, ${ }^{5}$ in which the staminal filaments are short (fig. 357) free, or more or less connate below, and Armdee, which

[^465][^466]has all the stamens united in a soli! mass, in which are imbedded the anthers, sometimes but slightly projecting at the exterior. These anthers open sometimes by pores and oftener by longitudinal, lateral or introrse elefts. Thus constituted, ${ }^{1}$ the genus ('lusia comprises some sixty species.? 'Ihey are trees or shrubs with gummy resinous latex, often yellow ; they are ordinarily glabrous, sometimes sarmentous and climbing, often living as parasites (true or false) upon the trunks of trees, which they finally kill. ${ }^{3}$ The leaves are opposite, without stipules, thick, coriaceons, entire, penninerved, with a single visible median nervure or with five parallel nervures in great number. The flowers are terminal or solitary, or in cymes. Under the ealyx are two bracts, or a larger number of decussate-alteruate folioles which mingle imperceptibly with the sepals. All belong to the warm regions of America, from Mexico to Paraguay.

Beside Clusia is placed Qu"puy, ${ }^{4}$ (fig. 361-366), which differs from it in the definite number of stamens, and also in the arrangement of the two vertical series of ovules, sometimes few and asecuding, ${ }^{5}$ sometimes more numerous and trausverse or nearly so. In the prototype of the series, Q. seandins, there are ten stamens united by their filaments to a common tube, at the bottom of which is seen a rudimentary gynecium. The obcuneiform anthers are free almost only at the summit of the tube, and present two linear and marginal cells (fig. 361). In other species of the same genus, to which the name Rengifin ${ }^{6}$ has been given, there are from five to ten stamens, the filaments of which are all likewise united in a shorter tube, exeept at the summit, wheh may be independent. The anthers are formed like those of (?. scondens, and the number of
xxviii. 448) and the Quapoya Pana-panari (p. 397, note 2). They consider Cochtanthera (Chors. Gutt. Ind. 46, t. 3) and Lipophyllum (Miers, Tians. Liun. Soc. xxi. 251, t. 26) as belonging to the sect. Criuva.
${ }^{1}$ From what precedes we can admit six sections in the genus, viz. Euclusia, Spharandia, and Crizu, as conceived by Bentham and Hooker, and in addition Arrudea, Cochlanthera, and Oxystemon.
$=$ A. S.-H. Fl. Bras, Mer. i.t. 65.-Mart. Nov. Gen. et Sp. iii. 104, t. 288.-Mı. St. Surin. t. $2 \overline{5}$, 26.-Chors. Gutt. Ind. t. 1-3.-TUup. Dict. Sc. Nat, Atl. t. 156, 157.-Griseb, Fl. Brit. W. Ind. 106.-Seem, Bot, Herald, 88.-Gardn. Hook. Lonel. Joun. ii. 334 (Tocomita).-Benth. Hook.

[^467]ovules may diminish to two in each cell. ${ }^{1}$ In Renggeria, ${ }^{2}$ rightly referred as a section to the same genus, there are ten stamens, the filaments of which are united in a short and thick tube, at the summit of which the anthers display their two distinct and divergent cells. In IIacetiopsis, ${ }^{3}$ which we do not separate generically from the

Fig. 362. Female fower.

Fig. 361. Andrecium.

Fig. 363. Female perianth.

Fig. 365. Long. sect. of female flower.

Fig. 364. Diagram of female flower.

Fig. 366. Female flower, perianth removed.
preceding types, there are often only four stamens, monadelphous below, but the anthers of which become introrse. Some, which have been named Oligospora, ${ }^{4}$ have only from two to four ascending ovules in each cell ; others (Itwertielln${ }^{5}$) have a greater number. Ballome ${ }^{6}$ comprises species of Hotetiopsis, the stamens of which, four to six in number, are surrounded by four petals of variable imbrication and not constontly decussate. In didrmatomes, generically confounded by the most recent authors ${ }^{8}$ with Moretiopsis, the stamens have the same configuration as in the true Qu"tory"i ; but their

[^468][^469]filaments are free to a much larger extent, sometimes even nearly to the base. Their number may rise to eight or twelve and perhaps
 developed almost parallel to the genus Clusia, in which we have seen variations of the androcium still more numerous, both as to the number of stamens and the form of the anthers. It comprises some fiftecu species, ${ }^{3}$ belonging entirely to tropical America; the habit and organs of vegetation are those of Clusith, but the flowers are ordinarily much smaller.

Huretia ${ }^{4}$ has diœcious flowers, and the leaves are nearly the same as those of the preceding genera. The ovary, surrounded by an hypogynous disk, ${ }^{5}$ has generally in each of its four cells two ${ }^{6}$ descending ovules, with micropyle interior and superior, and raphe ventral and sublateral. ${ }^{7}$ But the male flowers, ordinarily tetramerous, with four imbricate petals, are remarkable for the androcium, composed of four large alternipetalous stamens; each of which bas the form of a thick quarter of a sphere, and bears above and without three circular and valvicide cells. The only species of Haretio ${ }^{8}$ known is a Columbian tree having otherwise the foliage, habit, and inflorescence of Quapoya.

Beside the preceding genera under the name Clusiellet ${ }^{9}$ has been placed, not without some doubt, a Columbian shrub having pentamerous diocious flowers. In the females, alone known, there are contorted petals, and an ovary with five multiovulate cells, surrounded at the base by a cupule formed of a large number of sterile stamens, short and closely united. The flowers, small and collected

[^470][^471]in short cymes (?), are accompanied by from two to fuur pairs of imbricate and decussate bracts. Only one species is known. ${ }^{1}$

In the tiro American genera Chrysochlamys and Tovomita, the ovarian cells are uminvulate, and the ascembing ovale has its mieroryle directed downwards and outwards. Cheysochlomys. ${ }^{3}$ hats four or five sepals and from four to ten imbricate petals. The stamens are mumerous, sometimes partly sterile, and firee or unitel at the lower part of their short filaments. The fruit, at first somewhat fleshy, finally becomes a septicidal erpsule with five valves. The sceds are surrounded by an incomplete fleshy aril, open at the back and of which the point of origin is variable.3 Some tifteen species * have been described. Tormmitn, ${ }^{5}$ abundant espectally in the Antilles, Guyama, aud Brazil, has nearly the same perianth, with $\& 10$ petals. The stamens are free and hive an erect, linear-subulate filanent, surmounted by a very small anther. The ovary, with four or five cells, is sumounted by an equal number of distinct stigmatiferous heads, nearly sessile or supported each by a moderately long stylary column. The dehiscent fruit contains seeds described as destitute of aril, but in reality the entire superficial corat is transformed into arillar tissue. Tonomitn, of which some seore of species "have been distinguished, has, like Chinsuchlmmys, the foliage of Chlusic, with numerous and generally small flowers, collected in umbelliform cymes, solitary or gathered in a common ramified cluster.?

[^472]Gen. 173, n. 10.-H. Bw. Payer Fam. Nat. 270. - Mrrialva Vandell. Reem. Scr. 118. - DC. Prodr. i. 560.-Beauharnoisia R. et Pav. Ann. Mus. xi. 71, t. 9.-Micranthera Chors. Mém. Soc. IIst.Nat. Par. i. 224, t. 11, 12; DC. Prodr. i. 560.
${ }^{6}$ Mart. Nov. Gen. et Sp. ii. 83, t. 167 (Marial-vecr).-Paepp. et Endl. Nov. Gen. at Sp, iii. 13, t. 212 (Mfarialvaa).-Chois. Gutt. Ind. 34 (Gar-cinia).-Benth. Hook. Lond. Journ. ii. 366.Griseb. Fl. Brit. W.-Ind. 106.-Walp. Rep. i. 392 ; ii. 810 ; $A n 4$. ii. 190 ; vii. 346.
7 We do not know to what group of this family to refer the abnormal genus Allanbluckia (Oliv. B. H. Gen. 980, n. $15 \mathrm{a} ;$ Fl. Trop. Afr. i. 162), represented by a single species (\mathcal{A}. floribunde), which has the external characters of a Clusio or a Tovomita, but the stamens of which are pentadelphous, with oppositipetalous bundles, rudimentary in the female flower, and the gynrecium, rudimentary in the male, has a unilocular ovary, with five parietal little-prominent and multiovulate placente. The inflorescence is in terminal compound clusters.

II. SYMPIONTA SERTES.

One of the tro plants made known by Aoblet ${ }^{1}$ under the name Mormober corcium, has more recently received that of stymphomia ${ }^{2}$ globuliferc. Its flowers are regular, ordinarily hermaphrodite, ${ }^{3}$ with

Fin. stit. Fluwn.

Fig. :B6. Datim.

Fig. 369, Flower, without corolla.

Fig. 371. Flower, corolla and androcium removed.

Fig. 370. Long. sect. of flower.
a concave receptacle. The calyx is formed of five sepals, arranged in the bud in quincuncial prefloration, unequal, and the corolla of five alternate petals, contorted in 1 refloration. ${ }^{5}$ Within the corolla

[^473]
i. $72, \mathrm{t} .48$.

${ }^{3}$ Perhaps polygamous.
${ }^{4}$ Shortes and thicker as they are exterior in the bud.
${ }^{5}$ As a whole ncarly globular in the bud.
is a thick enriaceous cupuliform disk, within which is inserted the androcium. The latter is monadelphous at the base, and the filmments, united below in a sort of tube, separate higher up into five small oppositipetalous bands, the exterior face of which beans there adnate extronse anthers, dehiscing by tro longitudinal elefts, and the summit terminates in a point, at first inflexed. The gynecium is superior, formed of an ovary with five incomplete alternipetalons cells, surmounted by a style with five open then reenred stigmatiferons branches terminated by a point at the top of which is a small aperture leading to a narrow stigmatic cavity. In the internal angle of each cell is a placenta bearing from two to six, rarely more, ascemting anatropous ovules, with the micropyle inferior and exterior. The fruit is an ovoid or globular berry, with fer seeds enclosing under their coats a large fleshy undivided embryo, without albumen.
S.glumlifen ' is a tree with a yollowish latex. 口1pusite, coriaceons, entire, pemmerved leares, with numerous thim paadlel and close secondary nervures. The flowers ${ }^{2}$ are in umbedliform cymes at the top of the branches. It inhahits tronical America from the Antilles to Peru and central Brazil. It is foum in western tropical Africa. ${ }^{3}$ ('hrysopia ${ }^{4}$ (fig. 367-371) from Madagascar has rightly been considered cungeneric with this pant, having the same organs of regetation and the same flowers, with somethmes fur anthers in each fascicle of the andrecium and a disk more or less deeply crenclate. ${ }^{3}$ Hitherto five species ${ }^{6}$ of Chrysopia have been described.

Close beside Symphonin are ramged four genema, some of which are seareely distinct and perhaps will hereafter be retained only as sections of the first. There is first the true Moronobea, ${ }^{7}$ the corolla of which is more elongate and ovoil in the bud than that of Symphonim, and the disk exterior or rather inferior to the andrecium disappears

[^474][^475]almost entirely at the level of the fascicles of the lutter, and is seren, in the form of salient lobers, only in the intervals. Each fascicle is composed of from four to six stamens which are united only in the lower part of their filaments and free in their antheriferons part, slender, very elongate, spirally twisted in the bud. One or two species of Mnomuln have been described, from Guyana and northern Brazil; they have oppsite leaves and large terminal and solitary flowers. ${ }^{1}$ Montroumorin ${ }^{2}$ is scarcely distinct from Morombern and S'ymphumin. It has the spherical bud of the latter, the funtamentally distinct staminal fuscicles of the former, with free anthors and indereulent glands, generally alternate ${ }^{3}$ with the staminal bundles. The orules are \quad merrous and the organs of regetation nearly those of Moromblen. Four or five New Caledonian species ${ }^{4}$ are already known. Pentedesmu butyracer,s one of the Butter-trees of tropical western Africa, has nearly all the characters of Mnfombere, ${ }^{6}$ sepals more unequal ${ }^{7}$ and stamens more numerous in each of the five fascicles, with anthers that do not desecnd so low in each fascicle. The disk is the same, and the fleshy fruit, rich in fatty matter, encloses only a single seed in each cell. It is a fine tree with epposite coriaceous penninerved leaves and large solitary terminal flowers. It is nearly allied to Platmiu," a large tree of tropical easteru America, having the bud of IEoromolere, a disk with lobes alternating with the staminal fascicles, but in each of the latter a very large number of slender, straight filaments, which soon separate from each other and bear cach a linear and extrorse anther " proceeding from the middle of its length. Two ${ }^{10}$ species of Plutonion are described,

[^476][^477]trees whose organs of vegetation are those of symphonie and its beautiful flowers ${ }^{1}$ solitary and terminal. ${ }^{2}$

III. GARCINIA SERIES.

Garcinia has polygamo-diocious flowers. In some of them, distinguished under the name of Xenthochymus ${ }^{3}$ (fig. 372-375), they are pentamerous, and on their conver receptacle are inserted, from

Garcinia Xanthochymus.
bottom to top, five sepals imbricate in the bud, more or less unequal, ${ }^{*}$ aud five alternate imbricate petals. ${ }^{5}$ In front of each petal is a bundle of stamens in which the male organs are few in number, often, for example, from four to six. The filaments are often united to a considerable extent, after which they become distinct and support cach a bilocular introrse anther, dehiscing by two longitudinal clefts, often sterile or even disappearing in the female flowers. With these five staminal bundles alternate an equal number of hypogynous glands or lobes of a disk more or less rugose or plaited, surmounted by a gynæcium, imperfect or nil in the male flowers. In the female or hermaphrodite, it is composed of a free ovary, with five alternipetalous cells, surmounted by a style discoid dilated stigmatiferous at its extremity, with five obtuse or very prominent and radiating

[^478][^479]lohes (fis. 272-371). The two lateral eells and the emresponding stylary branches may be wating. In the intemal angle of each cell is an axile placenta subprting a singe aseming incompletely anatropus ovule, with mierople inferior and exterior. The fruit is a berry. The sembs, surrumad by a fleshy pulp,' ${ }^{1}$ (nelose under their coats a large fleshy and undivided embryo.

In the true citwimiu" the flowers are generally tetramerous (fig. 3.54, :376-:, 78$)$. The sepals wre imbricate-decussate and the two exterior are not unfrequently ${ }^{3}$ mucle smaller than the others. The stamens are generally arranged like those of Xemthochymens, either free or united in five fareicles or sometimes more, with anthers

Gucinia Menyostava.

Fig. 376. Female Hower.

Fig. 377. Long. sect. of female flower.
fertile only in the male of hemathontite flowers. The emganzation and mote of dehiscence of these anthers are very variahle. In $f_{\text {d }}$. Mruthsitunt and analogous species, they are bilocular. In the species of the C'ombention series, they have two colls or four cellules, equally duriscing by clefts. In (i. Morenlla ${ }^{5}$ (fig. 304, 378), they are peltate and open by a sort of small lid like a pyxis. ${ }^{6}$ The gyuncium is composed of a very variable number of carpels (from two to a dozen). The ovary encloses, in the intcrnal angle of cach
${ }^{1}$ Seminal coats transformed.
${ }^{2}$ L. Ge'n. n. $594 .-J$. Gen, 256.-Desrx. Lamk. ITict. iii. 693 ; Suppl. iii. 584 ; Ill. t. 40 D. $_{\text {. DC }}$ D Prodr. i. 560.-Canbess. Jém. Mus, xvi. 425.Spact, Suit. à Buffon, v. 322.-Endl. Gen, n. 5443.-Pl. et Tri. Ann. Sc. Nat. sér. 4, xiv. 324.-B. H. Gen. 174, 980, n. 16.-H. BNo Pryer Fam. Nat. 271.-IANess. Adansomia, x. 2s3, t. 11.-Cambngia L. Ger. д. 650,-Mangostana G.extn. Fruct. ii. 105, t. 105.-Orycarpus Lour. Fl. Cochinch. (ed, 1790) 647.-Brindonia Dup.-Tr. Dict. Sc. Nat. v. 339.-Rhinostigma

Miq.Fl. Ind.-Bat. Suppl. i. 495.-Clusianthemum Vieill. Bull. Soc. Lim. Norm. ix. 338.
${ }^{3}$ Particularly in the greater part of the species from tropical western Africa, which thus differ from Whecdia only in the presence of more than two sepals to the calyx.

+ Sect. Mangostana (Bl. - PL. et Tri.).
${ }^{5}$ Tyye of the sect. Helradentron, formerly raiscd to the rank of a genus (Gramam, Hook. Kew Joum, vi. 70, t. 2().
${ }^{6}$ The anthers are linear, 2-locular, in Clusiahthemum ; which has 4-5-merous flowers, and
cell, an orule like that of Xenthorlymus, and is surmounted by a style, dilated to a head of very variable form, with lobes more or less salient and distiuct. ${ }^{1}$ Often the entire style exists in the centre of the male flowers, but without ovary; in other cases the gynæcium disappears entirely. The fruit is analogous to that of Xantlochymus; it is a berry, often corticate, furnished at the base with the calyx and at the summit with the persistent style. The seeds, with pulpy coat, enclose an embryo undivided or with

Fig. 378. Stamens. macropod radicle, surmounted by two rery small cotyledons. ${ }^{2}$

Under the name of Diseostigma, ${ }^{3}$ have been distinguished generically some species of Gareinin with small flowers in false umbels in the axils of the leaves and authers opening by short clefts resembling proses ; and under the name of Tropmonlyylhm, ${ }^{4}$ some Diserostigma of Ceylonwhose stamens are slightly adhereut with the base of the supals.

Thins understood, ${ }^{5}$ the genus dicurimier is composed of about forty species ${ }^{6}$ belongiug to all the tropical regions of the old world. They are trees or shrubs with a yellow juice, thick opposite coriaccous peminerved leaves, nearly always entire, without stipules. The flowers are terminal or axillary, solitary, or in triflowns or more or less ramificd cymes resembling compound clusters or umbels.
the stamens are inserted on a quadrilateral receptacular projection. (See H. Bn. Adansonia xi. 379 .)
${ }^{1}$ There are some sections founded on the character of the stigma which is peltate in I'cltostigma and Trachycarpus, with tubercular lobes in Comarostigma.
${ }^{2}$ In germination, the gemmule is elongate, and its appendages separate from each other. Adrentitious roots, variable in number, may then be developed at the base, and these alone will soun nourish the young plant. At the opposite extremity of the embryo there is also (as in certain Monocotyledons) a thin root soon arrested in its development. Roxburgi, then Planchon et Triana (Ann. Sc. Nat. sér. 4, xvi. 302), consider it an original root of transitory existence.
${ }^{3}$ Hasse. Cat. Ifort. Bogor, 212.-Ende, Gen. Suppl. iii. © 9 .-Crois, Mèm. Soc.Gen. (1860) xp. 435.-PL. et Tri. Ann. Sc. J̌at. sér. 4, xiv. 361.
${ }^{4}$ Thw. Hook. Kew Journ. 70, t. 2 C.-PL. et

[^480]Riturent is scareely distinct from tetramerous Gintrinion ; it differs only in this; that the calyx, instead of being in two dimerous verticils, with alternate pieces, has ouly two free imbricate sepals, rarely mited to any considerable extent. It ermprises trees of tropical America, whense organs of regetation are those of Guciniu. Two from Madagascar and one from tropical western Africa are all the species that have been described. Ochrorarpms is also a near neighbour of cinceinin, and between it and Pheertien the only difference observable is that the calyx, represented in the bud by a valvate and cluse sac, afterwards divides from top to bottom into two equal or unequal prarts. It has been found in Nadagascar, in tropical western Alrica, and in eastern India. All these plants have the same embryo as Garcinia.

IV. MAMMEA SERIES.

Mammen ${ }^{1}$ (fig. 879), having the flowers of Ocherctrpm:, would be placed in the same series if it had not an embryo of quite a different organization ;

 a character to which, in this family, a great value has been attached in classification. Instead of being macropod and undivided, this embryo is in fact composed of a very short inferior radicle and of two very large plano-convex cotyledons, united to each by their internal surface. The polygranous flowers, mereover, have a valvate calys, diviled at the period of anthesis into two valves, of from four to cight imbricate perals, numerons stamens, with erect elongate

[^481]anthers, dehiscing by two longitudinal clefts and a gynecium destitute of disk. The ovary is bilocular, surmounted by a style with stigmatiferous extremity dilated to a large subpeltate and bilobed head. In the internal angle of each of the cells are two nearly basilar collateral ascending ovules, with micropyle exterior and inferior. The fruit is a large corticate 1-4-spermous berry. ${ }^{1}$ There is perhaps only one species ${ }^{2}$ of Mammea, ${ }^{3}$ a native of tropical America, but introduced and cultivated in several warm countries of Asia and Africa. The leaves are opposite, rigid, coriaceous, entire, penninerved, with numerous fine parallel secondary nervures, covered with glandular punctuations. The flowers are axillary, solitary or united in pauciflorous cymes and with pedicels ordinarily short.

Close beside Mrammea are placed three genera frem tropical Asia, which scarcely differ from it in the fundamental organization of the flower; these are Mesua, Kayea, and Preciloneuron. Mesua (fig. 380) has hermaphrodite, tetramerous flowers, with imbricate sepals, an ovary with two biovulate cells and a style longer than that of Mammea, but terminated also by

Fig. 380. Flower. a large stigmatiferous bilobed head. The fruit finally opens in four valves. Four or five species ${ }^{5}$ are described. Kayea ${ }^{6}$ has the same flowers, with four unequal,

[^482][^483]imbricate-decussate serpals, exserted stamens, with small and nearly globular authers. The ovary has a single cell, with four ovules, rarely more, inserted quite at the base, and it is smmomeded by a longs subulate style, divided at the summit into four small pointed lobes. The fruit is indehisecnt. Seven or eight species ${ }^{1}$ are known. Parilonrmion, primarily referred to the family of the Itrustormiacere, has nearly the flowers of Menn, with two biowulate cells in the ovary, two subulate styles, with stigmatiferous punctiform extremity, and a capsular septicidal (?) and mouospermous fruit. 'Two species ${ }^{3}$ are distinguished, from the Indian peninsula.

Fig. 381. Flower (${ }_{1}^{2}$).

Calophyllum Calabz.

Fig. 382. Long. sect, of flower ($\frac{3}{1}$).
(thlophyllmm ${ }^{4}$ (fig. 381-384), of which a separate group has been made, is exceptional in this series by a single character ; the gymacium is reduced to one carpel, and the ovary, consequently, has but one cell with a single anatropens, almost basilar ovule, ordinarily asceuding, ${ }^{5}$ and the style is terminated ly a more or less oblique stigmatiferons head. The frout is a drupe the seed of which encluses

[^484]sér. 4, xv. 247.-Galnba Puum. Gen. 39, t. 18.Adans. Famr. des Pl. ii. 446,-Inophylham Burm. Thes. Zeyl. 130.-Talophyllodendron Vaill. Mém. Acad. I'a: [1722] 207.-Balsamaria Lour. Fl. Cochinch. (ed. 1790) 469.-A Apoterium Bl. Bijdr. 218. -Lamprophyllum Miers, Trans. Linn. Soc. xxi. 249, t. 26, fig. 13 (part).
${ }^{5}$ Owing to the slight variations presented by the point of insertion and to its anatropy more or less complete, this ovule may here and there direct its micropyle towards the side or even towards the top of the cell; as we have seen in certain fresh flowers of the cultivated plant.
an embryo similar in construction to that of Mrumen, with a very short inferior radiele. The imbricate sepals number from two to four, and the pelals (which may be wantiug?) vary from two to ten. ${ }^{1}$ About forty species ${ }^{2}$ of Culophyllmm are admitted. They are trees

Calophyllum Calaba.

Fig. 383. Fruit.

Fig. 384. Long. sect. of fruit.
with smooth (pposite coriareons leaves with numerous fine close parallel pemiform sccondary nervures, and flowers in clusters of terminal or axillary and more or less ramified cymes. They inhabit all the tropical regions of America, Asia, Occania, and Africa.

V. QUIINA SERIES.

The flowers of (miina (fig. :85) are polygmons, with a small convex receptacle bearing at first four decussate or five imbricate sepals. The petals, altcrnate and equal in mumber, or rising to seven or eight, are free or slightly united at the base and imbricate in the but. The stamens are numerons in the male flowers, where they consist of a slender filament and a short suloglobose anther of two ${ }^{\ddagger}$ cells dehiscing internally or near the margin loy longitudinal

[^485][^486]clefts. They are inserted on the receptacle or, more rarely, are united to a small extent with the base of the corolla and fall with it. In the female flowers, the stamens less numerous, are oftern gronped in alternipetalous bundles, and the anthers may present the ordinary appearance without being fertile. ${ }^{1}$

Fig. 385. Long, sect. of bud ($\left.\begin{array}{l}5 \\ 1\end{array}\right)$. The gynæcium, of which there is rarely a rudiment in the male flowers, is composed of a free ovary, with two or three cells, surmounted by a style immediately divided into an equal number of slender subulate branches enlarged at the summit to a discoid or reniform stigmatiferous head. In the internal angle of each cell are inserted, near the base, two collateral ascending ovules, with the micropyle exterior and inferior. The fruit is a slightly fleshy berry, finally dehiscent, ardinarily monospermons, more rarely with two seeds which cuclose, under their coats, ${ }^{*}$ a fleshy often spherical embryo, with short inferior radicle and thick hemispherical entyledons. Quiium consists of trees or shrubs, sometimes climbing, with a clear juice ${ }^{3}$ less abundant than in the rest of the family, opposite, verticillate leaves, most frequently accompanied by two narrow rigid lateral stipules. They are ordinarily simple, dentate or crenclate, with pemate nervures connected by fine transverse veius. In Touronlin,', which probably ought to be united with this gemus, the leaves are pimatipartite. The flowers ${ }^{5}$ of Quima are small, generally numerous, united in more or less ramified eluster's of cymes often biparous. About fifteen species ${ }^{6}$ are known, natives of tropical America and nearly all of Guyana.

[^487][^488]In 1789 A.-L. de Jessieu ' estahlished the family of Guttiferte, which he placed between the St. Juhn's Worts and Oranges. Beside
 Ifenmen, Ilesinn, Rheedin, and C'alophyllum, which belong to it, he placed seven foreign types, viz.: (trius of the Myptucece, ${ }^{2}$ Teteriu and Tittica of the Diptrioctrpere, Allophyllus of the Supindacere and Elterectipls: of the Tilluctor; and in addition the three genera of Aublet, Mucahanca, ${ }^{3}$ Incembew, ${ }^{4}$ and Singmue, ${ }^{5}$ the place of which is still to be found, as also that of several types imperfectly known, ${ }^{6}$ erroneously attributed to the Clusincece. Later, ${ }^{7}$ he further added Fenun, now referred, under the name of Brecin, to the Surifingacese. From 1822 to 1821, Cuoisy, ${ }^{〔}$ who on several occasions devoted himself to the study of the liuttificre, included among them Inveptia of Kusth, Ochiocurpus of Dupetit-Thounes, with a certain number of Ternstromiacece and Canelle. In 1828 Canbessedes, ${ }^{9}$ taking in hand the study of the genera constituting the group of Cultifere, reduced them to ten, ${ }^{10}$ viz.: Tocomitu, Clusin, Havetia, Moronober, Chrigsopen (Šymphomia), Manemen, Rherelie, Gureinie, Mesma, and (inluphyllem. By Enidicier " were added to it Pentadesme of Don , Kidyen of Wallici, and Plutwain of Maftius, wrongly referred to Cemellurete. ${ }^{12}$ In lyab Lindley ${ }^{15}$ gave to the family the name of Clusimece. Besides the types cummerated above, he placed in it
 C'alysinction of Wiget. In 1819 Cholsy, ${ }^{1 t}$ treatiug of the Iudian Ginttiferer, admits the same genera, and auds ('ochlunthrow. The number of generic types is still more considerable, for it amounts to
${ }^{1}$ Gen. 255, Ord. 9.
${ }^{2}$ See p. 376, n. 55.
${ }^{3}$ Aubl. Guian. Suppl. 6, t. 371.-J. Gen. 257 (Macanea).-Ple. et Tri. Anr. Sc. Nat. sér. 4, xvi. 318. These authors consider this plant a Hippocratea (Tontelea). The fruit, numbered 1, 2, in the plate of Aubler, much resembles that of a Uraria.
${ }^{4}$ Aubl, Guian. Suppl, 17, t. 378.-J. Gen. 257. Planchon and Triana think that the fruit tepresented in this plant is also that of a Tontelea.
${ }^{5}$ Aubl. Guian. 574, t. 230. Bentham (Gen. 465) thinks that this plant belongs perhaps to Surartzia (Tounatea). Endlicerer classed it with the Capparidec.
${ }^{6}$ Especially Soala (Bianco, Fl. Filip. 437), which in certain characters resembles the $\mathbf{A n o -}$ nacew and Barringtonice; Stelechospermum (Bu.

Fl. Jav. Dipteroc.), a genus proposed for Tateria flexncsa Louk. (Fl. Coch. 334), a tree with alternate leaves, very different from the Chesiacece. Miers (Contrib. i 114, not.) has also noted under the names of Perissus and Catalissa, two genera of Clusiacece from tropical America, of which we know only the names.
${ }^{7}$ Am. Mus. xx. (1813).
${ }^{8}$ Mén. Suc. Hist, Nat. Par. i. p. ii.; DC. Prodr. i. (1824) 557, Ord. 35.
${ }^{9}$ Mém. Mus. xvi. 370, t. 17, 19.
${ }^{10}$ To say nothing of the synonyms which do double service.
${ }^{11}$ Gen. 1024, Ord. 216 (Clusiacece).
${ }^{12}$ Loc. cit. 1029.
${ }^{13}$ Introd. (ed. 2) 74.
${ }^{14}$ Mém. Soc. Hist. Nat. Genève, xii.
thirts-four in the most complete work on the family by Puxcion and 'Thensa ${ }^{1}$ published in 1 shla and 1862. These authors, who based the classification of the chlusineren on the conformation of the embryo, added thereto twelve new genera, seven named by themselves:
 efln, and Pilusporme, and those previously proposed : Lipmlen by Cambessedes, Amliuntylinm by Miquel, Disemstigme by Massikarl, Montrouseria by Pancuer, and in addition the old genus Tomratim of Adeley and his Quiimu which, some years previously, 'Tuliswe ${ }^{3}$ had referred to this family. In 1862 Bexthis and Hooner ${ }^{\text {b }}$ reduced the number of genera to twenty-four, by referring to other types Armulen, Oepstemon, Andiostylimm, Cuchlunther'r, Edematopns, Toromitupsis, Discostigmu, and Tourolin. Aftor them Oidver united Cedlysercion to Ocherectroms ${ }^{5}$ and created the abnormal genus illenhenclim. ${ }^{6}$ As Culyseterion had been included in Mmemmed by Pdanchos and Trisis, the total number was then twentr-five. Honseri ${ }^{7}$ joined to it Periltuenton, formerly considered a Trinstromemere. ${ }^{8}$
 to the true (enopoyce, and by referring Xinthenehymus, as a simple section, ${ }^{10}$ to Gureiniu, we have reduced the number of genera to be retained to twenty-two, and we have indicated the possibility of a still greater reduction by showing how little importance can be attached to the characters by which the gencra of the Symphonie series are distinguished from each other.

The number of species known may be estimated at two humdred and fifty ; they all belong to the warm countries of the globe and scarcely if at all cross the northern tropic. In North America they are found only in the warmest parts of Mexico. Of the twenty-two gencra, eleven belong to America, viz.: those of the ''lusin series, Moronobea and Platonia, Mammea and Quiina. Three genera, Mrsum, Kıngen, Poritonemon, are exclusively Asiatic. P'utudermu and Illanblackian are from tropical western Africa; Montronainer,

[^489]common to the tropical regions of both worlds: Getreinin to those of the old world ; Ochomertmes to Asia and Afrie r, nearly all located in Madagascar. Only one Culophyllum is known in Australia.

All the clusimeth have common characters by which they are easily recoguized in collections. All are woody, not unfrequently sarmentose, some pseudo-epiphytal, ' frequently rich in a resinous or gummy latex, ycllow or greenish. ${ }^{2}$ The leaves are opposite, rarely verticillate, nearly always entire, thick, coriaccous, glabrous, pemninerved, but with veinules generally scarcely visible. They are rarely dentate or cut, and rarely furnished with stipules. ${ }^{3}$ In one or two Quiinat only are they pinnatifid or pimnatisect. The flowers are regular, rarely hermaphrodite (s'ymphonien), ordinarily polygamodiocious, most frequently disposed in cymes umted in more or less compound influrescences; they are white, greenish, yellow, pink or red, but never blue. The seed is destitute of albumen.

The characters which vary are: the number of floral parts, the prefloration of the calyx, the structure of the calyx, the union or separation of tade sexes in the same flower, the organization of the gynacium, the greater or less development of interlocular partitions, the number and direction of the ovules, the consistence of the pericarp which is dry or fleshy, dehiscent or iudehiscent, and especially the character of the embryo which more especially distinguishes the following series:
I. Clesief. - Floteres polygamo-diocious. Calyx imbricate. Orary cells l-x -ovulate. Style short, peltate, or in radiating divisious at the summit of the ovary, with stigmatic lobes more or less distinct. Fruit fiually dehiscent. Embryo fleshy, macropod, with very small and scarcely distinct cotyledons.-8 genera.

[^490]cunes à gomue dans les Quiinées, Compt. Rend. lxiii. 717 ; Adansonia, viii. 91), and in Garcinia, by De Lanessan (see p. 417, note 3).
${ }^{3}$ These organs appear to exist in certain Quiina; but in the other groups what is described as such is probably only a petiolate dilatation (see Pl. et Tri. Ann. Sc. Nat. sér. 4, xvi. 268).

4 Pinnatipartite in Touroulia.
II. Sympioxie.e. - Flowers generally hermaphrodite. C'alyx imbricate. Stamens united in five oppositipetalous bundles. Ovary cells equal in number to that of the petals. Style elongate with five stigmatiferous branches. Ovules $2-\infty$, ascending or horizontal. Fruit fleshy, indehiscent. Embryo fleshy undivided, without cotyledons.-5 genera.
III. Garciniere. - Flowers polygamo-diœcions. Calyx imbricate or valvate and gamosepalous. Stamens ∞, free, 1 -adelphous or in fascicles. Ovary cells uniovulate. Ovule ascending, with micropyle inferior or exterior. Fruit fleshy, indehiscent. Embryo macropod, with very large radicle and cotyledons very simall or nil.-3 genera.
IV. Mannee e. ${ }^{\text {- - Flowers polygamo-diocious or hermaphrodite. }}$ Calyx imbricate or valvate and gamosepalous. Stamens ∞, free or monadelphous at base. Ovary cells 1-t, uniovulate. Style elongate, peltate, capitate or ramified at summit. Ovule ascending with micropyle inferior and exterior. Fruit fleshy seldom dehiscent. Embryo fleshy, with strict voluminous plano-convex cotyledons, free or conferruminate, and short iuferior radicle.-5 genera.
V. Quinew. - Flowers polygamo-diocious. Calyx imbricate. Corolla polypetalous or gamopetalous. Stamens ∞, free or nearly so. Ovary cells 2, 3, 2 -ovulate, Styles slender and free. Ovules ascending, with micropyle inferior and exterior. Fruit fleshy, indehiseent. Embryo with developed free cotyledons and short inferior radicle.-1 genus.

Afrinities.-We have thought it possible to establish that the Hypericucup present the same type as the Mystureore, with the ovary constantly superior and the stamens hypugynous. ${ }^{3}$ by that we have determined the place of the Clusineert, which differ from the Ilyperviencure in a manner quite artificial, viz., by their mostly herbaceons habit, less thick and less coriaccous leaves, hermaphodite flowers, and filiform stylary divisions. The II!periencen haviug, at once, the coloured latex of the ' '/nsiutere' and the esscmee rescrevoits of the Myitucert, are intermediate between them. Noreower, the fleshy aud

[^491]undivided embryo of a great number of Berringtonier is found in the 'lusinect. These are ordinarily placed next beside the Tr, mionsticemiacere, with which their affinities are so close that one might include in one and the same family the Ginttiferer and certain Ternstramiacce. The latter are distinguished by their alternate leaves, or, in the exceptional types with opposite leaves, by their flowers in clusters, with alternate pedicels, ordiuarily hermaphrodite and very rarely tetramerous, so that their sepals and petals are not decussate. Further, the Ternstremincece have not a coloured latex, and the embryo, often curved, has distinct and independent cotyledons, when even they are not largely developed. Finally, the Clusiucetr, searcely separable from the St. John's Worts, appear equally allied to the Ternstromiacece and Myrtacece.

Uses. - The c'rusincew have a yellow or greenish, more rarely whitish latex, which contains an acrid resinous matter, often possessing eracuant, sometimes stimulant and touic properties. The most celebrated, as well as the most active of these substances, is gumgutta, the production of which has been attributed to several (furcinicer. The best comes from Garcinia Morella ${ }^{2}$ (fig. 355, :378) , and it seems clear, from the most recent researches, ${ }^{3}$ that its different varieties alone, whether in Ceylon, ${ }^{4}$ in Siam or at Singapore, ${ }^{5}$ yield the good gum-gutta used in medicine as a drastic and hydragogue, aud in the arts as a vellow colour. ${ }^{6}$ (1. Xenthertymu \mathbf{s}^{7} (fig. $3720-375$),

[^492]
Gorata).

${ }^{3}$ Hanb. Trans. Lim, Soc. xxiv. 489, t. 50.De Lanessan, Iu. g. Garcinia et de lorig. de Iu Gomme-gutte, Adansonia, x. 283, t. 31.-Guis. loc. cit. 602, fig. 734.-Hanb. et Flück, Pharmacogr. 77.-Hook. f. Fl. Brit. Ind. i. 264, n. 14.
${ }^{4}$ Var, sessilis (Hanb, loc. cit.).
${ }^{5}$ Var. pedicellata (Hanb. luc. cit.). J. Hoorer (Journ. Limn. Soc. xiv. 485) gives to this variety the name Garcinia Hanberyi. The flowers of G. pictoria Roxb. being pedicellate, this latter name ought perhaps to be adopted, if the species is really distinct.
${ }^{6}$ They contain from 15 to 20 per cent. of grom soluble in water, not the same as gum arabic, and a resin soluble in alcohol, which it colours a reddish Jellow, neutral or slightly acid, forming with alkalis a deep-coloured solution.
${ }^{7}$ Hook. F. Fl. Brit. Ind. i. 269, n. 28.-X. pictorius Roxb. Pl. Corom. ii. 51, t. 196 ; Fl. Ind. ii. 633.-I. tinctorius DC, Prodr. i. 562.Chois. Guttif. Ind. 32.-Guib. loc. cit. 611.
of India, often pointel out as a source of colouring matter uscful in industry, only yields in drops a yellowish or greyish-green resin of very inferior quality. Ci. Cimmbogian produces a gum-gutta which contains a volatile oil and the resin of which, slightly active as a purgative, is of a pale yellow colour. G.tracancorire, ${ }^{2}$ on the other land, is said to yield a gum of a beautiful yellow colour, and it is probable that a uscful tinctorial matter might be found in several other species, ${ }^{3}$ perhaps in those growing in New Caledonia, ${ }^{4}$ which in so many characters approach (i. Morella. The resin of Mfui, ${ }^{5}$ from Guyana, comes also from the latex of a Clusiacem, long referred to Mroronobect coreinen, but which is rather Symphonia globulifera, ${ }^{6}$ that is the true Bois-de-corhon (pigwood) of St. Domingo. Its yellow juice, blackened in the air, is used to tar ships and cordage and to make torches; it burns well without producing much smoke or smell. The species of Culophlyllum are equally rich in resinons juice, often classed as balm or balsam. The B. de Mravie of the Antilles ${ }^{7}$ is obtained by incising the stem and branches of C. Cetchlue ${ }^{\circ}$ (fig. 381-384) ; it is greenish, sticky, and tenacious, and is employed as a vuluerary. The tacamae resin of Bourbon ${ }^{9}$ is said to be extracted in the same manner from C. Tactomaharec, ${ }^{10}$ a fine tree of the

[^493][^494]Mascarene isles; the balsam of focot and angelic tacamac of Madagascar have also been attributed to Cofloplyylum. In Peru, C. theriferum gives a yellowish resinous juice having the properties of incense. That of C. Incphyllum, ${ }^{1}$ a species common in Asia, Oceania, and Africa, is purgative and vomitive, and the bark of the same tree is extolled as diuretic. The American Rheedia bas analogous properties. Nesum, especially M. ferrea ${ }^{2}$ (fig. 380) and speciosa, ${ }^{3}$ Indian species, have a root and a bark bitter, aromatic, sudorific. The fruit is acrid and purgative; the leaves rich in mucilaginous matter. In America, several species of clusia are valued for their latex. That of C. rosea ${ }^{4}$ (fig. 355, $35(i)$ is thick, balsamic, and bitter; it is used fur the same purposes as pitch and scammony. That of C. flava is considered a vulnerary. ${ }^{6}$ From the C.insignis ${ }^{7}$ of Brazil flows abundance of resinous juice. The bitter bark of G. Pseudochina ${ }^{8}$ has been used to adulterate Peruvian bark. C. Panapanari ${ }^{9}$ (fig. $359,360)$ yiclds, in Guyana, a yellow juice resembling gum-gutta.

A great number of Clusincere are esteemed in both worlds for their fruit. One of the most delicious of tropical Asia is said to be that of Garcinia Mangostana ${ }^{10}$ (fig. 376, 377). It is a berry with a coloured coriaccous bitter and astringent pericarp. This is rejected and the white sweet aromatic exterior tegumentary layer of the seeds is eaten reported to be of exquisite flavour. Some other Garcinias

[^495](part), Spec. iv. 976 (Figuier maudit, Millepicds, Cope grande in Panama, Cupay in Venezuela).
${ }^{5}$ L. Syvec. 1495.-JACQ. Amer. 272, t. 167; Ic. Pict.t. 251.-DC. Prodr. i. 559, n. 3.-Rosentin. op. cit. 740.
${ }^{6}$ What has been attributed to the juice of this plant ought probably to be applied to that of Symphonia globulifera (p. 418, note 6).

7 Mart. ex Rosenth. op. cit. 741.
${ }^{3}$ Peepr. ex Rosenth. loc. cit.
${ }^{9}$ Cuors. DC. Prodi. n. 13.-Quapoya Panapa= narí Aubl. Guiun. ii. 901, t. 344.-H. Bn. Bull. Soc. Linn. Par. 77.
${ }^{10}$ L. Spec. 635.-DC. Prodr. i. 560, n. 1.Roxb. Fl. Ind. ii. 61s.-Chors. Gutt. Ind. 33.Hook. Bot. Mag. t. 4847.- Pl. et Tri. Ann. Se. Nat. sér. 4, xiv. 325.-Guib. Drog. Simpl. ed. 6, iii. 602.-Laness. Bull. Soc. Linn. Par. 62.Mangostana Rumpir. Herb. Amb, i. t. 43.-Garcin, Act. Angl. 431, t. 1 (ex W.).-Mangostana Garcinia Gertn. Fruet. ii. t. 105.
have edible fruits, but very inferior in quality.' In the Antilles much is made of Mommene "mmericom ${ }^{2}$ (fig. 379); its pericarp is sweet and aromatic, but like that of the Corossols, it is very inferion to our good European fruit. C'onserves and beverages are prepared from it. From the flowers, of sweet odour, a refreshing and digestive water is distilled. The fermented juice of the stems also affords a kind of beverage. The fruit of the Indiau and African Ochiotertm.s is edible. ${ }^{3}$ The flowers are aromatic and are sometimes used, like the leaves, for perfuming tea. ${ }^{4}$ The berry of Rheelim lateriftomen ${ }^{5}$ has the same uses in the Antilles as that of Memmer, likewise, in Brazil, that of I'lutonia insiynis.' That of Pentulesme butypracere ${ }^{7}$ is highly esteemed in tropical western Afriea for the yellowish resinous juice it contains in abundance, which is extracted by incisions; it thickens and becomes a sort of butter much esteemed by the natives, lut with a slight turpentine odour and not agreeable to Europeans. Several chusiucew have a wood of good quality, especially Calophyllmm, Mesme which in India furnishes the prized iron-wood, in Guyana Mmomolew corcinen, in New C'aledonia Montronzeriw.s Geuerally Clusiu and C'ucinin have a soft mood. All the Clusimeer, being from tropical countries, are somewhat difficult of culture ; but their thick glabrous opposite leaves with fine nervures produce a fine effect in our warm conservatories, where are foum some lihertin, Mammert, C'rloyllyllmm, and Cittreinin, and Clnsint with magnificent flowers.

[^496][^497]
GENERA.

I. CLUSI工.

1. Clusia L.-Flowers polygamo-diœecious; receptacle shortly convex. Sepals $4-6$, decussately imbricate. Petals $4-6$ or $7-10$, imbricate or contorted-imbricate. Stamens ∞ (in female flower $t-\infty$, free or variously comate, oftener very short thick), or all united in a globose or cylindrical mass; anthers imbedded; the interior or exterior sometimes concrete sterile; anthers of interior or exterion free; or all anthers frea; filaments concrete in mass or shortly free; anthers 2-8-locular, rariously dchiscent. Germen (in male flower rariously evolved, exserted or enclosed among stamens, sometimes (0) sessile, 4-10-locular ; style short or subnil, presently dilated into thick radiating distinct or subcomate or connivent stigmas. Orules in complete or incomplete cells ∞, subhorizontal or slightly oblique ascending. Fruit thick fleshy or coriaceous, finally septicidaliy dehiscent. Talves solute from angular-alate columella. Seeds ∞, rurely few, oftener small or moderate-sized, variously arillate; cotyledons of thick fleshy albuminous embryo minute squamiform to apex; radicle thick macropod. Trees or shrubs, sometimes epiphytal, rarely climbing, glabrous, aboundiug in a resinous juice; leaves opposite exstipulate, coriaceons, entire, subenervate, or delicately penuinervel; midrib oftener strong somewhat prominent; flowers at ends of twigs solitary or few eymose, large or rather so, sometimes smaller in compound cymose racemes ; bracts under flower 2 , or more rarely ∞, decussate. (Trop. arnd sultiop. Aimerica.)-See p. 395.
2. Quapoya Aubl.-Flowers nearly of Clusin, smaller, diœcious ; scpals 4 , decussate or 5 , imbricate. Petals 4 , decussate or rarely (Bellowi) variously imbricate, sometimes .5, imbricate. Stamens 4 ,
or $5-12$, more rarely $12-20$ (or sometimes (?) to 40) ; filaments connate in tube to apex or to greater or less height, sometimes almost entirely free (Eutrmetopus); anthers various in form, either obcuneate, finally recurved and bearing marginal cells, or more or less ovate or oblong and bearing introrsely rimose cells. Staminodes oftener $4-6$, hypogynous; filaments free thick or complanate; cells of anther (oftener sterile) conspicuous lateral, effete. Germen (in male flower rudimentary small or (0) sessile, $4-5$-locular; style short, presently dilated to disciform more or less lobed stigma. Ovules in cells (complete or incomplete) $2-4$, ascending, oblique; micropyle extrorsely inferior, or $5-\infty$, subhorizontal. Fruit fleshy or coriaccous, finally capsularly dehiscent, septicidal. Sceds in cells few or 1, varionsly arillate; embryo, etc., of Clusiu.-Trees or shrubs; habits and leaves of Clasia; flowers small in terminal more or less compound ramosecymiferous racemes. (Tropical America.)-See p. 398.
3. Havetia H. B. K.-Flowers diocious small (nearly of Quapoya), 4-merous. Sepals and petals decussite. Stamens 4 (in female flower short thick sterile and connate in a cupule), united in a thick subglobose mass; filaments thick, externally convex, internally angular; anthers vertically imbedded; cells suborbicular, 3-nate, iuternally valvicide. Germen 4-locular; style lobes stigmatose subsessile. Ovules in cells $2-4$; inferior ascending; micropyle extrorsely inferior ; raphe introrse or lateral. Capsule thick septicidal. Seeds clothed with a lobulate aril springing both from the hilum and from the micropyle ; embryo exalbuminous of Clusitu (or Qucepoya).tree; habit, leaves, inflorescence, ete., of Qumprou. (Ne川 Gianula.) -See p. 400.

4? Pilosperma This, and Pl-Flowers diœcious? males . . .? Sepals and petals of fimale flower 4 , decussate. Disk cupuliform; externally ∞-striate (staminodes?). Gynacium and fruit nearly of Havetie ; sceds in cells 5, 6, solitary or oftener :-nate, descending, surrounded with cristate aril; raphe subdersal.-A tree; habit, leaves, inflorescence, etc., of Quetpoya or Hacetic. (New Giranada.) -Sce p. 400.

5? Clusiella Tri. and Pre-Flowers diocious; males ...? Calyx of female flowers imbricate, 5-phyllous. Petals 5, longer, contorted; the exterior sometimes subauriculate. Staminodes ∞, minute, united
in hypogynous cupule. Germen 5-locular; lobes of style 5, short stigmatose. Orules in cells ∞, descending or subhorizontal. Fruit...? - A scandent (?) shrub; branches slender, 2-chotomous; leaves opposite acuminate reticulate-veined ; flowers in upper axils or terminal ; cymes poor (1 -few flowered); brauches rather long bearing several ($\because-1$) remote pairs of decussate bracts, at apex 1 -flowered. (Columbia.)-See p. 400.
6. Chrysochlamys Piepp. and Endl-Flowers polygamo-diœcious; sepals $t, 5$, imbricate. Petals $4-10$, imbricate. Stamens ∞, central (in female flower sterile) free or comate in an externally antheriferous cyathus ; anthers effete (or sometimes fertile in subhermaphrodite flower), either free and all fertile, or part only fertile; the interior anantherous and united in a mass; anthers of fertile stamens small; cells 2, oblique, laterally or introrsely rimose. Germen (in male flower 0 , or rarely minute effete) free, 5 -locular; style branches stigmatose adnate radiating, free at apex. Ovules in cells solitary, ascending, amphitropous; micropyle extrorsely inferior. Fruit subfleshy, finally septicidal, 5 -valvate. Seeds sessile, amphitropous, externally surrounded by a thick membranous aril springing around hilum and sometimes also micropyle, sometimes unequally divided at back ; embryo, ete., of Clusia.-Trees, with gummy juice; leaves opposite penninerved, inflorescence terminal compound ramose, etc., of Clusia. (Trop. America.)-See p. 401.
7. Tovomita Aubl.-Flowers polygamo-diæcious; sepals $2-4$ and petals $4-10$, imbricate, often 2 -seriate. Stamens ∞; filaments free subulate; anthers often small terminal, 2-locular. Germen 4,5locular ; style branches same in number short, incrassate and stigmatose at apex or nearly from base. Ovules in cells solitary ascending, often amphitropous ; micropyle extrorsely inferior. Fruit oblong or pear-shaped fleshy, finally capsularly dehiscent, $4-5$-valvate ; seeds exarillate or furnished with an external coat thickened to a general fleshy aril ; embryo, cte., nearly of Clusich (or Chrysochlamys).Trees or shrubs, with resinous juice; leaves opposite entire peuninerved, opaque or pellucid-lineate; flowers (small) in umbelliform more or less compound (often 3-chotomous) cymes. (Trop. America). —See p. 401.

8? Allanblackia Oliv.-Flowers nearly of Clusia, 5-merous; sepals unequal and petals imbricate. Stamens oo (in female flower
sterile very short thick), in 5 nppositipetalous groups ; anthers subsessile, 2 -locular, 2-rimose. Germen (in male flower rudimentary, 5-lobed) thick conical, 1-locular; placente B, parietal, little prominent; ovules $\infty, 9$-seriate on each placenta, ascending ; style soon dilated to undivided stigmatose peltate head. Fruit . . ? - A glabrous tree; opposite leaves, ete., of c!lusice ; flowers terminal, rather loug pedicellate, disposed in a compound cymose umbelliform raceme. (Trop. west. Africa.) -Sce p. 401.

II. SYMPHONIE E.

9. Symphonia L. F.-Flowers hemaphrodite ; sepals 5, unequal ; the exterior shorter, much imbricate. Petals 5, alternate, contorted ; bud subglobose. Stamens 5 -adeljhous; groups oppositipetalous, 3-5-audrous ; anthers extrorsely adnate, muticous at apex or superion with apiculate connective; cells linear, longitudinally rimose. Disk exterior to androerium, cupular, subentire or shortly 5-crenate. Germen enclosed in staminal tube, 5-locular; style elongate, at apex radiately 5 -lobed ; lobes at top of minute apex foveolate-stigmatose. Ovules in cells (complete or incomplete) ∞, asceuding; micropyle extrorsely superior. Fruit baccate; entyledons of thick undivided exallouminous embryo 0. - Trees or shrubs, with yellow juice ; laves opposite exstipulate, thinly coriaceous, l-nerved, closely parallel peuninerved ; flowers terminal, solitary or geuerally spuriously umhellate cymose pedicellate. (T'rop, America, Malucen, trop. uest. Africa.)-See p. 402.

10? Moronobea Arbl.-Flowers nearly of Symphonia; bud ovoid. Disk lobes 5, alternating with as many staminal groups; filaments in each 5, 6, long linear and spirally twisted arvund gyoocium, extrorsely antheriferous nearly from base ; cells aduate linear. Germen, ete, of stymphenire ; ovules in cells few ascending. Fruit subligneous acuminate; seels solitary or ferv exalbuminous.-Lofty trees with copious greenish juice; laves thick opposite ; flowers large solitary terminal. (Trop. America.)-See p. 403.

11? Montrouziera Paxch.-Flowers uearly of Symphunit ; bud subglobose. Staminal groups 5, alternating with as many glandule:s
of disk vertically produced (or sometimes 0); each divided into $5-10$ linear extrorsely aduate muticous anthers. Germen, ete., of $S!m m-$ Thomior ; ovules in cells ∞, 2 -seriate, ascendiug or subhorizontal; micropyle extrorsely lateral. Berry corticate, indehiscent; seeds in cells few ; embryo of Symphmia. - Shrubs or small trees, with yellowish juice ; leaves opposite or subverticillate coriaccous, pemninerved entire ; flowers solitary at the ends of twigs or growing from the wood, pedicellate or subsessile. (New Calelonia.) -See p. 404.

12? Pentadesma Sab.-Flowers nearly of Symihomia; sepals 5, very unequal and imbricate, the interior larger. Petals 5, rather longer than the interior scpals. Stamens ∞, very shortly 5 -adelphous; groups alternating with as many rather prominent glandules of disk, in each ∞, linear elongate; authers extrorsely adnate above the middle ; cells linear rimose. Germen, ete., of Symphonia ; ovules in cells few ascending. Fruit baccate corticate, indehiscent, resinifluous; seeds in cells few or 1 ; embryo undivided.-A lofty tree, with yellow juice; leaves opposite coriaceous entire finely and closely penninerved; flowers large terminal solitary. (Trop. west. Africol.)-See p. 404.

13? Platonia Mart.-Flowers nearly of Symplemiat ; bud ovoid. Staminal groups 5, alternating with as many angular and rather promiuent lobes of the disk ; each divided into ∞ straight filaments; authers extrorsely adnate above middle of filament, muticons. Germen, etc., of Symphonia; ovules in cells ∞, ascending. Fruit baceate, indehiscent, \bar{b}-locular ; seeds in cells solitary exalbuminous.-Large trees; leaves opposite coriaceous, fiuely and closely penninerved; flowers large terminal solitary. (Trop. America.)-See p. 404.

III. GARCINIE雨.

14. Garcinia L.-Flowers polygamous, 4 -merous, or more rartly (Nenthochymus) 5-merous; sepals imbricate, oftener unequal ; the exterior smaller. Petals 4, 5, alternate, imbricate. Stamens ∞, either comate in 4,5 , groups few-anthered at apex, or free or connate in entire or 4 - 6 -lobed mass ; anthers various in form, either clongate, 2 -rimose, or poricid or peltate, 4-locellate or operculately dehiscent (in female flower rudimentary or 0). Germen (in male flower rudimentary or effete) 2 -s -locular, oftener 4 - 5 -locular ; style
more or less elongate, at apex stigmatose peltate, entire or radiatcly lobed, torulose or depressed or tuberculate (in male fiower sometimes evolved with effete germen). Ovules in cells (complete or incomplete) sulitary ascending ; micropyle extrorsely inferior. Fruit indehiscent, baceate, often corticate. Seeds ∞, or few; external coat pulpy arilliform ; radicle of thick exalbuminous embryo macropod; cotyledons very small or 0. - Trees oftener glabrous, generally with yelluw juice; leares opposite, oftener entire coriaccous; flowers axillary or terminal cymose or in a compound cymiferous raceme, more rarely solitary. (Trop. West. Affica, Malered, trop. Asia amb Ocrania.) See p. 405.

15? Rheedia L. ${ }^{1}$ - Flowers nearly of Gureinit, 4 -merous; sepals 2 , free or more or less connate, imbricate or valvate. Petals 4 , decussate. Stamens \propto; anthers longitudinally rimose. Germen 3-5locular; ovules solitary, etc., of Garcinia. Berry corticate, 1-5spermous ; seed and embryo of G'ureinit.--Trees with yellow juice ; leaves and inflorescence of Garcimin. (Tiop. Amprict, Madagascar, trop. west. Africa. ${ }^{2}$)

16? Ochrocarpus Dur.-'Ti. ${ }^{3}$-Flowers nearly of Carcinia; calyx valvate, closed before anthesis and finally \because-valyately fissus. Stamens ∞, free or 4-8-adelphous; anthers clongate or short. Germen 2-6locular, etc., of Garcinia; cells 1,2 -ovulate; ovules ascending. Fruit baccate, often 1-spermous ; embryo undivided.-Trees; leaves opposite or verticillate (of Gincium) ; flowers lateral or axillary cymose. (Trop. Asia and Oceania, Malacca, trop. west. Africa. ${ }^{4}$)

IV. MAMMEEA.

17. Mammea Pl-Flowers polygamo-diocious; calyx gamophyllus, valvate, closed before anthesis, finally divided into 2 sepals. I'etals 4-6, imbricate or not contiguous. Stamens ∞, free or connate at base, erect; filaments free slender ; anthers oblong erect; cells
[^498][^499]adnate linear, introrse or extrorse, longitudinally rimose. Germen (in male flower rudimentary or 0) sessile 2-locular ; style cylindrical erect rather thick, at apex stigmatese capitately 2 -lobed. Ovules in cells 2 each, collaterally ascending, anatropous; micropyle extrorsely inferior. Fruit drupaceous, 1 -spermous (rarely $2-4$-spermous); putamen thick, externally fibrous. Seeds suberect; cotyledons of Heshy exalbuminous embryo large thick plano-convex conferruminate with resinous channels ; radiele very short inferior.-Trees; leaves alternate pellucid punctate elosely and finely reticulate-penninerved; flowers axillary solitary or few cymose; pedicels short rather thick. (Trop. America.) -See p. 408.
18. Kayea Wall.-Flowers nearly of Mummea, hermaphrodite or polygamous; calyx 4 -phyllous, imbricate. Petals 4 , imbricate. Stamens ∞; filaments long filiform, corrugate ; anthers small subglobose ; cells 2, short, rimose. Germeu 2-locular ; style elongate, at apex shortly and sharply 4 -fid. Ovules in cells (complete or oftener incomplete) 2 each, collaterally ascending ; micropyle extrorsely inferior. Fruit fleshy, indehiscent, girt by more or less persistent and enlarged and inerassate calyx; seeds l-1; embryo, etc., of Mammea.-Trees; leaves oblong, very finely penninervel; flowers (rather large or small) in terminal compound cymiferous racemes or more rarely solitary. (T'oup. Asiat and Oceania.)-See p. 409 .
19. Mesua L.-Flowers nearly of Keryen, hermaphrodite or polygamous, 4 -merous. Stamens ∞; anthers oblong. Germen 2-locular; style elongate, at apex stigmatose peltate. Ovules in cells 2, ascending, etc., of Kayen (or Mammea). Fruit subligneous or rather fleshy, finally t-valvate. Seeds 1-4, exarillate; embryo of MLemmea. -Trees or shrubs; leaves finely and closely penninerved; flowers (large) exarillary solitary. (Trop. Asiu and Oceaniu.)—See p. 409.

20 ? Pœciloneuron Bedd.-Flowers nearly of Kayea; "sepals $4-5$, imbricate. Petals $4-6$, contorted. Stamens ∞; filaments short or 0 ; anthers basifixed erect linear. Germen 2 -locular ; ovules in cells 2 , ete., of Kayea ; styles 2 , subulate ; at apex stigmatose punctiform. Fruit ovoid capsular, 1-locuiar, septicidal (?); sced 1, erect; embryo of Kiayea.-Trees, habit of C'lusia; leaves opposite coriaceous, finely penninerved; flowers axillary solitary or terminal paniculate. (East. India.) "—See p. 410.
21. Calophyllum L.-Flowers polygamous (uearly of Mrnmmen); sepals oftener 4 , imbricate ; the interior sometimes petaloid. Petals 2-8 (more rarely 0), imbrieate. Stamens ∞; filaments free or polyadelphous at base, more rarely l-adelphous ; anthers oblong or linear, basifixed, introrse or extrorse, 2 -rimose. Germen (in male flower rudimentary or 0) 1-locular ; style slender or subulate, at apex stigmatose capitate or cupular, entire or lobulate. Ovule 1, suberect or ascending; anatropous; micropyle inferior. Fruit drupaceous; flesh oftener scanty, finally suberose; putamen crustaceous; sced asceuding ; embryo thick exalbuminous, ete., of ALemmea.-Trees or shrubs; leaves opposite or subverticillate, entire coriaceous nitid very closely striato-penninerved; flowers in axillary and terminal compound cymiferous racemes. (Troph. Lsict, Occemia, ancl.Americt.) -Sce p. 410.

V. QUIINE业.

22. Quiina Aubl.-Flowers polygamous; sepals 4-5, unequal, imbricate. Petals 4-8, either free, or connate at base with each other and with the stamens, imbricate or imbricately convolute. Stamens ∞, hypogynous; filaments free or connate at base, corrugately flexuose in bud ; anthers small sub-2-dymous ; cells subglobose, at margin or introrsely rimose. Germen (in male flower rudimentary or 0) sessile, $2-4$-locular ; styles $2-4$, slender, distinct at base, more or less plicate in bud, at apex stigmatose capitate or discoid. Ovules in cells 2, ascending ; micropyle extrorsely inferior. Fruit baceate, sometimes juiceless ; endocarp fibrous, sometimes searcely or tardily unequally $2-4$-valved. Sceds fer or oftener 1 , externally tomentose, cotyledons exalbuminous embryo fleshy plauoennex; radicle conical inferior rather short.-Trees or shrubs, sometimes climbing, with gummy juice; leaves opposite or terticillate, entire or creuate, sometimes dentate or unequally pinuatipartite (I'momlin), penuinerved, nervose, finely vein-lined; stipules (?) \approx, narrow, rather rigid, sometimes foliaceous; flowers (small) in axillary or terminal more or less compound cymiferous and divaricately racemose racemes. (Trop. America.)—See p. 411.

LVII. LYTHRARIACEIE.

I. SALICARIA SERIES.

In the Salicarias ${ }^{1}$ (fig. 38(i-393), the flowers are regular, hermaphrodite, with four, five, or six parts. The receptacle has the form

Lythrem Salicaria.

Fis. 387. Flower (${ }_{(1)}^{1}$).

Fig. 391. Seed.

Fig. 359. Long. scet. of flower.

Fig. 390. Dehiscent fruit.

Fig. 392. Tong. sect. of seed.
of a loug tube, of little thickness, ${ }^{2}$ at the top of which is inserted the
${ }^{1}$ Lythrum L. Gen. n. 604 (part).-J. Gen. 332. -Grertn. Fiuct. i. 269, t. 62.-Lamk. Ill. t. 408.- Poir. Dict. vi. 451 ; Suppl. v. 2F.Sract, Suit. à Buffon, ir. 419.-DC. Mem. Genève, iii. p. ii. 77 ; Prodr. iii. 80.--Endl. Gen. n. 6149.-P'Pyer, Organog. 477, t. 95.—B. H. Gen. 779, n. 10.-H. Bn. Payer Fam. Nat. 353.
-Salicaria T. Inst. 253, t. 129.-Adans. Fam. des Pl. ii. 234.

- Traversed by 8-12 vertical ribs, most frequently without any very distinct glandular layer within, this tube is ordinarily described as a calicinal tube.

Fig. 386. Floriferous branch.
perianth. Thelatter presents, in the case of a hexamerous flower, six valvatesepals, with which alternate exteriorly five tongues and interiorly five petals. The latter are attenuate at the base, imbricate and corrugate in the bud. Of thetwelve stamens, six are superposed to thesepals, longer and exserted; the filaments are attached in the upper part of the receptacular tube, and the anthers are bilocular, introrse, ${ }^{1}$ dehiseing by two longitudinal clefts. ${ }^{2}$ The six other stamens, shorter and inserted lower beneath the petals, have smaller anthers often wholly or in part sterile. The gynæcium, free at the bottom of the receptacular tube, is formed of a bilocular ovary, the base of which slightly thickens into a disk, and its summit is attenuated to a style, terminated by an obtusely bilobed stig. matiferous head. On the partition separating the cells is a large placenta

[^500][^501]bearing a great number of ascending and anatropous ovules, with micropyle inferior and exterior. The fruit, around which persists the receptacular tube, is a bilocular membranous capsule, septicidal or opening irregularly at maturity, the numerous seeds of which contain under their coats a fleshy embryo, with plano-convex cotyledons, auriculate at base, and a conical inferior radicle. The Salicarias are herbaceous plants or shrubby at the base, glabrous or covered with hairs, with tetragonal branches, opposite, verticillate or rarely alternate leaves, entire, without stipules, and flowers ${ }^{1}$ united in cymes generally biparous, in the axils of the leaves or bracts which replace them at the top of the branches, in such a manner as, in this case, to form long terminal clusters of cymes (fig. 386, 393). Some oppositipetalous stamens are then reduced to very small dimensions or even disappear entirely, and the petals are somewhat unequal, the two superior surpassing the four others. Such is L. anomalum, ${ }^{2}$ a Brazilian

Lythrum rirgatum.

Fig. 393. Portion of inflorescence. plant which has become the type of the genus Anisutes. ${ }^{3}$ The style is sometimes short and sometimes long and exserted, and there are some species in which the ovary is not unfrequently trilocular. ${ }^{*}$ A dozen ${ }^{5}$ Salicarias are known; they inhabit all the temperate regions of the world, and especially marshy localities.
L. penyens and two other Chilian species constitute the genus Pleurophorce. They are herbaceous or subshrubby plants, with small stiff sharp-pointed leaves. The flowers, ordinarily collected in terminal spikes, are $5-7$-merous, $5-20$-androus, and the gynæciun is composed of a stipitate, eccentric, obliquely compressed, pauciovulate

[^502][^503]ovary, which has most frequently lout one cell and a single placenta, surmounted by an cecentric style, with a stigmatiferous summit mot cularged. All the other characters of the flower are those of Lyfllertw.

Nermen (fig. 39) 1, :395) is distinguished from the Salicarias by characters of very sccondary scientific importance. The receptacle, however, is not the same, for, with the calyx which surmounts it, it represents a campanulate sac, traversed by salient nervures to the

Nesca salicifolia.

Fig 394. Flower.

Fig. 395. Long. sect. of flower.
number ef trelve or finteen. The sepals, variable in number ($4-\delta$), are valvate, and alternate with as many exterior tomgues, analogons to those of Lyftrom. The petals, cqual aud sessile or unguiculate, according to the species, are the same in number, and the stamens double in number on two verticils. The ovary, as also the capsular fruit, has from three to six multiovulate cells, and the valves of the latter, at maturity, separate, with the partitions, from the placente charged with see 1s. Nextry comprises African and American herbacous shrubby or subshrubly plants; the leaves are opposite or verticillate, and the flowers are in eymes varying in the three sections (Eunesca, Heimia, Decodon) admitted in the genus.

Ginnor is somewhat analogous to Arsinn, and the flowers are 5. (b) merous ; but the sepals inserted at the margin of a turbinate receptacle, extermally smooth, have no alternate accessory tongues; there are from twelve to twenty-four stamens, with curved authers, au ovary with four multiovulate cells and a loculicidal former-valved capsule. Only one species is known, from Cuba. Dodteras, a shrub from the sea-shores of tropical America, has nearly the flowers of Ginurin, tetramerous, with no accessory tongues or searcely visible outside the scpals, from cight to ten stamens, with oblong, finally erect anthers, and four cells in the ovary. The capsular fruit is finally
nearly unilocular, with numerons scobiform sceds, inserted on a false central placenti. The surface of the seeds is hispid, and the flowers, rather large, are axillary, solitary, or grouped in few-flowered cymes.

Adrutriu (fig. 396, 397) comprises also tropical American plants ; like Dudects, they have an obconical or campanulate receptacle, four or five sepals, without accessory tongues, and a diplostemonous andrecium inserted higher or lower on the internal wall of the receptacle. The ovary, with short foot, has two multiovulate cells, and the capsular fruit is obovoid, with an indefinite number of glabrous seeds. The two or three adenarias known are trees with opposite leaves and with axillary corymbiform and manyflowered cymes. Nearly all the parts are covered with dark punctiform glands. Very little different from Ademmiat is liris-

Fiæ, 396. Flaw r $\left.\begin{array}{c}n \\ 1\end{array}\right)$. lea secunda, a shrub of Columbia and Venezucla, but it has dentiform tongues alternating with its four or five sepals, and all the stamens are inserted quite at the base of the gynateium. Its ce:psular fruit is globular, with seeds equally glabrous. In Weorlfortin fluritmmtn, a shrub of India, China, Madagascar, and tropical castern Africa, which has been referred to the genus firister, there are also black glandular points on the greater part of the organs; but the flowers are not regular. The receptacular tube has an oblique superior opening, and the flower as a whole is bent. There are from five to seven dentiform valvate sepals, with as many small accessory tomgues and very small petals. The stamens are declimate, twice as many as the sepals, in two verticils, and the largest oppositipetalous. The fruit is a loculieidal bivalve capsule, with mumerous seeds, covered with hairs or papillae. 'Lhis genus also closely connects Imthrem with the fullowing type.

Cupheit (fig. 398-40t), which camot lut be considered a very near ally of the Salicarias, forms however a small group (Cuphecti) characterized by the constant irregularity of the flower. It has a receptacular tube traversed by longitulinal ribs, and dilated below and posteriorly to a more or less prominent spur. The mouth of

VOL. $\mathbf{~ i ̇ . ~}$
this tube bears six valvate sepals with an equal number of accessory tecth more or less developect. The six petals are nearly equal or oftener unequal, the posterior being most developed ; they may even be wanting. The audrocium is gencrally formed of eleven stamens, of which six are super-

Fig. ons. Fluriferom lranch.

Fir. 309. Flower with petals nearly equal.

Fig. 400. Flower with petals very unequal.
hundred), are ascending and anatropons. The placenta bearing them may become partly free in consequence of the more or less complete disappearance of the interlocular partition. The fruit is a capsule. All the Cupheas known are natives of the warm regioms of the new world. Their leaves are upposite, verticillate or rarely alternate, and the flowers, solitary or grouped in cymes, are axillary or raised to the interval of the two opposite leaves sitmated above.

In the following genera, the general organization of the flowers is primarily nearly the same as in the precenling types; but they are separated artificially by the fruit, instand of remaining enclosed in the receptacular tube, beiug finally partly exserted. It is so in Antherglimm, the flowers of which are otherwise very similar to
those of Adrmaria, Crislen, ete. They are tetramerous, without accessory tongues alternating with the petals, and have from twelve to an indefinite number of stamens. The ovary has four multiovulate cells, and the fruit is a septifragal capsule. They are woody plants of Mexico and the Antilles. Tetrataxis, a tree of Mauritius, has the same organs of vegetation and tetramerous but apetalous flowers, and only four alternisepalous stamens. Its fruit is a septifragal capsule. In Lagerstremia (fig. 405, 406), beautiful trees or shrubs of eastern Asia, the flowers, pentamerous or hexamerous, have the petals well deve-

Fig. 401. Long. sect, of synacium of open flower. loped, with a long narrow claw, an clegantly undulated limb, and an indefinite number of stamens. The Cuphea pubifiora.

Fig. 402. Flower.

Fig. 403. Diagram.

Fig. 404. Iong. sect. of flower
fruit, surrounded only at the base by the receptacular cupule, is free above: it is a loculicidal and 3-6-valved capsule, the numerous seeds of which are prolonged upwards in a membranous wing. The leaves are opposite or verticillate, and the flowers, often very beautiful, are grouped in ramified clusters of cymes. Duabanga is from tropical Asia and Oceania. Very near Laypistromia, it has a larger

$$
28-2
$$

and more open receptacle, from four to seven thick triangular and valvate sepals, an equal number of petals, very numerons stamens, aud an ovary with $t-8$ multiovulate cells. The capsular fruit supported by the receptacular cupule, is loculicidal and polyspermous. The seeds are small, seobiform, curved and irregularly winged. Luteromin may be considered a reduced type of the preceding genera. The small flowers (fig. 407-409) have only four parts, a diploste-

Lngerstramia indica.

Fig. 405. Flower.

Fig. 406. Long. sect. of flower.
monous andrecium, and four multiovulate cells in the ovary. But the receptacular cupule encircles only the base of the coriaceous capsule, which finally breaks in an irregular manner. In the flower

Lavesonia inermis.

Fig. 407. Flower.

Fig. 408. Floral receptacle.

Fig. 409. Long scct. of flower.
this cupule is lined by a glandular disk, which thickens, near the throat, to four slightly salient glonds, corresponding in pairs to the sepals, interior to the insertion of the staminal filaments, and four others, a little higher, situate within the petals. The fruit is polyspermons, and the secels, irregulaty pyramidal, have a thick spongy exterior enat, not prolonged to a wing. The only species known (L. inermis) is a glabrous shrub, with branches often spinons,
opprosite leares and infloreseenee similar to that of Layristromiu. It is believed to be a native of Arabia or of the neighbouring countries, Afrian or Asiatic ; it has been introduced into most tropical regions.

I'mplus (fig. 410, 411), wherwise little different from most of the preceding genera, belongis also to a small group (Pemphiderr), characterized by a variation in the mode of placentation. The latter is nearly basilar, that is, from the base of the internal angle of each ovarian cell rises a small support on which are borne a

Fig. 410. Flower ($\begin{aligned} & \left(\begin{array}{l}\mathrm{i}\end{array}\right) \text {. } \\ & \text {. }\end{aligned}$
Fig. 411. Long. sect. of flower. variable number of auatropous, ascending ovules. The flower is moreover hexamerous, with six accessory tongues in the intervals of the sepals, six petals resembling those of Laycrestiomiu, and twelve stamens, inserted at two different levels on the receptacular tube. The fruit is capsular and enclosed in the receptacle. P. acimula, the only species known, is a small shrub observed at mumerous points of the sea coast of tropical Asia and Oceania.

Lafoensia has the same mode of placentation as $P_{\text {empluis; ; for the }}$ two (incomplete) cells of the stipitate ovary have each a basilar placenta, charged with erect ovules. But the flowers are 8-12merous, with as many accessory tongues as sepals, and a larger, nearly campauulate receptacle. The fruit is a thick capsule, with seeds bordered by a wing. They are woody plants of tropical America, with opposite leares and beautiful flowers solitary or united in terminal clusters, composed of cymes. Physterelymma has very analogous flowers, but with eight parts and twent-four stamens, without tongues. The fruit is incompletely unilocular, with four multiovulate placente united in a basilar mass. The name of the genus is derived from the receptacular sac growing and persisting around the fruit after floration. I'. florite is a fine Brazilian tree with opposite leaves and the inflorescence of Letyenstremia. Diplusentom is from the same country; it much resembles Laformsin and

Thycosalymma; the flowers are hexamerous, with six tongues alternating with the sepals, a 12-androus androcium or formed of au indefinite number of stamens, a sessile ovary, a non-acerescent receptacle. The inflorescence is that of Lafoensa.

II. CRYPTERONIA SERIES.

Crypteromia (fig. 412-415), referred by authors to various other groups, ${ }^{2}$ appears to comprise somewhat abnormal Lutherntincert, whose flowers are regular and polygano-diœcious. The hermaphrodite flowers (fig. 412, 413) have

Crypteronia javanica.

Fig. 412. Hermaphrodito flower ($\frac{6}{1}$).

Fig. 413. Long. sect. of hermaphrodite flower. a cup-shaped receptacle, the margin of which bears five ${ }^{3}$ sepals and five perigynous stamens, alternating. Each is formed of a filament incurved in the bud, surmounted by a basifixed anther, united below by a glandular connective, dehiscing superiorly by a longitudinal cleft, marginal or more or less introrse. The gynæcium is composed of an ovary in greater part superior, with two or more rarely three cells (fig. 413), complete or incomplete, surmounted by a style with stigmatiferons extremity, slightly enlarged at the top. In the internal angle of each cell, sometimes near its exterior wall, sometimes more or less near the base, is a placenta ${ }^{4}$ bearing a great number of anatropons, transverse (fig. 415) or more or less ascending (fig. 413) ovules. In the female flowers, the gynmeium being the same, the stamens have sterile anthers. In the male flowers (fig. 41.1, 41.5), the receptacle is less

[^504][^505]concave than in the fumale of hermaphrodite flowers ; and the gynaecium, reduced to small dimensions, has, nevertheless, an ovary, with two parietal placentas with sterile ovules at the margin, and a short style not stigmatiferous at its enlarged summit. The fruit clothed at the base with the persistent receptacle and calyx, is a

Crypteronia leptostachya.

Fig. 414. Male flower ($\frac{8}{1}$).

Fig. 415. Loug. sect. of male flower.
globular loculicidal capsule with tro, more rarely three cells, and valves united above by the persistent style, charged at the middle of their iuternal surface or base with numerous narrow, elongate seeds, with suft external coat, attenuated at both extremities to a point or wing, and containing under a thin layer of albumen a fleshy embryo, with thick cylindrical radicle. C'rypteronia comprises trees or shrubs from the warm regions of India, Malaya, and the Philippine Isles. In the four or five species known, ${ }^{1}$ the leaves are opposite, petiolate, without stipules, simple and entire. The flowers, small and numerous, are in simple axillary or ramified terminal clusters.

With doubt we here provisionally place I 'silueylon, ${ }^{2}$ sometimes referred to the Myitucerp. It has polygamous or diecious flowers. In the male flower the receptacle is in the form of a shallow cup, bearing on its margin five or six scpals, at first imbricate, and an equal number of perigynous petals which fall carly. At the same level are inserted ten stamens, five of which are superposed to the petals and five alternate, with free filaments, and bilocular introrse authers. The gynæcinm is sterile though it has distiuct cells, placentas and ovules ; but the latter are very small and imperfect. In the female flower, in which the stamens are reduced to staminodes, the gyuwcium is fertile; the ovary, sessile or very shortly stipitate,

[^506][^507]is summounted by a style almost immediately divided into three or four clongate lobes, in the form of thick, flat, fleshy strips, obtuse at the summit, expanded, then reflexed on the top of the ovary; all their upper surface is covered with fine stigmatic papillic. In each of the three or four (com-

Fig. 416. Young female Hower.

Fig. 417. Long. sect, of young female Hower. plete or sometimes rather incomplete) cells of the ovary, there is an axile and multiovulate placenta. The fruit is a small berry nearly globular, accompanied at its base by the calyx, and the numerous seeds it encloses have a large flesily embryo. The only species ${ }^{1}$ of this genus is a shrub of the Mascarene Isles, the leavers of which, analogous to those of some Bixacere of the Fluromition series, are alternate, cutire, peminerved, thick, covered with finc glandular punctuations; the flowers, matractive, a little larger than those of ('rypteronin (fig. 416,417), are grouped in the axil of the leaves, in compound clusters of cymes.

III. AMMANNIA SERIES.

Ammmmun" (fig. 418-424) has given its name to a small series of this family, distiuguished (somerrhat artificially) by the smallness of their flowers, concave receptacle, generally smooth externally, petals nome or scarcely perceptible and by their organs of vegetation. They are small herhs, often aquatic, having ordinarily the habit of P'ortuluen, or C'ullitriche, or Ityrioplyyllnen, ete. In an indigenous species commonly known as $I^{\prime}+h^{\prime \prime}$ is $^{3} I^{\prime}$ uctule ${ }^{*}$ (fig. $418,41!$) the flowers are pentamerous or more generally hexamerous. The sub-

[^508][^509]campanulate receptacle, thin and membranous, is marginally contimuous with the six trimgular valvate lobes of the calyx, glandular at the summit; in the intervals are an equal number of accessory teeth, the origin of which is the same as in Sulficurin. To these teeth correspond an equal
number of small obtuse very caducous petals, which are sometimes entirely absent. Much lower, on the internal surface of the receptacle, are inserted six alternipetalous perigynous stamens formed, each, of an

Ammannia (Peplis) portula.

Fig. 418. Flower ($\frac{5}{1}$).

Fig. 419. Long. sect. of Hower. enclosed filament and a bilocular, introrse, didymous anther, dehiscing by two longitudinal clefts. The gynuecimu is free, formed of an enclosed tro-celled ovary, surmonuted by a short style with capitate stigmatiferous apex. In

the internal angle of each cell is a placenta supporting an indefinite number of anatropous ovnles. The fruit, enclosed in the persistent receptacle, is a membranous and polyspermous capsule, the seeds of which contain, under their thick coats, a fleshy embrro, with oval cotyledons and short radicle. In southem Russia there is a Prplis called I^{\prime}. Zurysthemien, ${ }^{1}$ which differs from I. portule ouly in the greater length of its style. A genus has becu made of it under the name of Middendorffin. ${ }^{2}$ Another $P_{\text {Peplis, }}$ in the United States, P. diandion, ${ }^{3}$ type of the genus Didiplis, ${ }^{4}$ is quite similar to our P.

[^510]portula, but has gencrally a tetramerous and tetrandrous flower. ${ }^{1}$ The true Ammannias, more confined to the warm regions of both worlds, often have the tetramerous flower of Dilliplis, with or without petals and with the accessory teeth of the calyx more or less developed. In some cases the flower has

Ammannia (Rotala) verticillaris.

Fig. 423. Flower ($\frac{5}{2}$).

Fig. 424. Long. sect. of flower. as many as seven parts ; in others again, there are only three, as in Rotala ${ }^{2}$ (fig. 423, 424). The length of the style varies much also between one species and another. The stamens may be the same in number as the sepals or double, or even less in number. Suffrenia (fig. 420-422), like Didiplis, may have only two stamens; and the petals, when they exist, are either very small or moderately developed. The dry fruit may open regularly, like every septicidal or septifragal capsule: this is the case in Tiotelu, Suffirmit, and Ameletia; ${ }^{3}$ but it may also open transversely or irregularly, as in Didiplis and "ryptutheca. It is on these variations that the three ${ }^{5}$ sections we admit in the genus 1 mmamin are founded. This genus comprises about thirty-five species, ${ }^{6}$ amuals or evergreens, often aquatic, with opposite or verticillate, rarely alternate leaves, axillary solitary flowers, accompanied by lateral bracteoles which are fertile when the flowers are collected in cymes or fets-flowered glomerules.

[^511]which the flowers are pedicellate with capsule opening transversely or irregularly; the other in which the flowers are solitary, sessile, with a valvicide fruit. We add a third section Icplis (including Didiplis).
${ }^{6}$ Roxb. Pl. Corom. t. 133.-Bl. Mus. Lugd.Bat. ii. 129, t. 44 (Cryptotheca), 135, t. 46, 47 ; 136 (Rotala). - Leder. Ic. Fl. Rass. t. 391 (Peplis).-Wignt, Madr. Journ. Sc. vii. 312, t. 20 (Nimnoia) ; Icon. t. 217, 260 (Rotala).Lioth, Nov. Sp. 162 (Sellowia),-Spreng. Syst. i. 519 (Winteria),-Bellard, Act. Taur. vii. 445, t. 1. fig. 1 (Suffienia).- Harv. Thes. Cap. ii. t. 189 (Suffrenia).-HArv, and Sond, Fl. Cap. ii. 515.—Griseb. Fl. Brit. W.-Ind. 270.-'Thw. Emum. Pl. Zeyl. 121, 122 (Ameletix, Rotala).Mre. Fl. Ind.-Bat. i. p. i. 614 (Tritheca, Rotala), 615 (Ditheca, Suffrenia), 616 (1melctia), 617

Rhyacophita ${ }^{1}$ differs very little from Ammannia. The flower is tetramerous and tetrandrous, with four petals, inserted in the hollows between the sepals. In R. repens, ${ }^{2}$ an Abyssinian species, the petals are small, and the dimerous gynecium, analogous to that of Ammunnia, is surrounded by a very small annular disk, with very slightly marked lobes. In the Indian species, R. Watlichiii, of which the genus Iyyliolythrum ${ }^{3}$ has been made, the petals are larger, exserted, and the lobes of the hypogynous disk, eight in number, are much more distinct. These differences, otherwise of little importance, serve to distinguish two sections in this genus, which is composed of aquatic herbs, like Myprimhyllom, which they resemble in habit, submergel, verticillate, lincar leaves, with flowers in terminal clusters, and accompanied cach by two lateral bracteoles which may be more or less raised on their pedicel.

Addxson ${ }^{1}$ clearly pointed out, in 1763 , in what respects the Salicaria family resembled the Myrtle, differing from it in the situation of the gynarcium. He even placed in it Burckea, of the Myptucece. A. L. de Jussieu ${ }^{5}$ republished the family nearly as Adanson conceived it, adding Acisanthera, of the Melastomacer, and Ciluni, of the Primulacere. Later ${ }^{6}$ he substituted for the name Sulticurime ${ }^{7}$ that of Lytherariect ${ }^{8}$ A. P. DE Candolle ${ }^{9}$ included in it twenty-seven genera, of which only thirteen are now retained as distinct. Lindley ${ }^{10}$ first gave the name Lyfleracce. Benthim and $1100 \mathrm{mer},{ }^{11}$ resuming the name Lythrerioce, admit thirty generat in this group, four of which are abnormal, viz. Punica, which we have restored to the Myitucele; ${ }^{12}$ Actinumtia, which we consider rather

[^512]
Abstract

anomalous Mrplustometeres ; ${ }^{1}$ Olinin, ${ }^{2}$ which we have made a series of Rhamnacecs, ${ }^{3}$ and Heteropyxis, ${ }^{4}$ quite unknown to us. We have, moreover, enumerated Somerrtia among the Myrturece, ant Strephus nema among the doubtful Rosacece. ${ }^{5}$ By considering Hydrolythrum as simply a section of the genus Rhyacoplita, and including Peplis and Dieliplis in the genus Ammannia, ${ }^{6}$ we have reduced the number

Abstract

${ }^{1}$ Notwithstanding their alternate leaves, because, as we shall see, the stamens are fundamentally constructed like those of this group. ${ }^{2}$ Thunb. Rcem. Aroh. ii. p. i. 5; Fl. Cap. 19 生. -DC. Prodr. ii. 41.-Endl. Gen. n. 6272.-B. H. Gen. 785, n. 29.-Crematostemon hort. (ex Endl.). This genus has been placed in different families, particularly in the series of Melastomacece, of Lythrariacece, and it has also heen considered (Arnott,-NAudin) as the type of quite a distinct family. 3 Bull. Soc. Linn. Par. (1876) 90. We have seen in tracing tho development of the flowers of this geaus (fig. 425, 426), that they have a hollow tubular receptacle, to the bottom of

Fig. 425. Flower (\ddagger).
which the ovary is adnate, and at the upper orifice of which are inserted four or five coloured sepals, as many small alternato petals, superposed to which are an equal number of stamens, with short bilocularintrorse anthers, surmounted by a glandular connective. The cells of the inferior ovary, $3-5$ in number, contain each 2 or 3 ascending ovules with micropyle exterior and inferior. Decatsne (Tr. Gen. Botan. 292) has described and figured the ovules as pendant, a grave error. The fruit is drupaceous, and the putamen encloses a seed with exalbuminous embryo, and the cotyledons are said to be unequally convolute. It is by this character especially that the Oliniece are distinguished as a tribe or series in the family of Rhamnacce,

Where we propose to place them. The short collarette, entire or obscurely lobed, found outside the perianth and often described as a calyx, is only a discoid prolongation of the receptacular tube, the formation of which is tardy. Olinia consists of Cape shrubs, with opposite coriaceous leaves, and flowers collected in trichotomous cymes. There is probably only one species, O. eymosa Thuns, Harv, and Sond. Fl. Cap. ii. 520.- O. capensis

Fig. 420. Long. sect. of flower (\%)
Link, Kl. et Ott, Ic. Pl. Rar. i. 6, t. 3.-O. acrminata Link, Kl. et Otr. loc. cit. 53, t. 21.Syderoxylon cymosum L. F. Suppl. 152.-Crematostemon capense hort.
${ }^{4}$ Harv. Thes. Cap. ii. 18, t. 128.-B. M. Gen. 785, n. 30. This genus, placed among the anomalous Lythrarice, with inferior ovary, is especially characterized by an imbricate calyx, with five lobes, petals with glandular punctuations, oppositipetalous stamens and alternate leaves. Its fruit is capsular ; the ovarian cells multiovulate. This plant, figurod by Harvey with poorly developed stamens and an imperfect ovary, is quite unknown to us.
${ }^{5}$ See vol. i. 424, 479.
${ }^{6}$ Bull. Soc. Linn. Par. (1876) 87.
of generie groups ${ }^{1}$ to twenty-two. The number of species is estimated at about two hundred and fifty.

The geographical distribution is very extented. Chupher, entirely American, comprises more than a third of the species of the family. Lythrem and Ammuntir, each giving a name to a series, are spread over a very vast area, in the new as well as in the old world, in tropical as well as in temperate regions. Peplis portult, in the north of Europe, corresponds to Ammumin, found in North America, Australi:, and the Cape of Good Mope. Sellictrin from Lapland and the north of Asia to Tasmania, the Cape, and southern Chili. Ten genera are exclusively American, and three are common to America and the old continent. Pemphis, represented by a single species, confurms to the litoral plants which resemble it; it is met with in a great part of tropical Occania and Asia. Lerrsonic, supposed to be a native of the north-east of Africa and of India, has heen introduced into many tropical countries. Most of the old world genera are limited to a few comutries. Trfratapis belongs exelusively to Manritius, Pailoxylon to the Mascarene isles, Cerypteromia to Malaya and the Philippines. Mhyurophilu and Troodfordin are common to central Asia and eastern Africa.

The characters absolutely constant in this family are very few. The concavity of the reecptacle of little thickness but very deep, the prigynous insertion of the cerolla, when it exists, and espectially the independence of the gynecium situated at the bottom of the receptacular carity, are about all that can be mentioned. By the last the
 to which they are allied by all other characters, and which, in all normal types, have, as is said, "the ovary adherent." The Rhiouphernceet with free ovary, that is the Menernisime, are in this respect nearer the Lytherniacerp with which several of them have been confoundel ; ${ }^{2}$ but in the latter, the ovules in cach cell are indefinite

[^513][^514]in number, and the Lyftrminceer have not the intra-axillary stipules of Mucarisice The Medustomnere are also near neighbours of the Lythrariacce; but the latter lave not the characteristic anthers of the former. There are, moreover, in the Lythereritueer, some characters which, though not constant, are very frequent. These are: the opposition of the leaves, the thimess of the receptacle and of the disk, which is ofter even wanting, the cousistence of the pericarp, often dry, thin and dehiscent, and the absence of albumen in the seeds. Other characters, less important and still more rariable, are : the number of parts of the flower and of the androcium, the presence of striee or ribs on the receptacle, the mode of imbrication or corrugation of the petals, the direction straight or curved of the floral tube, the situation of the placentas in the internal angle or at the base of the cells, the form of the fruit at maturity, naked or enveloped by the sac formed by the receptacle. On these variations are based the following series, very artificial doubtless, admissible in this family:
I. Lithree.-'Trees or shrubs, with regular or irregular generally hermaphrodite flowers, receptacle elongated to a tube or in form of a large cup, coriaccous or herbaceons, with longitudinal ribs or strix. Petals ordinarily developed, corrugate, of large size like the flowers themselves.-18 genera.
II. Cripteronies.--Trees or shrubs, with regular, polygamous, diocious flowers, petals none or but little developed, not corrugate, receptacle a shallow cup, smooth and rather thick. Fruit free.-2 genera.
III. Amannief.-Herbaceous plants, gencrally small, ereeping, often aquatic. Flowers seareely visible, petals none or small flat. Receptacle membranons, without strix or ribs.--2 genera.

Uses.-Most authors remark, with reason, that the properties of the I yflectriterer, often imperfectly determined, are extremely variable. Some are astringent and contain tamin; others resinous matter ; others again, irritant, resicant, purgative, romitive, or diuretic substances. Some contain a colouring principle; the flowers

Iyon, x. 201), given by the author as a new genus of Lythrariacece, and which appears to be a Crossostylis. Polomya of the same author (Mém. Scad. Sc. Lyon, x. 201), referred also to the Lythrariacece, is evidently (B. II. Gen. 776)

[^515]may have an agrecable or offensive odour. The common Salicaria ${ }^{1}$ (fis. :386-302) so common at the waterside and in so many countries, had formerly a certain reputation as an astringent, antidysenteric medicine; the root was more especially sought. A neighbouring species, Lythrum hyssopifolium, ${ }^{2}$ was formerly considered a vulucrary, anti-scorbutic, and aperitive. L. clutum, ${ }^{3}$ of the United States, is employed in the treatment of sores and ulcers. Several American Neseres are extolled as medicines. N. verticillatu, ${ }^{4}$ growing in marshes, is reputed to cure abortion in animals which feed upon it. N. syphilitica, ${ }^{5}$ to which the Mexicaus attribute many properties, has a diuretic, sudorific, and laxative juice. There is also in Peru a Cuphen "utisynhelitied, and C. mirrophymln ${ }^{7}$ is reputed to have the same virtues. There are likewise in this genus many plants with a viscous tenaceous juice, scereted by numerous glands on the surface of the stems and leaves. The Ammamnin have sometimes insipid, slightly fleshy leaves, used for the same purposes as purslain, but it would be imprudent to eat them raw. Such is A. portuld ${ }^{8}$ (fig. 418 , 419), considered edible in some countries. ${ }^{9}$ A. vesicatoria, ${ }^{10}$ on the contrary, is an acrid plant, of a strong chloric odour; its leaves are preferrel, in India, to cantharides, as producing a more rapid and less painful vesication. The Lagerstromias are magnificent ornamental

[^516][^517]plants, often cultivated in the open air in gardens in the sonth of Europe. L. indire' (fig. 40.3, 40f) is the most remarkable for its numerous varieties with pink or lilac flowers. L. Regince ${ }^{2}$ is scarcely less estermed in India. It is also a medicisal plant. Its roots are astringent and useful in the treatment of aphthæ. Purgative, drastic, and hydrogoguic decoctions are prepared from its bark, its leaves, and its flowers. The seeds are considered marcotic. From the bark of L. hirsutu ${ }^{3}$ are prepared dissolvent and reselutive phasters applied to sores. Womlomotice Itmibumte, an Asiatie and African species, is cultivated in our conservatories, where it thrives well. In India a jellow dye is extracted from its flowers. The most renowned of the Lythrariaceter as a tinctorial plant is Innesonim. inermis * (fig. 407-40!), believed to be a native of the north-east of Africa, aurl is cultivaterl in the east of Africa and all the west of Asia. Its numerons leaves are said to have a strong odour, ${ }^{5}$ and from its leaves is prepared the reddish-ycllow colour with which oriental ladies daub their hair, their cyelits, and especially the nails of their hands and feet. It is also a medicine recommended for wounds, icterus, ringworm, leprosy, aphthe ; ${ }^{6}$ it is rarely cultivated in our conservatorics. Many Cupheres with brilliant flowers may be sece in our gardens, cultivated in masses aud in borders, and some subshrubby American Nesters. There are also some Stalictrins which are somewhat ornamental. In Brazil Physoculymmen, ${ }^{7}$ Diptnsudton, and $L_{\text {cficensin, are remarkable for the beauty of their flowers, }}^{\text {ser }}$ and scarcely yield in this respect to Ten!erstimmin in the old world.

[^518]Belon says that the culture of this shrub in Egypt, which is exported in quantity to Constantinople, is a source of great revemue to the pashas. The leaves are also used for dyeing skins and stuffs. In Egypt the slaves were not allowed to dye with Henuc. Traces of it are found on the most ancient mummies. In Amboyna, Lahillardiere (Foy. i. 344) has seen this dye used, especially by the Chinese. Avicenne compared the properties of Henné with those of Dragon's Blood. Its roots alone are decidedly astringent. Bertholetet always believed the plant did not contain tannin.

- P. florida Pohl furnishes the Rosewood of Brazil estecmed for superior cabinet work (P ato rosa, Scbastiáo d' irruda).

GENERA.

1. Lythrum L.-Flowers hermaphrodite regular or sometimes irregular ; receptacle straight cylindrical, thin submembranous, externally longitudinally 8 - 10 -costate, lined with very thin disk, a little thicker at base and apex, often subuil, equal at base, not spurred or gibbous. Sepals $4-6$, inserted at top of tube, :"-angular, valvate ; accessory teeth same in number smaller alternating with petals erect or oftener patent. Petals $4-6$, alternating with sepuls anl inserted in the intervals, shortly or searcels unguiculate; equal or rarely (1/nisutis) unequal ; the 2 superior larger; imbricate, corrugate (sometimes 0). Stameus rarely 5, 6 (Anisutes), most frequently double the number of petals, inserted \gtrsim-seriately in tube of receptacle; the (npositipetalons sherter or sumetimes sterile imperfect; filaments crect; authers basifixed, enclosed or exsertel, introrse, --rimose. Germen sessile, free at bottom of receptacular tube ; disk very small (or (0) ; style terminal short or clungate slember, apex stigmatose obtuse or capitate hardly 2 -lobed. Ovules in 2 (complete or incomplete) cells ∞, anatropous, $2-\infty$-seriately ascending. Fruit cuclosed in receptacular tube, oblong, membrannus, 2-locular or, from incomplete septum, 1-locular, septicidally 2 -valvate or opening irregularly ; placentas finally subfree. Seeds ∞, angular or plano-convex smooth; cotyledons of exalbuminous embryo thick obcordate, 2-auriculate at base; radicle short conical inferior.-Herbs or more rarely small shrubs, glabrous or tomentose; branches 4 -goual or subulate; leaves opposite or verticillate, sometimes alternate, oblong or linear entire; Howers axillary, solitary or oftener in racemes and terminal rarely ramose bracteate glomeruliferous spikes. (. $1 / 1$ temp. regions.)See p. 429.
2. Pleurophora Dox. ${ }^{1}$-Flowers nearly of Lythrtm; tube of receptacle subeylindrical. Sepals 5-7, equal, valvate; accessory teeth same in number alternate short or spinescent. Petals same in number oblong, unguiculate. Stanchs ${ }^{2}-14$, more rarely $15-20$, inserted at buttom of receptacular tube; filaments finally exserted ;
${ }^{1}$ Edint. Nēw Phil. Journ. xii. I12.-Endl. Gen. n. 6150.-B. H. Gen. 779, n. 11.
 trically inserted a little above the base of the tube, somewhat obliquely compressed, by abortion 1-locular; style slender, at apex stigmatuse simple, generally not dilated. Ovules few (often t), inserted \therefore-seriately on parietal placenta, aseending; micropyle extrorsely inferior. Fruit capsular membranous, enclosed in receptacle, fewseeded. Seeds l-1, ascenting ; testa coriaceous ; cotyledons of subclavate embryo plano-convex, auriculate at base; radicle inferior rather thick.-Iterbs or shrulis divaricatcly rimose ; leaves opposite, linear or lanceolate, coriaceous rigid, often renose, sharp pointed; flowers spicate; bracts sub-4-seriate, imbricate, oftener 1-florous; hracteoles sometimes rigid, often inserted higher under the flower. ${ }^{1}$ (Chili, ${ }^{2}$)
:3. Nesæa Conuers. ${ }^{3}$-Flowers (nearly of Lythrum) regular; reecptacle much shorter subcampanulate or obconical straight, externally S-14-costate ; sepals $t-7,3$-angular-valvate ; accessory teeth same in number narrower. Petals $4-7$ (of Leythrimen). Stamens 8-14, inserted 2-seriately in receptacular tule ; filaments slenderexserted; authers introrse, various in form. ${ }^{4}$ Germen free, 2-6-locular ; style slender flexume exserted, at apex stigmatose capitate. Orules in cells ∞, inserted on placentia in internal angle on-seriate. Fruit capsular, enclused in receptacle, locnlicitally "- - i-salvate; valves septiferons, finally solute from placenta. Seeds so ; testar coriaceous ; cotyledons of exalbminous cmbryoplano-convex. Other characters of Lytherm. -IIerbs on undershuls; hameles 4 -gonal ; leaves opposite or 3 -nate ; entire; flowers ${ }^{5}$ in axils of leaves or bracts inserted in teminal raceme solitary or ofteucs cymse; peduncles sometimes more or less highly 2 -bracteolate. ${ }^{6}$ (Warm America and Africa. ${ }^{7}$)

[^519]4. Ginora L. ${ }^{1}$ - Flowers nearly of Vesere ; receptacle turbinate. Sopals 5, 6, ovately acute ; accessory teeth 0. Petals corrugately imbricate. Stamens 12-シ1, inserted in tuhe of receptacle ; filaments corrugate ; authers oblong, reuiform or hippocrepiform recurved. (xermen short depressed globose; cells oftener 4 ; style slender, finally erect exserter, at apex stigmatose capitellate. Ovules in cells ∞, inserted in axil of tumid placenta, ascending. Fruit girt at base with calyx, capsular, globose coriaccous, loculicidally 4 -valvate. Sceds on tumid placentas ∞, small obovately cuneate ; testa thick ; cotyledous of cxalbuminous embryo plano-convex auriculate; radicle short.-A glabrous shrub; ramules 1 -gonal; leaves opposite, entire petiolate; flowers ${ }^{2}$ axillary solitary pedunculate; peduncle under flower 2-bracteolate. (Cuba. ${ }^{3}$)
5. Dodecas L. ${ }^{4}$-Flowers nearly of Ciinnra, 4-merous; receptacle obeonico-suburceolate, thin. Sepals 4,3 -angular, valvate ; accessory teeth hardly perceptible or 0. Petals 4 , inserted in hollows, obovate, very thin, corrigate imbricate. Stamens $8-20$, inserted at middle of receptacular tube; filaments corrugate-plicate, finally exserted; anthers oblong introrse, finally erect. Germen free, enclosed in receptacle, t-locular; style slender plicate, presentiy erect, at apex stimmatose subentire. Ovules in cells ∞, iuscrted on thick placenta, ∞-scriate. Fruit capsular, finally sub-1-locular ; seeds ∞, inserted on spurionsly central placenta, ascending, falcate, scobiform; testa hispid, produced on both sides; cotyledons of slightly fleshy embryo phane lincar ; radicle terete.-Glabrous shrubs or small trees ; leaves "nposite entire; flowers ${ }^{5}$ axillary, solitary or few eymose, -parus ; leedicels under flower ${ }^{2}$-bractedate. (Shores of trop. S. America. ${ }^{6}$)
6. Adenaria II. B. K. ${ }^{7}$ - Flowers ucarly of (Ginorin, 4-5-merous;

Guill. et Perr, Fl. Seneg. Tent. i. t. 69, 70.Griser. Fl. Brit. W.-Tud. 271.-Tul. Aun. Sc. Nat. sér. 4, vi. 130.- Hienn, Oliv. Fl. Trop. Afi. ii. 470.-Harv. and Sond. Fl. Cap.ii. 517.Walp. Rep. ii. 103 ; v. 674 ; Am. iv. 688.
${ }^{1}$ Gen. n. 605.-B. H. Gen. 780, n. 14.-Ginoria Jaca. St. Amer. t. 91.-J. Gen. 331.-DC. Prodr. iii. 91.-Endl. Gen. n. 6155.-Genoria Pers. Synops. ii. 9.
${ }^{2}$ Bluish, generally showy.
${ }^{3}$ spec. 1, 2, of which 1, G. americana JACQ. (Rosa del Rio incol.) is most known.

[^520]receptacle obconical or subcampanulate. Sepals 4, 5 , 3-angular, valvate; accessory tecth 0. Petals 4, 5, insorted in intervals, clongate subspathulate. Stamens 8-10, 2-seriate ; the oppositipetalous a little longer; filaments inserted alternately higher on receptacle, or all above the bottom of the receptacle and there connate in a short scarcely prominent ring, finally exserted ; anthers ohbong ; comective sometimes incrassate. Cermen inserted at bottom of receptacle, free, rery short or mather loug stipitate, like the sepals and stamens covered with punctiform glaudules, 2-locular; style subeapitate shortly 2 lobed at apex. Ovules in cells (sometimes incomplete above) ∞, inserted ∞-seriately on thick placenta. Fruit capsular, partly or nearly quite enclosed by peristent calyx, finally suh-1-lucular; pericarp thin fragile; phacenta subfree. Ovules x, olomiate and nearly globular, narvower at lase; testa thick hard; cotylelons of somewhat fleshy embryo subplane; radicle short. Glabrous or tomentose trees; branches terete ; leares (with flowers and germens) dark glindularpunctuated, opposite, ovately or ohlong-acute membramous peminerved ; flowers ${ }^{1}$ axillary in umbelliform or corymbiform cymes." (Trop. Cent. America. ${ }^{3}$)
7. Grislea Lofri.- Flowers nearly of Admmin (larger), 4-5merous; sepals intermixed with as many aceessory teeth. Petals t,万), rather large or small, sometimes very narrow or 0 . Stamens $8-10$, inserted aromed base of gynectiom at bottom of receptacle. Other characters of Ademerin. ${ }^{3}$ Fruit capsular globose coriaceons, enclosed in receptacle. - A shab; halit and leaves of tedenmin; flowers in axillary subumbelliform cymes; bracts inserted at hase of pedicels, subfoliaceous. (Columbia, Venezuela. ${ }^{\text {. }}$)
\therefore Woodfordia salish. ${ }^{7}$ - Flowers irregular ; tube of receptacle oblique at base and mouth, slightly eurver. Sepals is $\overline{7}$, oftener 6 , contimums with tube, short, 3-minnlar, valvatt; aceessory tecth same in number minute. Petals sane in number inserted in hollows, rather large or very small (sometimes(1). Stamens 1011 , lectinate, \therefore-seriate, ja larger, oppositipetakus; filaments firee, springing
${ }^{1}$ Small, white or yellowish.
${ }^{2}$ Habit nearly of Decodas.
${ }^{3}$ Spec. 2, 3. Spreng. Syst. Veg. ii. 474 (An-therylium).-Hook. Icon. t. 116.-WALP. Rep. ii. 112.
${ }^{4}$ It. 245.-L. Gen. n. 474.-J. Gen. 331.Lamk. Dict. iii. 46 ; Suppl. ij. 853 (part).-DC. Prodr. iii, 92 (part).-SPach, Suit. «̀ Buffin, iv.
438.-Endl. Gen. n. 6156 (part).-B. H. Gen. 778, n. 7.
${ }^{6}$ Hather perhaps a section of Giislea, the insertion of the stamens somewhat different.
${ }^{6}$ Spec. 1. G. secunda LuFL. loc. cit. - H. B. IK. Nov. Gen. ct Sp. ri. 185.
${ }^{7}$ Par. Lond. t. 42.-B. II. Gen. 778, n. 8.Huok. $F l, I_{\text {Itd. }}$ ii. 572.
from small crown lining base of receptacle, iucurved at apex; anthers short, introrsely ${ }^{\text {a -rimose. Cermon enclosed, sub)glandular at base ; }}$ cells 2 , $\boldsymbol{\infty}$-orulate ; style at apex stigmatose vers minutely 2 -lobed. Capsule enclosed in receptacle, oblong membranous, loculicidally ${ }^{2}$ valvate. S'eeds ∞, mall, externally papillowely pilose; embryo, etc., of Lythrme.-A ramose shrub, more or less sprinkled with grey hairs and dark glanduliform spots; leaves opposite subsessile entire, white beneath ; stipules $\stackrel{9}{2}$, minute, very caducous ; flowers ${ }^{1}$ axillary, solitary or ofteuer cymose or glomerulate; bracts opposite. (I'rop. south-east. Asia, Malacca, trop. east. Africa. ${ }^{2}$)
9. Cuphea P. Br. ${ }^{3}$-Flowers irregular ; tube of receptacle elongate, (i-1:)-custate, at posterior base gibbous or spurred. Sepals 6, inserted in oblique mouth of tube, valyate; accessory teeth same in number (or 0). Petals 6 or 4 -" (sometimes 0), subequal or unequal ; the posterior larger. Stamens generally 11, 2-seriate ; 6 oppositipetalous smaller ; 5 alternipetalous; the posterior wanting ; filaments unequal (the posterior shorter) ; anthers small basifixed or sub-i.)dymous. ${ }^{*}$ Disk around germen short or oftener posteriorly produced to a descending spur-like glandule. Germen sessile, free at bottom of receptacular tube, incompletely 2 -locular ; posterior cell oftener smaller, sometimes sterile effete; style slender incurved, at apex stigmatose obtuse ${ }^{5}$ or capitate, obscurely 2-lobed. Ovules on placenta alnate to septum or more or less free above, ${ }^{6}$ ascending ; ${ }^{7}$ with micropyle extrorsely inferiur; either subdefinite (-4), or ofteus . Fruit enclosed in receptacular tube, straight or oblique, dry, indehiscent, or oceasionally dehiscent, generally sub-1-locular. Seeds $1-\infty$, inserted on spuriously free placenta, ascending, compressed smooth;

[^521][^522]cotyledons of exalbuminous embryo thick suborbiculate or obeordate, often auriculate at base; radicle inferior short conical or lobed.Small shrubs, uudershrubs, or oftencr herbs, sometimes viscous, glandular pilose; branches terete; leaves opposite or verticillate, sometimes alteruate, eutire peuniuerved ; flowers ${ }^{1}$ solitary or racemose; peduncle axillary, lateral or oftener interpetiolate, ${ }^{2}$ bracteolate. ${ }^{3}$ (Both trop. and subtrop. Americas. ${ }^{4}$)
10. Antherylium Romr and Vamb. ${ }^{5}$--Flowers nearly of Civisten, t-merous; tube of receptacle obconical. Sepals 4, valvate; accessory tecth 11. Petals 4, oblong, corrugately imbricate. Stamens 12-m, inserted at margin of thin disk lining tube; filaments free sleuder; anthers curved. Germen free at bottom of receptacle; cells 4 , complete or incomplete above, oppositipetalous; style slender flexuose, at apex stigmatose truncate. Ovules in cells ∞, inserted on thick placenta. Fruit capsular, at base stipate with calys, large nozzled above, membranous, sulb-l-lucular, septifragal ; seeds close minute.Glabrous trees or shrubs ; branches sometimes armed at nodes with 4. small spines ; leaves opposite or alternate petiolate entire ; flowers axillary cymose, spurionsly mbillate; pedicels under flower 2bracteolate. (Antilles, Mexico. ${ }^{6}$)
11. Tetrataxis Hook. F. ${ }^{\text {? }}$ - Flowers nearly of Antherylimm (or (iristri) apetalous, f-merous; calyx subcampanulate and externally vertically angularly alate between lobes, 5 -fid, valvate, more or less persistent. Stamens 4, alternating with lobes of calyx and inserted in the hollows within it; filaments thick free exserted; anthers oblong, 2 -locular. Germen free, sessile, t-locular, t-lubed above; style simple, at "pex stigmatose entire. Ovules in cells ∞, ∞-seriately inserted on thick placentas, incompletely anatropous. Fruit exserted

[^523][^524]capsular, septifragally 4 -valvate; seeds ∞, oblong minute; cotyledons of straight rather fleshy embryo oblong, subauriculate at base; radicle rather thick.-A glabrous shrub ; branches 4-gonal ; leaves opposite, clongate, entire, shortly petiolate; flowers (rather large) axillary few cymose ; ${ }^{1}$ pedicels 2 -bracteolate. (Nauritius. ${ }^{2}$)
12. Lagerstromia L. ${ }^{3}$--Flower's gencrally 6 -merons ; ${ }^{4}$ receptacle campanulate or turbinate, smonth, sulcate or angulate, sometimes alate (Ptronculymun ${ }^{5}$). Scpals 6,8 -angular, valvate ; accessory teeth same in number small (or 0). Petals 6 , iuserted in throat of receptacle, unguiculate, undulately crispate, contorto-corrugate in astivation. Stamens x, interior to petals; filaments free, sometimes very unequal ; anthers introrse, versatile, :2-rimose. ${ }^{7}$ Germen free sessile at bottom of reecptacle; cells 3-6, alternipetalous; style slender flexuose, at apex stigmatose capitellate. Ovules ∞, inserted in internal angle of cells, ofteu ascending. Fruit capsular, girt at base with receptacle, thick coriaceous, loculicidally 3-6-valcate; valves septiferous in the middle. Seeds ∞, sometimes few, compressed, alate above; cotyledons of exalbuminous embryo straight, curved or contortuplicate; radicle eylindrical, oftener inferior.-Trees or shrubs; ramules 4-gonal; leaves opposite or sometimes alteruate, petiolate, entire peminerved ; flowers ${ }^{8}$ in axillary and terminal racemes, often full, much branched, often 3-chotomous cymiferous, bracteate and \because. bracteolate. ${ }^{9}$ (Warm Asia, trop. Oceania. ${ }^{10}$)
13. Duabanga Hamilt. ${ }^{11}$-Flotrers (nearly of Leyerstramiit) 4-S-merous; receptacle widely cupular-turbinate. Scpals $4-S$, margimally inserted, thick, 3-angular, valvate. Petals same in number alternate and stamens ∞ (of Leterstromin). Germen adnate to

[^525][^526]bottom of reeeptacle, 4-8-locular; style elongate, at apex stigmatose capitately 4-8-lobed. Ovules in cells (complete or incomplete) in, asecnding, curver. Fruit capsular, seated in thick cupule of receptacle, coriaceous or crustaceous, loculicidally 1 - 8 -valved. Seeds very close small, oo-scriate, scoliform, falcate, narrow winged above; cotyledons of straight exalbuminous embryo oblong ("green spottel"); radicle terete.-Tall trees; ramules 4 -gonal; leaves opposite subsessile, cordate at base, nervose; flowers ${ }^{1}$ in terminal ramose and cymiferous racemes. ${ }^{2}$ (Trop. Asia and Occania. ${ }^{3}$)
14. Lawsonia L. ${ }^{4}$-Flowers 4 -merns ; receptacle shortly turbinate or subhemispherical. Sepals 4, 3-angular, valvate ; areessory teeth 0 (ur scarcely perceptible). Petals 4 , altermate, exterior to disk, corrugately imbricate. Disk lining receptacle and unequally erenate at margin ; 4 crenatures oftener larger, interior to base of petals amd there rather prominent. Stamens S, in pairs opposite to sepals; filaments thick subulate corrngately plicate, finally exserted ; anthers ellipsoid, 2 -rimose. fermen subghonse free ; cells 4 , orpositipetalous; style slender flexuose, finally exserted, at apex stigmatose capitate. Ovules in cells ∞, inserted on thick placenta, ∞-seriate. Fruit capsular pea-shaped, stipate at base with receptacle and calyx, glubose, finally unequally dividing. Seeds os, obeuneate, unequally 4-gomal ; coats externally thick spongy, internaily hard; cotyledons of tleshy embryo suberbicular flat; radicle subeylindrical often accum-hent.-A glahrous shrub; branches marmed or often spinesent; leaves opmosite ovato-lauceolate entire; flowers ${ }^{5}$ collected in axillary corymbiform cymes. (Trop. Asia, north-east. Africa. ${ }^{6}$)
15. Pemphis Furst:-Flowers 5 - (i-merous; receptacle (nearly of (Giristo (campmulate-turbinate, 12-costate. Sepals 3-imgular; accessory teeth same in number, narrow. Petals 5, 6. Stamens $10-$ 12,2 -seriate. Germen inserted at bottom of receptacle, shortly

[^527]stipitate, 3-locular; style erect, at apex stigmatose capitate. Ovules in cells ∞, sometimes few, inserted on basilar placenta in angle of cell, ascending. Fruit capsular enclosed in receptacle, coriacenus, finally circumscissus or irregularly dehiscent, sub-l-locular. Sceds inserted on basilar placenta on, imbricate, ascending ; testa cxpandol to thick wing; cotyledons of exalbuminous embryo plano-convex rather thick, auriculate at base ; radicle inferior terete.-A ramose, sericeo-pilose or subglabrous shrub; leaves opposite entire rather thick; flowers ${ }^{1}$ axillary solitary; peduncles 2-bracteate. (Asim, warm shores of Africa and Oceania. ${ }^{2}$)
16. Lafoensia Vindell. ${ }^{3}$-llowers 8-12-merous; tube of receptacle campanulate coriaccous. Sepals 8-12 ; accessory teeth same in number alternate, often small or searecly perceptible. Petals same in number, inserted in hollows, unguiculate, corrugate, inflexed, finally erect or patent. Stamens double in number of petals, inserted below middle of receptacle, often spuriously 1 -seriate; filaments loug-subulate, oftener contorted iu bud, finally far exserted ; anthers introrse versatile, 2 -rimose. Germen stipitate, 2 -locular; dissepiment more or less incomplete; style very long-plicate, finally exserted, at apex stigmatose capitellate. Ovules in cells ∞, erect, oblong, inserted on thick basilar placenta, ∞-seriate, anatropous; micropyle extrorsely inferior. Capsule corticose, at first enclosed in receptacle, oblong, loculicidally 2 -valvate, or sometimes opening unequally. Seeds oo on basilar placenta, imbricate, girt with a wide wing ; cotyledons of exalbuminous embryo straight suborbiculate, auriculate at base; radicle short inferior.-Glabrons trees or shrubs; leares opposite entive, glandulose to apex; flowers ${ }^{+}$axillary solitary or in more or less regular terminal cymes; bracteoles $\ddot{\sim}$, sometimes (P tychodon ${ }^{5}$) longer persistent. (Tiop. south. America. ${ }^{6}$)
17. Physocalymma Pohl. ${ }^{\text {T}}$-Flowers nearly of Lafoensia; sepals

[^528][^529]8, valvate; accessory teeth 0 or searecly perceptible. Petals 8 . Stamens 24, spurinusly 1 -seriate; filaments inserted at hottom of receptacular tube above margin of thin disk; anthers curved versitile. Germen incompletely 1-locular; placentas basilar, s.ovulate. Capsule enclosed in widened tubular or ventricuse receptacle, finally sub-1-locular, "2-valvate, poly:permons.-A branched tree; ${ }^{1}$ leaves opposite entire, rather seabrous on both sides ; flowers in loose compound oppositely-branched racemes; flowers ${ }^{2}$ surrounded by 2 , large, widely-rotundate concave bracteules enclosing the bud. ${ }^{3}$ (North Brazil. ${ }^{4}$)

18? Diplusodon Poml.5-Flowers nearly of Lafoensin, 6-merous; receptacle subcampanulate. Sepals 6, 3-angular, valvate; accessory teeth same in number alternate subulate (or sometimes very small). Petals 6, enrrugately imbricate. Stamens $1:-x$, pluriseriate, inserted at or below middle of receptacle; filaments sleuder subulate ; anthers arcuate or hippocrepuform. Germen enclosed by receptacle ; cells 3 , very imperfect; placentas basilar (of Luffornsia), ∞-ovulate. Capsule enclused by receptacle, loculicidally 2 -valvate. Seeds ∞, crect, imbricate; testa alate; cutyledons of exalbuminous embryo auriculate at base; radicle short inferior.-Shrubs or uudershrubs, sometimes handsome; leaves opposite or verticillate, subsessile entire, $3-\infty$-costate ; flowers ${ }^{6}$ axillary solitary or terminal and com-

II. CRYPTERONIEA.

19. Crypteronia Bre- Flowers polygamo-dieccions apetalous. Nale flower: receptacle cupuliform. Sepals 4, 5, 3-angular and stamens as many alternate, perigynously inserted at margin; filaments incurved in bud, finally straight exserted ; authers basifixed subdidymous, at apex introrsely or sublaterally rimose; connective
[^530]Terhandl. der Bot. Ter. d. Prov. Brandenb. (1874) 10, 23.-Diplodon Spreng. Gen. n. 1963.Friedlandia Cham. et Schlchte, Limea, ii. 348. -Dubyaa DC. Diss. ined. (1827).
${ }^{6}$ White, pink or yellow.
${ }_{7}$ Spec. $30-40$. A. S.-H. Fl. Bras. Mer. iii. 143, t. 188, 189.-Pgepp. et Endl. Nov. Gen. et Sp. ii. 66, t. 192.-Walp. $R(p)$.ii. 112 ; v. 675.
glandular at base. Germen in great part superior ; cells 2, or more rarely 3 , complete or incomplete; ovules ∞, parictal or subbasilar, ascending or transversely horizontal ; style erect cylindrical, sometimes divisible to apex; at apex eapitate stigmatose. Anthers of female flower sterile. Receptacle of male flower scarcely concave; germen small cuclosel; style short; placentas parietal, margiually ∞-ovulate ; ovules minute sterile. Fruit girt at base with receptacle and persistent scpals, capsular, loculicidally 』, 3-valvate; valves connected by perisistent style, opening laterally. Seeds ∞, elongate; testa loose membranous, produced on both sides to a wing sometimes linear; with thin layer of albumen; cotyledons of cyliudrical fleshy embryo shorter than thick radicle.-Branching trees; leaves oppor site, simple entire petiolate exstipulate; flowers (small) in axillary simple or terminal ramose racemes. (Eust Indiu, Mratuyn, Philippine Isles.)-See p. 438.
20. ? Psiloxylon Dop.-Th.-Flowers polygamo-diœcious; receptacle cupuliform. Scpals 5, 6, altcruate, inserted at margin, imbricate, presently not contiguous. Petals it, 6 , alteruate, inserted in hollows, imbricate, articulate at base, deciduous. Stamens 10-1:?, inserter 2 -seriately with petals; filaments free exserted (in female flower short subulate sterile); anthers introrse, versatile, 2 -rimose (in female flower (1). Gynæcium (in male flower small sterile) inserted at bottom of receptacle free; germen 3-4-locular; style short erect, presently 3-4-lobed; lobes compressed, much reflexed at top of germen, internally densely and thinly stigmatose-papillose. Ovules in cells ∞ (in male flower very small sterile), anatropous. Fruit globose baccate, girt at base with receptacle, cromned with style. Seeds on, small; testa caucellate; cotyledons of exalbuminous embryo thick plano-convex; radicle terete.-A small tree; leaves alternate, entire and coriaceous, penninerved, pellucid-punctulate; flowers in shortly racemiform or corymbiform (spurious?) cymes. (Mauritius, Bourbon ?)-See p. 439.

III. AMMANNIE x.

$\because 1$ Ammannia Itusst.-Flowers hermaphrodite; receptacle campanulate, turbinate or tubular, lined with thin disk (or 0). Sepals \& 8 , inserted at margin of receptacle, 3-angular, valvate; accessory
treth as many alternate, sometimes very small (or 0). Petals 4-S, inserted in hollows, seldom large, generally small or very fugacious (sometimes 0). Stamens equal in number and opposite to petals, more rarely 2 -verticillate and double in number, or sometimes 2,3 ; filaments more or less elongite, inserted within receptacle; anthers 2-dymous, introrsely 2 -rimose. Germen imbedded at bottom of receptacle, free, l-5-locular; septa sometimes evaneseent; style erect, slender or rather thick, enclosed or exserted, at apex stigmatose capitate subentire or oltuse. Ovules in cells ∞, oftener ∞ seriate. Fruit girt with receptacle, enclosed or exverted, capsular, dehiseing septicidally or septifragally, sometimes breaking irregularly. Seeds ∞, small angular' cutyledons of cxalbuminous embryo thick, orbicular or elliptical, often auriculate at base ; radicle short straight. - Herbs generally small, sometimes creeping, oftener anmual, sometimes aquatic ; stem ofteuer 4 -gonal ; leaves opposite or verticillate, rarely alternate, entire ; flowers small axillary, solitary or cymose or glomerulate, gencrally few. (ill warm and temp. icigion..)-See p. 440 .
22. Rhyacophila Inucist.-Flowers nearly of Ammannin, 4merous; receptacle campanulate. Sepals 4, valvate; accessory teeth as many small (or 1)). Petals 4, oblong, rather large (Hytrolythomm) or minute. Stamens 4 (of Ammunin). Germen 2 -locular, ∞-ovulate; style short, at aluex stigmatose capitate. Disk hypogynous short or rather large (Itydrolythrom) mequally lobed. Capsule seeds and embryo of Ammennin.-Small aquatie herbs; leaves verticillate crowded linear; flowers in terminal racemes naked at base ; bracts and bracteoles narrow or setaceous, sometimes more or less adnate and raised with the flower. (India, Abyssinia.)-See p. 443.

LVIII. ONAGRARIACEN.

T. (ENOTIIERA SERIES.

This family owes its name to Onagra (fig. 427-429), the best known species among us of the gemins (Ehntlierte. Its flowers are regular and hermaphrodite. The receptacle has the form of a very lung gourd, the bottom of which euvelopes the ovary, quite inferint, and is prolonged upwards in a very long and narrow tubular neek, dilated above and bearing on the margin of its orifice the perianth and androcium. It is throughout lined with a disk, a thin glandular layer, corred with hairs, a little thickened near its opening and especially immediately above the summit of the orary. The calys is formed of four sepals,? two lateral, an anterior and a posterior, valvate in prefloration. With them alternate four petals, sessile, and contorted in the bul. The andrecium is composed of eight stamens inserted close to the corolla aud forming two verticils. Four are superposed to the sepals and four, a little shorter, to the petals. The tilament is free and the anther versatile, bilocular, introrse, dehiseing by two lougitudimal clefts. ${ }^{3}$ The ovary, inferior, has four oppositipetalous cells, and is surmounted by a loug slender style, the stigmatiferous extremity of which is divided into four large conical lobes. In the internal angle of each cell is a longitudinal placenta, charged with anatropons orules, obliquely ascending, with micropyle turned

[^531][^532]outwards and downwards. After floration, every portion of the flower situated above the ovary is detached, and the fruit crowned

Fig. 4ㅇ. Ihagram.

Fig. 429. Long. sect, of flower.

Enothera biennis.

Fig. 427. Floriferous branch $\left(\frac{2}{3}\right)$.
with a sear, is a loculicidal capsule, the valves of which separate from top to bottom of a central columm. The seeds, numerous, irregularly compressed, enclose a fleshy embryo, with conical radicle, most frequently inferior.

All the Enotheras whose flower and fruit have the essential characters of Oncyich have been rauged in a section Eumenthero. ${ }^{1}$ Those called Meriolix ${ }^{2}$ (T. servulata) have a little shorter receptacular tube and a stigma dilated in the form of a disk. The petals are not entire. In Megapterium ${ }^{3}$ (E. macrocarpa, missouriensis), the receptacle is dilated around the fruit in large and thick vertical wings. ${ }^{4}$ Taraxia ${ }^{5}$ (W. ovata, Nuttallii, etc.) has also sometimes (E. graciliflora) winged fruit. The receptacular tube is long and slender ; the stigma is capitate, the fruit sessile and the stem very short. Cratericarpium ${ }^{6}$ (E. subulata) has the characters of the preceding sections, with a 4 -dentate stigma, stamens with small anthers and fruit

Fig. 430. Flower. dilated at the summit. Hartmannia ${ }^{7}$ (F. rosen, tetraptera), like Ciaterimpium, is from South America. The fruit is often enlarged above, and the stigma is iceply divided into fuur lubes. The seeds are contained in distinct eavities of the pericarp.

Boistluralia ${ }^{8}$ and Cindetia, by some distinguished as genera, have been, by others, referred to this type as simple sections. In the former, the receptacle rises above the ovary forming a fumnel-shaped cup the height of which is nearly that of the ovary itself. In fiodetic, ${ }^{9}$ this open portion is shorter and especially extends a less distance downwards. ${ }^{10}$ In both the extremity of the style is divided into

[^533]number of Combretacece with winged fruit.
${ }^{5}$ Nuti. ex Torr. et Gr. Fl. N. Amer. i. 506. -Wats. luc. cit. 588, 605.-Pramulopsis Torr. et Gr. loc. cit. 507.
${ }^{6}$ Spach, Nowv. Ann. Ifus. iv. 397.
${ }^{7} \mathrm{Spach}^{2}$ Nowv. Amu. Mrus. iv. 397 ; Suit. à Buffon, iv. 370.
${ }^{8}$ Spaci, Nouv. Ann. Mues. iv. 327, t. 31 ; Suit. à Buffon, iv. 383.-Endl. Gen. n. 6118.-Wats. luc. cit. $578,600$.
${ }^{9}$ Spach, Nouv. Ann. MLus. iv. 326, t. 39 ; Suit. is Buffon, iv. 386.-Wats. loc. cit. 577, 596; Geol. Surv. Calif. Bot. i. 221.
${ }^{10}$ By this character, Godetio is intermediate between Boisdurulia and Sphcerostigma, and appears, consequently, inseparable from either.
four short lobes, and the capsular fruit has coats of little thickness.

Spharostigma (fig. 4.31) comprises Enotherte, in which the flowers, small in size, have a style with the stigmatifcrous summit enlarged to a head spherical or nearly so. The ovary is surmounted by a prolongation, very short or cell almost nil, of the receptacle a little dilated at this point and bearing on its

Enothora (Sphcerostigma) micrantha.

Fig. 431. Flower. margin the perianth and androcium. The ovary, four-celled, multiovulate, is narrow and elongate, and the seeds, ascending, are finally uniseriate. ${ }^{3}$

In Eulobus ${ }^{4}$ californicus, hitherto retained as a separate genus, the flowers are those of Enothera of the section Splucerostigma, with the superior orifice of the receptacle furnished with a glandular disk. The ovary fills nearly all the receptacular cavity. The fruit, four-celled with ascending seeds, is also similar to that of Splumptigme, but it breaks open at maturity. ${ }^{5}$ We cau make this plant therefore only a section of the genus Chothera.

Thus constituted ${ }^{6}$ this gemus contaius about a hundred species. ${ }^{7}$ They are amual or evergreeu herbs, or exceptionally undershrubs, rare in tropical regions, abundant in North and South America, especially in the west; a single species (E. tusmmiett) is from Van

[^534][^535]Diemen's Land. The leaves are alternate, and the flowers ' are solifary in the axils cither of the leaves or of bracts at the extremity of the branches, so as to form elongate or capituliform spikes.

In Gayouphtum, ${ }^{2}$ sleuder annual herbs of Chili, Peru, and especially the western regions of North America, the flowers, small and tetramerous, are constructed like those of the Ewutheros, whose receptacle does not extend beyond the summit of the ovary, particularly like those of Eupolus and Sipherostigme; but the ovary has only two cells, aud the capsule opeus longitudinally in four pannels. Two of them correspond to the margins of the interlocular partition, and two larger to the back of the cells. The former bear at the middle of their internal surface the remains of the partition, the central portion of which generally separates finally in the form of a column from the peripherical portions. The seeds, in construction like those of Onagru, ${ }^{3}$ have a smooth or papillose surface. The leaves of Guyoplytmm are altornate, linear, nearly always entire, rarely dentelate or crenclate. The flowers ${ }^{\star}$ are axillary, solitary, sessile or supported by a short peduncle. About half-a-dozen species are distinguished. ${ }^{5}$

Ludwigia is very near Enotheru; it has the flower of those in which the receptacular tube is not prolonged beyoud the ovary, but bears immediately above its summit, crowned with epigynous glands, the perianth and andrœcium. The number of floral parts is often four or five, more rarely three or six. The sepals are valvate, and the petals, more or less developed, may be wanting in some species. The stamens are often duuble the sepals in number, and superposed half to the latter and half to the petals. This is the case in the

[^536]Gertn. Fruct. i. 158, t. 51.-DC. Prodr. iii. 58. -Spach, Suit. à Buffon, iv. 340.-Endl. Gen. n. 6110.-B. H. Gen. 788, n. 4.-Hoor. Fl. Ind. ii. 588.-Nematopyxis Mıq. Fl. Ind.-Bat. i. p. i. 630.-Isnardia L. Gen. n. 156.-Gertn. Fruct. i. 158, t. 31.-Lamk. Dict. iii. 313 ; Suppl. iii. 187; Ill. t. 77.-J. Gen. 333 ; Amn. Mus. iii. 473. -DC. Prodr. iii. 59.-Endl. Gen. n. 6111.Dentia Pet. Gen. 49, t. 49 (1710). This last name having priority, ought in fact, to be preferred to all others. (See H. Bn. Bull. Soc. Linn. Par. 101.)

「The pollen has "seed̉s united in fours, each presenting three round umbilics (Jussieua erecta) " (II. Moul, Anm. Sc. J̌at. sêr. 2, iii. 332).
species of which the genus Jussient ${ }^{1}$ has been formed. The oppositipetalous stamens are there the smallest, ${ }^{2}$ and sometimes they even remain sterile. In one species of this geuus found in Europe, L. palustrix, better known under the name of Ismudim pulustrix, the petals, four in number, are little developed, and with them alternate normally four epigynous stamens; but here and there may be observed besiles in their intervals, one or two stamens which may be fertile. In the true Luduigin, common especially in America, the oppositipetalous stamens are normally wanting ; when they here and there exist, they are represented only by slender and sterile filaments. The genus Ludurigin, thus understood, ${ }^{3}$ is moreover distinguished from Enothera by its fruit, which, instead of being loculicidal, is poricidal or, more generally, septicidal. They are evergreen or annual herbs, neariy always aquatic, rarely shrubby at the base. The leaves are alternate or opposite, accompanied by stipules but little developed; the fluwers ${ }^{4}$ are ordinarily axillary, accompanied or not by a bud superposed to them, and they bear, at a greater or less height, on their peduncle or on their ovary, two lateral bracts, sometimes foliaccous. ${ }^{5}$ This geuus, abundant especially in all warm countries, is however represented in temperate North America and even in Europe. It comprises about forty species," though nearly double that number have been described.

Clurkin ${ }^{7}$ is distinguished from Onagra and Ludurigia only by
${ }^{1}$ I. Gen. n. 538.-J. Gen. 319.-Lamk. Dict. iii. 330 ; Suppl. iii. 198; 1ll.t. 280;-DC. Prodr. iii. 52.-Spach, Suit. à Buffon, iv. 340.-Endh. Ger. n. 6109.-B. H. Ger. 788, n. 3.-H. Bn. Payer Fam. Nat. 373.-Martins, Mém. sur les Jussica [1866], cum tab. 4.- Ноoк, Fl. Ind, ii. 587.-Cubospermum Lour. Fl. Cochinch. (ed. 1790) 275.-Vigiera Velloz. F3. Flum. ii. t. 73, 74.-Corynostigma Presl, Epim. 218. (A great many authors have written Jussicue or Jussia.)
${ }^{2}$ They are finally more exterior than the large alternipetalous stamens, and each is accompanied within its base by a lobe of the epigynous disk in the form of a crescent with concavity exterior. Here and there oppositipetalous stamens, $1-3$, are observed in the trimerous flowers of a curious plant from Senegal which De Candolle (Mém. Onagrar. [1829] 7, t. 2; Prodr. iii. 58) named Prieurca, and which by some has been considered an abnormal form of Jussicr, by others of Ludwigia; which unites still more closely the two types. (See H. BN. Bull. S.c. Linn. Par. 102.)
(3 Ludwigla, $\quad\left\{\begin{array}{l}\text { 1. Luduigiaria (DC. not L.). } \\ \text { 2. Dantia (Pet.). } \\ \text { S. Jussion (L.). }\end{array}\right.$
${ }^{4}$ Yellow, sometimes rather large.
${ }^{5}$ The axillary bud may be developed. (See H. Bn. Adansonia, i. 182.)
${ }^{6}$ Gren. et Godr. Fl. de Fr. i. 585 (Isnardia). -A. S.-H. Fl. Bras. Mer. ii. 253, t. 131-133 (Jussican).-1H. B. K. Nov. Gen. et Sp. vi. t. 530533 (Jussican).-Wıaнт, Ill.t. 101 ; Ic. t. 762.Thw. Enum. Pl. Zeyl. 123.-Franch. et Sat. Enum. Il. Jap, 169.-Ourv. Fl. Trop. Afr. ii. 488 (Jussica), 490.-Torr. et Gray, Fl. N.Amer, i. 520 (Jussicea), 521.-Walp. Rep. ii. 72 (Jussiča), 74 ; ii. 664 ; Ann. i. 290 ; ii. 531 ; iv. 675.
${ }^{7}$ Pursh, Fl. Amer. Sept. i. 260, t. 11 (Clarctia). -Nutt. Gen. i. 249.-DC. Prodr. iii. 52.Spach, Nouv. Ann. Mus. vi. 395 ; Suit. à Buffon, iv. 394.-Endl. Gen. n. 6119.-B. H. Gen. 789, n. 5.-Phocostoma SpaciI, S. à Buffon, iv. 392 ; N. Ann. Mus. iv. 327.-Gruropsis Presl. Epim. 219 (₹).-Opisanthes Lilja, Linnaa, xv. 261.
characters of little importance. The four petals are unguiculate iustead of sessile, and most frequently three-lobed ; but this character s not absolutely constant. The fruit is capsular and loculicidal. In the Clarkias proper, the receptacle is but slightly prolonged in a funnel above the ovary (fig. 432, 433), as in Ludwigia and some species of Enothera, whilst in Eucharidium, ${ }^{2}$ often considered a distinct genus, it is, like that of most Onagras, prolonged in a long and slender cylindrical tube. The andrecium is diplostemonous ; but the four oppositipetalous stamens are often small and sterile. The six species ${ }^{3}$ of this genus are annual herbs of north-western America;

Fig. 432. Flower Fig. 433. Trans. without corolla. sect. of ovary. they have alternate, elongate leaves, and axillary sessile and solitary flowers.

L'pitoliem and Katnserheria have often been placed in a small separate group on account of this peculiarity, in itself of little importance, that their ascending seeds have their chalazic region charged with a long bunch of hairs (fig. 436, 437). In Zunschneria, ${ }^{4}$ the receptacle is dilated, as in certain Enotheros, in a funnel-shaped tube sumounting the orary and bearing at its lower part eight glamls, four of which are aseending and four descending. ${ }^{5}$ Z. califormicu, ${ }^{6}$ the only species, is subshrubby, with alternate sessile elongate leaves, and pretty axillary and sessile flowers. In Epilobiums (fig. 434-437), on the contrary, the receptacle is arrested, as in

[^537][^538]Lucluigia, at the level, or may fall short, of the summit of the ovary. The flowers are tetramerous, regular or uearly so, 'with cight stamens, ${ }^{2}$

Epilobium spicatum.

Fig. 431. Flowrer.

Epilobium spicatum.

Fig. 436. Seed ($\frac{9}{5}$).

Fig. 135. Dehiscing fruit.

Fig. 437. Long. sect. of seed.
the filaments of which are somewhat dilated at the base and deflexed, ${ }^{3}$ and the slender style terminates in a stigmatiferous head, enlarged in mass or divided into four lobes of very variable form. The fruit is loculicidal and four-valved, and the seeds are finally borne on a central column, free or nearly so. About fifty species

Spach, Suit. à Buffon, iv. 396.-Lysinachion TAusch, loc. cit.-Crossostigna Spacy, Nouv. Ann. Mus. iv. 328.
${ }^{1}$ In the section Iysimachion (DC.).
${ }^{2}$ 'The pollen has 'seeds loosely united four to four; papillæ large, E. montanum, E. hirsutum" (H. MoHL, Amn. Sc. Nat. sér. 2, iii. 332).

[^539]of Epilobinm are described, from all cold and temperate regions of the globe; they are herbaceous or subshrubby, with alternate or opposite leaves, entire or dentate, and axillary (pink, white, or yellow) flowers, solitary or collected at the ends of branches in spikes or in clusters with short pedicels.

Houly, ${ }^{1}$ elegans is a slurub from the warm parts of Mexico, the flower of which is closely analogous to that of the Enotheras with long receptacular tube, a little dilated above. There its margin bears four coriaceous and valvate sepals, four petals and eight exserted stamens with long introrse authers. The gynecium is that of an Onagra, and the style terminates in a large stigmatiferous ball. In each of the ovarian cells (often incomplete) are numerous ascending ovules, which become as many imbricated seeds, with superior wing, in the capsular woody loculicidal fruit. The leaves are alternate, rarely subopposite, petiolate, tomentose, and the large flowers ${ }^{2}$ are axillary, sessile, and solitary. ${ }^{3}$

Fuchsia ${ }^{4}$ (fig. 438, 439) may be considered Hauya with fleshy fruit. The berry encloses a small or large number of reniform or angular seeds. The receptacular

Fig. 438. Flower. tube surmounting the ovary is very variable in form, cylindrical, or dilated from bottom upwards, or enlarged to a bowl. The flowers, tetramerous, have coloured sepals, more or

[^540][^541]less fleshy, and petals sessile and contorted. In Shinnera formerly generically distinguished, the petals are small and sometimes even

Fig. 439. Long. sect, of flower. wanting. When they exist, they are either, as in Fuchsia proper, ${ }^{1}$ contorted and contiguous, or expanded as in Eucliandra. ${ }^{2}$ The latter has, moreover, polygamous flowers. 'These variations have served to arrange in three different sections, the species, about forty in number, constituting the genus Fuchsia, which are shrubs or small delicate trees, sometimes subshrubby plants from Mexico, South America, chiefly the western parts, also from New Zealand, with opposite, verticillate or alternate leaves, generally petiolate, eutire or dentate, and with elegant flowers, ${ }^{5}$ axillary, solitary or fasciculate, more rarely united in corymbs or terminal clusters, simple or compound, sometimes long and flexible, charged with small cymes, with the peduncles or floral pedicels generally loug slender and pendant.

[^542][^543]
II. GAURA. SERIES.

Goura ${ }^{1}$ (fig. 440-442) most frequently has flowers with four parts; they are hermaphrodite. The receptacle has the form of a long narrow gourd lodging the ovary in its largest portion and prolonged above it in a narrow neek, ${ }^{2}$ the upper opening of which bears four

Fig. 440. Inflorescence.

Fig. 441. Flower.

Fig. 442. Long. sect. of flower.
membranous valvate sepals, ${ }^{3}$ and the same number of sessile petals, imbricate or contorted in the bud. The stamens, inserted with the perianth, are double the petals in number; four superposed to them and the other four alternate. The filaments are free, often declinate; the base is dilated internally to a squamiform process more or less prominent, according to the species. The anthers, bilucular and introrse, open by two longitudiual clefts. The ovary, inferior, is of four cells, complete or incomplete, surmounted by a style the base of which is surrounded by an epigynous disk with four lobes more or less distinct, and its stigmatiferous summit is divided into four thick and rather short lobes, superposed to the petals, and surrounded by a ring which the upper margin of the stylary tube forms round their

[^544]base. In the internal angle of each cell are inserted one or two descending ovules, suspended by a rather long funicle, and anatropous, with the micropyle primarily ${ }^{1}$ turned upwards and inwards. ${ }^{2}$ The fruit, dry, coriaceous or woody at maturity, ${ }^{3}$ is of four cells, one or more of which contain a descending sced. The latter encloses under its coats a fleshy albumen which envelopes an embryo with superior radicle and straight, undulated or plaited cotyledons.

There are Geuras with trimerous flowers and trigonal receptacular tube. Some, as G. mollis and mutntilis, have the stigmatic lobes straight and elongate; a geuus, Gunridium, has been made of them. Others, as G. epilubioides, ete., types of the genus Schizocaryc, ${ }^{5}$ have a fruit which opens superiorly by three or four clefts. In G. linifolia, generically distinguished under the name of Stemosiphom, ${ }^{6}$ the interior basal appendix of the staminal filaments is scarcely visible or even uil, and the partitions of the ovarian cells are often incomplete. The genus contains about twenty species, ${ }^{7}$ herbaceous, anmual or evergreen, natives of the warmest parts of North America, principally the west. The leaves are alternate, generally uarrow, entire, and the flowers, ${ }^{\circ}$ disposed in clusters or spikes, simple or ramified, are solitary or grouped in small glomerules in the axil of alternate bracts borne by the slender axes of the inflorescence.
G. heteromitco, ${ }^{9}$ a Californian anmual, has become the type of a genus Meteroyturi", ${ }^{10}$ distinguished from (icunin chiefly by tetramerous flowers with a short wide reeeptacular tube, and by stamens often sterile, inserted in variable number in front of each petal. The ovary is of four uniovulate cells, and the stigmatiferous extremity of the style is destitute of the peripherical collar of cianre.

With the gynocium of Gaura, Gongylocarpus rubricautis, ${ }^{13}$ a herbaceous plant of Mexico, has flowers which oceupy the axil of

[^545]Proc. Amer. Acad. vi. 350 (18Gt).-Walp. Rep. v. 670 .
${ }^{7}$ Torr, et Gr. Fl. No-Amer. i. (1S40) 516.H. B. K. Nov. Ger. et Sp. vi. t. 529,-Rothr. loc. cit. 349.-Walp. Rep. ii. 96 ; v. 670 ; Aun. ii. 535 ; iv. 682.
${ }^{8}$ White or pink.
${ }^{9}$ Torr, et Gh, Pacif. R. R. Rep. iv. 89.
${ }^{10}$ Rothr. Proc. Amer. Acad. vi. 354 (1864).B. H. Gen. $793, \mathrm{n} .18$.
${ }^{11}$ Cham. et Schlchtl, Limea, v. ds 7.-B. II. Gen. 793, n. 19.- II. BN. Adansonia, xii. 22.Walp. Rep. ii. 97 ; v. 670.
the leaves or form a short spike (?) at the summit of the branches, situate cach in the axil of a bract, and resemble at first a monstrous plant, because the inferior ovary is aduate with the brauch that bears it and the base of the petiole of the axillary leaf. The same is the case, consequently, with the turbinate, deformed, subdrupaceous fruit. Abuve the ovary, the receptacle is elongated in a slender tube, the superior orifice of which, furnished with a glantular collar, supports four sepals, four petals, and two verticils of four stamens. The base of the style is surrounded by an epigynous disk, and the two or three cells of the ovary enclose each a descending ovule, with micropyle superior and primarily interior, but ultimately lateral. The plant, quite glabrous, with a reddish pruinose stem, bears alternate, petiolate, lanceolate, and dentelate leaves.

III. CIRC.EA SERIES.

The flowers of the (iccen' (fig. 443-446) are constructed on the binary type ; they are hermaphrodite and have a receptacle in the form of a sac prolonged beyond the ovary in a short obconical tube, the margin of which bears two lateral valvate sepals, two alteruate, imbricate petals, often sloped at the summit, and two stamens superposed to the sepals and formed each of a free filament aud a bilocular introrse anther, dehiscing by two longitudinal clefts. The ovary is of two oppositipetalous cells, and is surmounted by a style surrounded by an cpigynous disk the stigmatifurous summit of which is enlarged to a head with two small often unequal lobes. In the internal angle of each ovarian cell is inserted an ascending ovule, ${ }^{2}$ more or less completely anatropous, with micropyle turned downwards and outwards. ${ }^{3}$ The fruit, short, coriaceons, indehiscent, covered with hooked hairs, has one or tro cells ${ }^{*}$ containing each one ascending seed, ${ }^{5}$ incompletely anatropous, with fleshy embryo, straight and destitute of albumen. The Circeer are evergreen, little ramified herbs of the cold and temperate regions of Europe, Asia, and North

[^546][^547]America. The leaves are opposite, petiolate, oval, dentate or nearly entire, glabrous, hairy, penninerved. The flowers (small, white, or

pink) are in terminal, simple or ramified elusters, with or without bracts. Six species ${ }^{1}$ are distinguished.

Diplentiol loperioidrs, a Mexican shrub, has in its tetramerous ovary the uniovalate cells of circorn, and the ovule directed the same; but the valvate sepals are four in number, also the petals, somewhat unequal, and of the two stamens, one is anterior, the other posterior. The fruit is a loculicidal capsule.
 might be defined as monaudrous lhiphudret, or at least with only one fertile stamen. The superior calyx is generally formed of four valvate sepals, and the corolla of four alternate dissimilar petals. ${ }^{5}$ The posterior stamen is the fertile one; its anther is bilocular, introrse. ${ }^{\text {b }}$ The anterior is transformed into a petal. The inferior ovary has four oppositipetalons and multiovulate cells. The fruit
${ }^{1}$ Wignt, Ill. t. 101.*-Royle, Ill. t. 43.-K. Fl. Berol. i. 168.-Curt. Fl. Lond. iii. t. 3.'Torr. et Gro, Fl. No-dmer. i, 527.-Boiss. Fl. Or. ii. 752.-Gren. et Godr. Fl. de Fr. i. 585. --Walp. Rep. ii. 96.
${ }^{2}$ Hook. and Aren. Beech. Toy. Tot. 291, t. 60. -Twid. Gen. n. 6128.-B. H. Gen. 792.-H B3N. Adansonia, xii. 37.
${ }^{3}$ Cav. Icon. i. 12, t. 18.-J. Ann. Mrus. ii. 317, t. 30, fig. 30.-DC. Prodr. iii. 62.-SPACM, Suit.

[^548]is a loculicital and four-valved capsule. ${ }^{1}$ Seven or eight species ${ }^{2}$ of Luperiu are known ; they are herbs with alternate or opposite leaves,

Lopczia racemosa.

Fig. 418. Flower.

Fig. 449 Diagram.
accompanied by very small stipuliform and caducons seales; they
inhabit the south-west of North

Loppezia racemosa. America. The flowers are in clusters at the extremities of the branches.

In Semeiandra grandiflora, ${ }^{3}$ a Mexican species, the flowers are those of a Lopezia, and also the fruit; but the stamens are united with the base of the style in a column adnate also with the an-

Fig. 450. Dehiscing fruit ($\left(\frac{4}{1}\right)$.

Fig. 451. Fiy. 452, Long terior side of the floral receptacle. This character marks it as a very distinct section in the genus Lopezia. ${ }^{4}$

[^549]
IV. TRAPA SERIES.

The flowers of Troth" (fig. 45.3-456) are hermaphrodite and tetramerous. The receptacle has the form of a shallow cup, in which is inserted the base of the ovary, whilst its upper portion is free. The perianth and andrwecium are, emsequently, inserted perigynously

Trapa natans.

Fig. 455. Long. sect. of flower.

Fig. 453. Flower without corolla.

Fig. 456. Fruit.
on the margin of the receptacular cup. The calyx is composed of four sepals, two of which are lateral, one anterior and one posteriur, valvate or slightly covered at the margin by the preceding. Four sessile petals alternate with the sepals, imbricate and erumpled ${ }^{2}$ in the bud. The stamens, inserted with the petals, outside a thick, crenclate or undulate perigynous disk, are four in number, superposed to the sepals, and formed each of a free subulate filament, and a bilocular anther, dehiscing introrsely or marginally. ${ }^{3}$ The ovary, in great part superior, is of two lateral cells, surmounted by a style
can type still imperfectly known, Reisenbachia Presl (Rel. Hcenk. ii. 36, t. 54), considered as a distinct genus by Endlichel (Gon. n. 6127) and by Bentham and Hooker (Gen. 762, n. 14), and which appears to differ from Lopezia only in the absence of a corolla, if the analysis of Presl is correct.
${ }^{1}$ Trapa L. Gen. n. 157.-Adaxs, Fam. des Pl. ii. 84.-J. Gen, 68.-Gertn. Fruct. i. 127, t. 26. -Lamk. Ill. t. 75.-Desra. Dict. iii. 669.Turr. Dict. Sc, Nat. Atl. t. 219.-DC. Prodr. iii.

[^550]capitate and stigmatiferous at the summit. In each of the cells is a descending, anatropous ovule, with micropyle at first interior and superior. ${ }^{1}$ The fruit, turbinate, dry, coriaccous, iudchiscent, bears at the summit the scar of the style, and is laterally dilated about the middle of its height, into four or two conical spinescent projections formed by the persistent and hypertrophiate sepals. Its single cell contains but one seed the coats of which enclose a large incurved embryo, with superior radicle and very unequal cotyledons: one very small, squamiform; the other large, fleshy. ${ }^{2}$ Trompe consists of aquatic herbs, of which two or three species, ${ }^{3}$ living in Europe and the warm parts of Asia and Africa, are distinguished. The slender floating stems bear two kinds of leaves. ${ }^{4}$ The lower, submerged, are opposite, pinnatisect, not unlike finely pectinate roots. The upper, floating on the surface of the water, are united in rosettes and nearly lozenge-shaped, dentate, pemninerved, with an elongate petiole which is most frequently dilated superiorly in a spongy enlargement destined to sustain the summit of the plant at the surface of the water. ${ }^{5}$ The flowers ${ }^{6}$ are axillary, solitary, with a short and thick peduncle, accompanied by two lateral sterile bracteoles.

V. HALORAGIS SERIES.

Haloragis ${ }^{7}$ (fig. 457-461) has tetramerous flowers, ${ }^{8}$ most frequently polygamous, more rarely hermaphrodite. In the latter, the receptacle has the form of a sac with four to eight angles or lougitudinal ribs. On its margin is iuserted a superior perianth, composed of four sepals, two of which are lateral, ${ }^{9}$ and four alternate petals, imbricate or more rarely contorted. The stamens are inserted within

[^551][^552]the perimenth, that is, they are epigynous; they are eight in number, in two verticils and superposed, four to the sepals, and four, often shorter, to the potals. The filaments are slender, and the anthers elongate, basifixed or nearly so, dehiscing by two nearly lateral clefts. The gynecium, rudimentary in the male flowers, is composed of an infurior ovary, with four orpositipetalous cells, rarely two cells, surmounted by the same number of short stylary branches, at summit

Haloragis alata.

Fig. 457. Floriferous branch.

Fig. 45s. Flower.

Fig. 460. Fruit.

Fig. 459. Lorg. sect. of flower.

Fig. 461. Long, sect. of fruit. stigmatiferous papillose or plumose. In the internal angle of each ovarian cell is a descending anatropous orule, with micropyle interior and superior. It not unfrequently happens that the interlocular partitions disappear more or less completely, and the ovary, consequently, appears reduced to a single quadriovulate cell. The fruit, pyramidal, angular or wingel, is a drupe, the thin mesocarp of which finally becomes quite dry. The putamen contains, in each cell, a desecuding seed, the coats of which euclose a fleshy albumen and an axile embryn, with superior radicle and very small cotyledons. Ifuluragis comsists of herbaceous or subshubly plants, of which some forty species ${ }^{1}$ are known, natives of A sia, Oceania, and the

[^553] alternate, especially at the top of the plant, sometimes entire, sometimes dentate or pinnatifid, accompanied by two small calducous stipules; often replaced by bracts at the summit of the branches. The result is that the flowers, ${ }^{1}$ axillary to a certain point, may above form a spike or terminal cluster. In the axil of each leaf or bract is either a solitary flower, with or without lateral bracts, or a cyme, or a few-flowered glomerule; the pedicels, when present, are short and often pendant.

Meimectes ${ }^{2}$ and Lomdoniw are very near Mrlomagis, and should not be separatel from it. The furmer is Itelurayis on a dual "type,

Londonia aurea.

Fig. 462. Flower ($\left(\frac{5}{1}\right)$.

Fig. 464. Gynæcium.

Fig. 463. Long. sect. of flower.
that is with two sepals, two petals, two verticils of two stamens, and an ovary with two uniovulate cells. Mr. Bromini, the only species known, ${ }^{4}$ herbaceous and glabrous, grows in South Australia and Tasmania. Londoni" ${ }^{5}$ (fig. 462-464), native of the same countries, has dimerous or tetramerous and $4-8$-androns flowers, and the 4 winged ovary has two or four cells, the separating partition of which disappears more or less completely at a certain age and is represented

[^554][^555]only by a rertical filament. But the organs of vegetation in these evergreen plants differ from those of Huluratis. The leaves ${ }^{1}$ are alternate, linear, entire, rather fleshy ; and the flowers, arranged in terminal corymbs of cymes, are yellow and rather large compared with those of Ituluringis. Three species have been distinguisher. ${ }^{2}$

Myrioplyylon ${ }^{3}$ (fig. 4 (6.)) has also nearly the organization of Italoragis; but the flowers are monœcious, or rather, on the same inflorescence, there are

Myriophyllon verticillatzm.

Fig. 465. Long. sect, of Hower. female flowers at the base and male flowers at the summit; but not unfrequently hermaphrodite flowers are intermixed with both. They are dimerous or oftener tetramerous. The petals are imbricate or contorted. The stamens number from two to eight, in construction like those of Haloragis. ${ }^{4}$ In the male flowers the gynæcium is rudimentary or nil, whilst in the female, the petals of which are often smaller (or even nil), the stamens (when present) are sterile, and the gynecium attains a full development. The ovarian cells are four in number, superposed to the petals, surmounted by as many obtuse or plumose stylary branches, often recurved. Each cell contains one or two ovules, ${ }^{5}$ in direction like those of ILaloredyis, and the fruit, dry or drupaceons, separates into two or four monospermous cocci. Some fifteen species ${ }^{6}$ of this gemus ${ }^{7}$ are distinguished; they

[^556][^557]are aquatic herbs, with alternate, opposite, or verticillate leaves, lincar or oval, entire, dentate or pinnatifid and pectinate when submerged. In Myriophyllon certicillatum, the flowers occupy the axil of these pectinate leaves, larger than themselves, whilst, in II. spicutum, for example, short bracts replace these leaves, and the whole emerged inflorescence constitutes a terminal spike. The flowers in the axil of each leaf or bract, are solitary or united in small glomerules. This genus belongs to the warm and cold regions of all parts of the world.

Serpicula (fig. 466,467) has also nearly the flowers of the preceding genera, small, monocions, and disposed in cymes or in axillary glomerules; the number varies at the level of each leaf. One of the flowers of the cyme is male with a long pedicel; the others are sessile or nearly so and female. The male flowers have four sepals, four concave petals, and four alternate, oppositipetalous ${ }^{2}$ stamens, or from six to eight stamens. The gy-

Fig. 466. Flower ($\left.\begin{array}{l}3 \\ 1\end{array}\right)$. næcium is there rudimentary and stcrile. In the female flowers, the inforior ovary is surmounted by four sepals and four petals. The stamens are rudimentary or without anthers, or even disappear entirely, and the ovarian cells, separated by incomplete partitions, contain each one ovule of Hetoratis. Serpurnlu, of which three or four species, ${ }^{3}$ from the marshes of Asia, Africa, and tropical America, are distinguished, consists of herbs with opposite or alternate leaves, narrow, entire or dentate.

[^558]cavity of the petals to which they appear superposed ; but that is only a consequential appearance; they are really alteraipetalous.
${ }^{3}$ A. S.-H. Fl. Bras, Mer. ii: 250.-Wigнт, Icon. t. 1001.-Tıw, Enzm. Pl. Zeyl. 123.-Mrq. $F l_{0}$ Ind.-Bat, i. p. i. 632.-Harv, and Sond. $F l$. Cap. ii. 572.-Tul. smm. Sc, Nat. sér. 4, vi. 125. -Oliv. Fl. Trop. Afr. ii. 400.,-Walp. Rep. ii. 98 ; Aın. ii. 537 ; vii. 941.

Proserpinace ${ }^{1}$ (fig. 468-471) also consists of aquatic herbs. The leares are altermate, entire, dentate or pectinate and pinnatifid, like those of Myriophyllom. The flowers ${ }^{2}$ are hermaphrodite, axillary, solitary or grouped in cymes ; they are often trimerous or more rarely tetramerous, and differ from those of the preceding genera by two principal characters: the petals are wanting, and the stamens, superposed to the sepals, are the same in number as the latter and reduced

Fig. 468, Floriferous and fructiferous branch.

Fig. 469. Flower (1).

Proscrpinuca palustris.

Fig. 470. Long. sect. of flower.

Fig. 471. Fruit. to a single verticil. All the other important traits of their organization are those of Haloragis. Thus, the floral receptacle is concave, bell-shaped, and its cavity is filled by the adnate and inferior ovary, the cells of which, three or four in number, contain each a descending ovule, with micropyle intcrior and superior. On the margin of the receptacle are inserted epigynously the sepals, which are valvate, and the superposed stamens, the filaments of which are short and erect and the anthers basifixed. Two species ${ }^{3}$ are known, from the Antilles and North America.

VI. GUNNERA SERIES.

Gunnera (fig. 472-475) has polygamous or monocious flowers. In those which are hermaphrodite (fig. 475) and gencrally dime-

[^559][^560]rous), ${ }^{1}$ there is an ovoid or compressed sacciform receptacle, the cavity of which contains the aduate and inferior ovary, and the margin of which bears the perianth and andrecium. First on opening are seen two small projections, anterior and posterior, ordinarily considered as sepals, and on the sides, alternating with these projections, two

folioles, much more developed, when they exist, and regarded as two lateral petals. ${ }^{2}$ Superposed to these two folioles are two epigynous stamens with free filaments and basifixed, erect, bilocular anthers, dehiscing by two longitudiual nearly marginal clefts. In the female flowers they are more or less completely aborted. The gynæcium, which totally or partly disappears in the male flower, is composed of an inferior unilocular ovary, surmounted by two stylary branches, subulate and charged with stigmatic papillæ. Near the top of the ovarian cell is inserted a single deseending ovole, ${ }^{3}$ with the micropyle superior and lateral to the placenta. The fruit is a small drupe with suit pulp, ${ }^{ \pm}$and the putamen, crustaceous and fragile, contains one

Suppl. ii. 863 ; Ill. t. 801.—Ennl. Gen. J. 1889. 13. H. Gen. 676, п. 7.-H. Bn. Payer Fam. Nat. 379 ; Adansonia, xii. 38.-A. DC. Prodr. xvi. sect. ii. 597.-Perpensum Burm. Prodr. Fl. Cap. 26.-Panke Feuill. Obs. ii. t. 30.-Misandra Commers. ex J. Gen. 405.-Disomene Banks et Sol. (ex Fohst. Comm. Geett. ix. 45.-Galdich. Freyc. Voy. Bot. 512.-Milligania Hook. F. Hook. Ic. t. 299.-Pankea Erst. Pl. Nov. Centr.-Amer. 6 (Nat. For. Vid. 1857). - Pseudo-Gunsera Grst. - Gumeropsis Eust. - Misandropsis (Eirst. lue. cit.

[^561]$$
31-2
$$
deseendiug seed. Its coats ${ }^{1}$ cover an abundant fleshy albumen, at the summit of which is lodged a small embryo with short cotyledons and superior radicle. Gmmera consists of evergreen herbaceous plants, sometimes much developed, numbering some ten species, which inhabit southern and castern Africa, tropical and cool oceania, and the Andean and antaretic regions of South America. All the parts are often scabrid or hispid. The rhizome is

Fig. 475. Long. sect. of hermaphrodite flower ($\frac{5}{1}$). thick and short or slender and creeping; it bears alternate leaves, called radicle, close, petiolate, sometimes accompanied by stipuliform bodies of variable appearance, ${ }^{3}$ with limb entire, or crenclate, or lobed. The flowers are collected in spikes or compound clusters, the axis of which is slender or thick, simple or with numerous ramifications closely pressed together. In the monœcious species, the female flowers are most frequently at the lower part of the inflorescence, and the male above; cach may also be accompanied by two lateral branches.

VII. HIPPURIS SERIES.

Hippuris ${ }^{4}$ (fig. 4T6-481) represents the lowest type of this group; for its flowers, hermaphrodite or polygamous and irregular, contain only a monandrous audrocium and a gynecium with a unilocular ovary. The receptacle is sacciform, like that of Gumere, and its mouth is entire or slightly sinuous. ${ }^{5}$ In the anterior part of the

[^562][^563]flower is inserted a stamen, ${ }^{1}$ the erect and subulate filament of which supports a basifixed, bilocular, introrse anther dehiscing by two longitudinal clefts. The ovary, lodged in the cavity of the receptacle, is unilocular and surmounted by a slender, subulate style, charged with stigmatic papillæ. On the posterior wall of the ovarian cell, a little below the summit, is inserted a single descending anatropous

Fig. 477. Flower (高)

Fig. 481. Long. sect, of flower.

Fig. 476. Flower with axillate leaf.

Fig. 480. Fruit

Fig. 479. Long. sect. of flower.
ovule, with micropyle interior and superior. ${ }^{2}$ The fruit is a drupe finally little fleshy, with crustaceous monospermous putamen. The seed contains under its coats a cylindrical embryo, with superior radicle, surrounded by a thin fleshy albumen. Of Mippuris, one or two species ${ }^{3}$ are known, evergreen herbs, with rhizomes crecping in the mud. The aerial branches, simple, erect, are clothed with numerous verticils of linear cutire leaves, the number in each verticil being variable. ${ }^{+}$The flowers are axillary, solitary and sessile. This genus has been found in the fresh and brackish waters of Europe, temperate and northern Asia, and northern and antaretic America.

As here comprised, this family is one of those named by concatenation. Pretty well defined, in 1759, by B. de Jussiev, ${ }^{5}$ under the name of Onagre, it was extended by Adanson, ${ }^{6}$ who recognized most

[^564][^565]of its affinities in ranging with it, Luduigia, Epilobium, Circeer, and Tripa, snme Myptucere, Melastomn, Alangium, and even some Rubiacere. A. L. ie Jussiev ${ }^{1}$ extended it still further, but rendered it altogether heterogencous by including in it some Ternstrermiucere as Visupa, some Saxifjogacere as Vehlict and Escallonict, a part of the Combretacepe, ${ }^{2}$ some Suntalacece as O_{1} hire, Santutum and Sirium, with several Myitacete, Melastomacece and the Loasece as allied genera. But he did not separate Meloragis (Cercodea), as did R. Brown ${ }^{3}$ in 1814, rocognizing at the same time that the Harolagea ought to be placed close beside the Onagrariere. His opinion was adopted by De Candolle, ${ }^{4}$ who divided the Onagrariece into six tribes, one of which comprised the Macree, and the Huloragere, regarded as a distinct order, ${ }^{5}$ itself divided into three tribes. The whole embraced twenty-four genera, from which must be withdrawn Callitriche, two doubtful genera, Pleurostemon ${ }^{6}$ and Onosuris, ${ }^{7}$ and five types doubly represented. The number of genera retained at this epoch numbered therefore only sistecn. In a series of observations, models of patient and exact analysis, Spaci, ${ }^{8}$ recognizing the little homogeneity of the geucra retained by De Candolele, thought it necessary to make a great number of divisions which might well be considered as so many distinct genera, hut which we prefer to make ouly subgenera or sections, following the example of Torrey and A. Graf, ${ }^{9}$ Bextham and J. Hooker, ${ }^{10}$ aud most others ${ }^{11}$ who have recently been occupicel with this group.

We retain twenty-four gencra, comprising about cight lundred species, distributed over the whole world, but especially in the temperate regions. Only two of them, Trapa and Loudonia, are limited to the old world. Inalorayis would be exclusively Asiatic and Oceanic had not one species been observed in the isle of Juan Fernandez. Nine other genera are common to both worlds; but

[^566][^567]there are some furmed almost exclusively of American species, the most considerable being Enothera. To America exclusively belong eleven genera, six of which are monotypes. All the Loperiere inhabit the south-west of North America and do not descend beyond Guatemala. Hanya and Gongylocurpus have been observed only in the warm parts of Mexico; Heterogunra and Euchuridinm like Zauschurita are exclusively Californian. Loudonion and the section Meionectes of the genus IIaloragis are all Australian. The aquatic types, such as Mippuris and Myrioplyplon, ascend, on the contrary, to the cold regions of Europe, Asia, and North America. As far south as New Zealand the family is represented by IIclorayis, Gumera, and by the latter to autarctic America. Tropa natons exists in Denmark and in Siberia. Myriophyllon extends from the Azores and Algeria to the Orkney Isles and Sweden, and Hippuris, found in the Shetland Isles and Hebrides, exists also at the southern extremity of America. Lutuvigice belongs to the warmest parts of America, Asia, and Afriea, and by Dentio pulustris (Ismerdicu), they extend from the Cape of Good Hope to the Faroe Isles and in America to Canada.

The organs of vegetation in these plants present an infinite diversity of character, often accurding to the very different localities they inhabit; they are however nearly always herbaccous plants, annuals or evergrecus, sometimes shrubs, but never in reality trees. Their organs of floration and fructification exhibit great variations, on the most important of which is based the following division into seven scries:
I. Enomerex.1-Flowers regular or nearly so. Ovarian cells multiovulate. Style entire or more or less divided at the summit. Fruit dry or fleshy. Sceds without albumen.-9 genera.

JI. Gauree. ${ }^{2}$-Flowers regular. Orarian cells (complete or incomplete) uni- or biovulate. Ovules descending, with micropyle inferior and superior. Style not deeply divided or entire at stigmatiferous extremity, often indusiate at base. Seeds descending, solitary or few, with or without albumen.-2 genera.

[^568]III. Cincea. ${ }^{1}$-Flowers regnlar, oftener irregular, $2-4$-mcrons. with two fertile stamens. Ovules $1-\infty$, descending or ascending. Style simple. Fruit dry. Seeds without albumen.-4 genera.
IV. Trapee. ${ }^{2}$ - Flowers regular, 4 -merous, isostemonous. Ovules descending (ordinarily solitary), with micropyle interior and superior. Style simple, capitate at summit. Fruit dry, indehiscent, spinous. Seeds without albumen ; embryo with two very unequal cotyledons. -l genus.
V. Haloragex. ${ }^{3}$-Flowers regular, 2 - 4 -merous, hermaphrodite or polygamous, often small. Style with distinct branches, same in number as the ovarian cells to which they are superposed. Ovules solitary, descending, with micropyle interior and superior. Fruit finally dry, indehiscent. Seeds albuminous.-4 genera.
VI. Gunamee. ${ }^{*}$ - Flowers regular, polygamous, small, 2-3androus. Style with two branches. Ovule unilocular, uniovulate. Fruit drupaceous. Seed albuminous. Embryo very small.-1 genus.
VII. Hippuride.e. ${ }^{5}$--Flowers hermaphrodite or unisexual, monandrous (exceptionally "-androus), unicarpellate. Style simple. Ovary unilocular, uniovulate. Fruit drupaceous, little fleshy, with monospermous putamen. Seed descending, with thin albumen. -1 genus.

Afrinitres.-The Onagronitesere might be defined as Lythererimene with inferior and, as often said, atherent ovary. By this character they are also separated from the Metestomucere or at least from the greater part of them. By it they much resemble the Myrtacie and the Rhizophoracere with inferior ovary; but they have not the glands with odorous essence of the former; and when the latter have orules definite in number, they are descending with the mieropyle turned upwards and outwards. The partition separating the cells being more or less completely wanting in the Ontyrurincert, they thereby approach the Combretuctor, to which early writers, as we have seen, united them. But the descending ovules of the

[^569][^570]Combretacere have also the mieropyle exterior. It is so with the Araluece which, in flower, would resemble the Onagrariucet". The C'ornarer, whose ovules, definite in number, have the micropyle directed as in the Mhlorngect, have not the divided style and they are nearly all woody with isostemonous flowers. ${ }^{1}$

Uses. ${ }^{2}$-These are few ; nearly all the Onagrariacea are without active properties. The greater part are gorged with a mucous juice. Épilobirm rosmurinifolium ${ }^{3}$ was considered emollient and slightly astringent ; it was mostly applied externally. The ancients believed that the infusion of its root tamed wild animals and that its decoction in wine sweetened the temper and gladdened the heart. In the present day, the inhabitants of eastern Siberia and Kamtchatka are said to mix an infusion of this plant with an alcoholic drink prepared from the petioles of the great Cow-parsuip (Heraclemm Sphondylium), which has a soothing effect. In Sweden the buds of this Epilote are eaten as are also the young shoots prepared like asparagus. From tufts of the seeds a kind of thread is prepared in the polar regions. The same properties are attributed to E. latifolium and, in the north of Europe, to E. tetragonum. ${ }^{5}$ Cirera lutetitna ${ }^{6}$ (fig. $443-446)$ is also considered mucilaginous, resolutive ; it is applical baked to hemorrhoids ; its action appears nil. The Enotherce have rather variable qualities. Onagra or Enothera biemis ${ }^{7}$ (fig.427-429), a species believed to have been brought from America to Europe a couple of centuries since, is a pot-herb the root of which is eaten baked with other vegetables or in salad, or preserved in vinegar with sugar. Other American species have an edible root, particularly (E . muricuta, suaveolens, gremiflora, and parrithora. In Brazil, UE.

[^571][^572]affinis, and in Chili W. actutis and mollissimu are reputed aperitive and vuluerary; the root is employed in the treatment of wounds. The Ludwigias are slightly astringent; some species of the section Jussina are employed in fomentations and cataplasms in America and tropical Asia. L. Tiffese, ${ }^{1}$ an Tudian species, is an exception, its various parts being anthelminthic and diaphoretic. Its root is emetic ; its leaves are administered in milk as anti-dysenteric ; its sceds are given in honcy against hooping cough; L. peremnis ${ }^{2}$ has all the same properties. The root of L. crigata ${ }^{3}$ is cousidered a stimulant. L. hirtu, octonervir, octofila, of India, angustifolia and Blameana, of Java, have the same uses as L. repens, ${ }^{4}$ the most known of the Asiatic species, common in Cochinchina, in India, and employed, mixed with castor-oil, in the treatment of scurf and other affections of the scalp. In the Antilles, L. Sentrianu is recommended in the treatment of ophthalmia and wounds. L. permiano is prescribed as reducing poultices for tumours and abscesses, especially on the glands. L. pilosa is used in Para as a potherb and for dyeing (yellow). Lo seabion and Cetperoset serve for dyeing black in Brazil ; ink is sometimes made from them. In the United States, L. alteruifolia is, on the other hand, known as an emetic. Montinia ueris ${ }^{5}$ has a fruit the peperer-like flavour of which is found, though in a less degree, in other parts of the plant; it is used at the Capo in diverse affections internal and external. The Fuchsies have berries, often small, but edible. Those of T. excorticuta ${ }^{6}$ have an agrecable perfume; they are said to be dainties with the New Zealanders; birds a at them in this country. The bark is said to be astringent and rich in gallic and tamic acids. F' denticuldet and other American species have also flesly and edible fruits. F. coceiner ${ }^{7}$ (fig. 1.38) and macrostemma are slightly astringent; in Chili antiphlogistic decoctions are prepared from the branches and leaves and administered as refrigerants in cases of fever. IF. racemoses is considered,

[^573][^574]in the Antilles, a gool remedy for various maladies of the digestive canal and the lymphatic system, intermittent fevers and blennorhoca. The Gumneras are also astringent plants ; their juice becomes black when exposed to the air and stains iron a deep black. G. chilensis ${ }^{\prime}$ (fig. 47:-474) is employed in Peru to dress and dye skins. Its roots and leaves are useful as astringents, hemostaties, and antidiarrhotics. The thick and fleshy petioles are used as vegetables. At the Cape G. perpensa ${ }^{2}$ (fig. 475) is reputed stomachic, vulnerary; its stock is prescribed in dyspepsia and affections of the digestive canal and liver. In Java G. macrocephala ${ }^{3}$ bears fruit esteemed as stimulant. The Hrwolagece are little employed. In New Zealand, Ifaloragis micrantha ${ }^{4}$ is noted for the odour of its leaves. In Europe and North America Myriophyllom, particularly M. spicatum ${ }^{5}$ and rerticillutum ${ }^{6}$ (fig. 464) are considered antiphlogistic; the stock serves to polish soft wood. Hippuris vulguris (fig. 476-481) is held to be slightly astringent. Troem formerly had the same reputation, especially T. nutans ${ }^{8}$ (fig. 453-456), a species rather common in our fresh water, the embryo of which is eaten cooked or raw ; its flavour is sweet or slightly astringent. It is said to be indigestible, but is nevertheless consumed in considerable quantity in the west of France. It is said to have been eaten by the ancient Thracians instead of bread, as it is now in a part of Sweden. In Limousin a boiled food is prepared from it not unlike a thick chestnut porridge. At Venice it is eaten as nuts. The stems and leaves, sometimes sorving as fodder, are employed in reducing poultices. In China, especially around Canton, the fruit of T. bicornis ${ }^{9}$ is used for food in the same way; at Saïgon that of T. cochinchinensis ${ }^{10}$ is commonly

[^575][^576]sold in the markets. T. bispinosa ${ }^{1}$ is cultivated in great quantity, for the same purposes, in the lakes of the valley of Cashmere, and T. qumdrispimosa² in the waters of Silhet and the Indus. Many Onmyrariucere are ornamental, especially the Enotheras, among others those of the sections Giodetin, Boisturalic, esteemed as annuals, and the species with large white, pink, and yellow flowers, which often open only in the evening and exhale sometimes a sweet, sometimes a disagreeable odour. Some Epilobes are ornamental, and are planted on the banks of ormamental waters. Myriophyllon, Ifippuris and Trapa, are used to furnish aquariums. Several species of Gunia, Clarkia, Zauschneria, the Fuchsias and Lopeaias, the flowers of which are often very beautiful, and Gumera, cultivated for the beauty of its foliage, are highly esteemed.

[^577]Jones, Asiat. Res, ii. 350 ; iv. 253.
${ }^{2}$ Roxb. Fl. Ind. i. 451.-Rosenth. op. cit. 910.

GENERA.

I. ©ENOTHERE E.

1. Enothera L.-Flowers hermaphrodite regular; receptacle tubular or clavate, sometimes long lageniform, enclosing adnate germen and produced above the apex of the latter either very slightly (riodetin, Fulobus, Spherostigma), or to a less or greater length and there cylindrical or obconical and bearing perianth and stamens on upper margin. Sepals 4 (2 lateral), valvate, deciduous. Petals 4, alternate, sessile or very slightly unguiculate, obovate or obcordate; contorted in prefloration. Stamens 8, 2 -seriate, the oppositipetalous oftener shorter ; filaments free ; anthers introrse, 2-rimose, short or oftener clongate. Germen inferior, crowned with an epigynous disk thin (or 0), sometimes rather thick ; cells 4, oppositipetalous, complete or incomplete; style slender, at apex stigmatose globose or elongate, entire, 4 -lobed or 4-partite; lobes elongate. Ovules in cells ∞, subhorizontal or ascending, $1-2$-scriate, anatropous. Fruit erect or sometimes refracted (Eulobus), capsular, coriaceous or subligucous, oblong or clavate, 4 - or polygonal, costate or sometimes broadly alate; wings vertical dorsal ; 1-4-locular, 4 -valvate above or for entire length ; valves loculicidal, in the middle internally septiferous and solute from seminiferous columella; sometimes evalvate. Seeds ∞, ofteu ascending, naked or appendiculate to chalaza; testa sometimes (Blennoderma) mucous; embryo exalbuminous slightly fleshy.-Herbs or rarely undershrubs; leaves alternate, sessile or petiolate, entire, dentate, lobate or pinmatifid; flowers axillary to leaves or bracts at top of twigs, sessile or pedicellate, solitary or more rarely 2-nate or few. (Warm and temp. America, Tasmania.) -See p. 461.

2?Gayophytum A. Juss.-Flowers (nearly of Enothera) small or very small; tube of receptacle not or scarcely produced beyoud
germen. Sepals and petals 4. Stamens 8, of which 4 oppositipetalous, sometimes sterile anantherous; anthers of fertile ones subglobose. Germen 2-locular ; ovules in cells ∞, sub-1-seriate; style capitate or clavate at apex. Fruit capsular small linear ; valves 4, of which 2 wider internally septiferous in the middle ; but 2 narrower not seminiferous. Seeds ∞, ascending, externally smooth or papil-lose.-Slender annual herbs; leaves alternate linear entire subenervate; flowers (small) axillary solitary, very shortly pedicellate. (Warm west. parts of both Americas.)-See p. 465.
3. Ludwigia L.-Flowers (nearly of (Enothera) 3-5-merous; receptacle cylindrical or turbinate, not produced beyond germen. Pctals entire, 2-lobed, or 0. Stamens twice as many as petals (Jussicue) ; the oppositipetalous smaller, sometimes effete or rudimentary; or equal in number and alternipetalous; filaments rather short inserted under margin or between lobes of epigynous disk. Fruit eapsular, septicidal or rarely membramous, indehiscent, sometimes dehiscing by apical pores; ribs of valves often dilacerate or irregularly divided.-Herbs or rarely undershrubs or shrubs; leaves alternate or opposite; stipules sometimes minute or glanduliform; leaves axillary solitary or in short termiual racemes; bracteoles 2 lateral, inserted at greater or less height on the pedicel or germen. Other characters of (Enothera. (All trop, and temp. Teyions.) - See p. 465.
4. Clarkia Pursh.-Flowers (nearly of (E'nother'e) 4-merous; receptacle produced shortly above ovary (Euclailiat) or long in narrow cylinder (Eurluritium). Sepals 4, deciduous. Petals same in number unguiculate, entire (I'huostoma) or oftener B-lobate. Stamens 8, inserted in throat of receptacle, 2 -seriate; the oppositipetalous smaller or rudimentary; anthers deformed or evanescent; filaments of fertile alternipetalous ones sometimes enlarged interiorly at base by clongate process of disk. Disk annular epigynous and surrounding base of style. Germen t-locular ; ovules ∞. Fruit capsular coriaccous, loculicidally 4 -valvate; valves septiferous in middle, oftener solute from columella. Seeds ∞, ascending; punctate or papillose, sometimes marginate. Other characters of Ennthera.-Amual herbs; leaves alternate elongate, entire or denticulate; flowers axillary solitary, sometimes (from leaves being changed to bracts) terminally spicate. (North-west. America.)-See p. 466.
5. Zauschneria Presl.-Flowers (nearly of Clurlia) 4-merous ; receptacle 4 -gonal, above germen adnate within suddenly infundibu-
liformly dilated. Squamules t, interior to receptacle, of which t deflexed oppositipetalons, and 4 erect alternate. Sepals 4 , valvate. Petals as many obovate, 2-lobate. Stamens 8, 2-seriate; anthers introrse, not revolute. Germen t-locular, ∞-ovulate; style at apex stigmatose capitate, 4-lobed. Fruit capsular; cells 4 (complete or incomplete); valves septiferous within, solute from columella. Seets ∞, oblong, at apex (to chalaza) long hairy.-A small ramose shrub; leaves alternate (or the lower subopposite) sessile elongate, entire or denticulate; flowers axillary solitary. (California.)—See p. 467.
6. Epilobium L.-Flowers nearly of Clarkia (or (Enothera) 4 merous, sometimes subirregular (Chamceneriumi) ; receptacle not or very slightly produced beyond germen. Sepals 4 , valvate, deciduous. Petals as many, obovate or obcordate. Stamens 8 , sometimes deflexed (Chumrnerium). Germen 4-locular; ovules ascending, 2-seriate; style slender, at apex stigmatose 4-lobed, sometimes clavate and fimally expanded fimbriate (Ciorsostigma). Capsule loculicidal and seeds long hairy to chalaza (of Zauschucriu).-Undershrubs or herbs; leaves alternate and opposite, entire or dentate ; flowers axillary solitary or in terminal spikes or racemes. (All cold and temp. regions.) -See p. 467.
7. Hauya Moç. \& Sess.-Flowers (nearly of Enothera) 4-merous; receptacle cylindrical enclosing adnate germen and produced above to infundibuliform tube. Sepals 4 coriaceous, valvate. Petals 4 , sessile, contorted or imbricate. Stamens 8, 2-seriate; filaments subulate, anthers elongate, introrse, at base aristate-appendiculate. Germen 4-locular; style long erect cylindrical, at apex stigmatose subglobose scarcely lobate. Orules in cells ∞, ascending. Fruit oblong woody capsular, loculicidal; valves 4 , septiferous within at middle, thick strong recurved, solute from 4 -winged seminiferous columella. Seeds ∞, asceuding, above alate imbricate; cotyledons of exalbuminous embryo oblong fleshy compressed.-A tomentose shrub; leaves alternate petiolate, ovately oblong eutire, whitish beneath; flowers axillary solitary sessile. (Mexico.)-See p. 469.

8 ? Montinia L. f.-Flowers diœcious 4-5-merous; receptacle of male flower short. Sepals short, dentiform, not contiguous, persistent. Petals much longer rather fleshy, highly imbricate, deciduous (in female flower 0). Stamens 4,5 , inserted under central thickly cupular disk; filaments thick subulate, apically inserted within connective; anthers oblong, finally extrorse, 2-locular, 2-rimose, recurved after
dehisecnce. Receptacle of female flower very concave oblong, enclosing germen and not produced beyond. Sepals and petals (of males) epigynous. Stamens 4,5 , inserted with petals, conformed to those of males but smaller and sterile (?), sometimes rudimentary (or 0 ?). Disk epigynous rather thick, 4-5-gonal. Germen inferior; style short thick, $\gtrsim \sim$-fid ; branches at dilated apex widely reniformdiscoid papillosely stigmatose. Ovules in 2 cells (complete or incomplete) $\infty, \xlongequal{2}$-seriate. Fruit capsular subligueous oblong-clavate; valves 2, finally solute from seminiferous columella. Seeds ∞, oftener few, imbricate, marginately alate and 2 -auriculate at base ; testa papillose; cotyledons of exalbuminous embryo flat, straight or curved; radicle thick short.-A glabrous shrub, thickly branched; branches sulcate; leaves alternate petiolate, sublanceolate entire acuminate veinless; male flowers in terminal corymbiform racemes (?); female solitary. (Cape of Good Hope.)-See p. 469.
9. Fuchsia Plux.-Flowers hermaphrodite, sometimes polygamous (nearly of llamy(4), t-merous; receptacle around adnate germen globose or ovoid, produced above to cylindrical, obconical, infundibuliform or campanulate tube (coloured). Sepals 4, continuous with tube (coloured), valvate, deciduons with receptacle. Petals 4 (sometimes 0), inserted in throat of receptacle, patent or reflexed; contorted in prefloration. Stamens 8, a-seriate; filaments slender; authers obloug or linear, oftener exserted. Germen inferior, 4locular ; style slender elougate, at apex capitate or obovoid entire or 4 -lobed stigmatose. Ovules ∞, ∞-seriate. Fruit baccate, often pulpy, crowned with sear of receptacle. Seeds ∞, sometimes few angular or reniforn; testa membranous; embryo rather fleshy.Suall trees, shruhs or undershrubs; leaves alternate or opposite, sometines verticillate, entire or dentate; fluwers asillary solitary or cymose, sometimes in simple compound or cymiferous terminal racemes; pedicels long, often slender, nutant. (Both wam aml temp. Americas.)-Sce p. 469.

II. GAUREA.

10. Gaura L.-Fluwers hermaphrodite regular ; receptacle long clavately lageniform, produced above germen adnate within to tubular sometimes curved neck. Sepals 4 , more rarely : ${ }^{\text {B }}$, valvate, deflexed,
deciduous. Petals 4 , mose rarely : 3 , alteruate, inserted in incrassate glaudulose throat, equal or slightly unequal. Stamens double the petals in number, :-seriate ; filaments free, declinate, sometimes increased within at base by a scale of varying shape (a process of the disk) ; anthers linear-oblong, introrse. Germen inferior, 4- or more rarely 3 -locular ; cells complete or oftener incomplete; style slunder, oftener deflexed, at apex stigmatose 4 -lobed or 4 -partite and sirt with an amular or obconical indusium. Ovules in cells 1, 2, descending ; funcle rather long; micropyle at first superior and introrse. Fruit 3-4-gonal, incompletely 3-4-locular, woody, coriaceous or slightly drupaceous, at apex sometimes :3-4-fissus. Seeds 1, or few, descending; testa membranous; albumen oftener scanty fleshy; cotyledons of rather thick embryo straight, undulate or complicate. -Perennial or annual herbs, sometimes subshrubby, glabrous or pilose; leaves alternate, petiolate or sessile, entire or dentate; flowers in terminal sometimes capitate racemes or spikes. (Warm North America.)-See p. 471.

11 ? Heterogaura Rothr.-Flowers nearly of (tumra (smaller); receptacle obconical, scarcely produced above germen. Sepals 4, valvate. Petals 4, unguiculate. Stamens 8-10, not appendiculate at base, in pairs or singly opposite sepals and petals; the oppositipetalous often sterile; anthers cordato-lanceolate effete; anthers of fertile alternipetalous ovate subcordate. Germen 4-locular; style simple, at apex stigmatose dilated, not indusiate. Ovules in cells 1 (of Gauru). Fruit ovoid gibbous, こ-4-locular, by abortion 1-2. spermous. Other characters of Ganra.-An erect annual herb; leaves alternate; the lower petiolate, entire or sinuate ; Howers in terminal racemes. (California.)—See p. 472.

1ミ. Gongylocarpus Cham. and Schlentl.-Flowers 4 -merous; receptacle at base enclosing adnate germen and there adnate to branch or leaf, above germen far produced to slender cylindrical tube. Sepals 4, inserted at top of tube, valvate. Petals same in number alteruate, contorted. Stamens 8,2 -seriate; the 4 oppositipetalous shorter; anthers ovate introrse. Germen 2 - -3-locular; style thin girt at base with epigynous disk, at apex stigmatose eapitate. Ovules in cells 1 , descending; micropyle introrsely superior, finally lateral. Fruit subdrupaceous adnate to branch and petiole, turbinate or subglobose, fiually dry; putamen $2-3$-locular. Sced exalbuminous; cotyledons of straight embryo flat; radicle superior.-An ammal
herb; stem and branches reddish or plum-coloured ; leaves alternate petiolate ovately lanceolate denticulate; flowers axillary solitary or in terminal few-flowered uniparous spikelike cymes. (Mexico.)See p. 472.

III. CIRCE A.

13. Circæa L.-Flowers hermaphrodite regular, 2-merous; receptacle sacciform ovoid, enclosing adnate germen and produced shortly above. Sepals 2, lateral, inserted at top of receptacle, valvate, finally reflexed. Petals 2, alternate with scpals, imbricate or contorted in prefloration. Stamens 2, alternipetalous, epigynous; filaments slender; anthers short; cells introrse or submarginal, rimose. Germen 1-2-locular ; cells lateral ; style slender, at apex stigmatose subclavate or capitate, shortly ϱ-lobed. Ovules in cells 1 (or rarely 2), ascending, incompletely anatropous; micropyle extrorsely inferior. Fruit ovoid coriaccous, indehiscent, uncinato-setose without, 1-2. locular. Seeds iu cells solitary, laterally inserted within ; cotyledons of exallmminous embryo fleshy flat compressed, radicle short inferior. -Glabrous or pilose perennial herbs; stem simple or slightly ramose ; leaves alternate petiolate ovate denticulate ; flowers in terminal and lateral racemes, simple or slightly ramose; pedicels patent, often finally deflexed, bracteate or ebracteate. (Europe, temp, and frigid North America.) -See p. 473.
14. Diplandra Hook, and Arx.-Flowers subregular, 4-merous; receptacle globose at base and produced above to curved cylindrical tube. Sepals t, inserted at top of receptacle, valvate, deciduous (coloured). Petals 4, alteruate, unequal, imbricate. Stamens : 2, epigynous, superposed anteriorly and posteriorly to sepals; filaments free; authers oblong introrse, 2 -rimose. Germen inferior, 4-locular; cells oppositipetalous; style simple, at apex stigmatose truncate. Ovules in cells solitary, descending; micropyle introrsely superior. Fruit capsular coriacoous subglobose, loculicidally 4 -valvate; valves solute from 4 -winged seminiferous axis. Seeds compressed widely alate; testa papillose ; cotylclons (immature) of exalbuminous (?) embryo flat.-A pubescent shrub; leaves opposite and alternate subsessile orately oblong; flowers in a terminal raceme; peduncles long. (Mexico.)-See p. 474.
15. Lopezia Cav.-Flowers nearly of Diplention ; sepals 4, valvate. Petals 4 , unequal, imbricate ; the ${ }_{\sim}^{2}$ posterior narrower, glandular within above claw. Stamens 2, epigynous; the anterior sterile petaloid free or occasionally aduate with style and receptacle (Semeiandra) ; the posterior fertile; filament free subulate or (Semeindra) highly gynandrous; anther introrse, or more rarely subextrorse, 2 rimose. Germen inferior subglobose or obconical, 4-locular, sometimes crowned with minute disk; style, etc., of Diplandra. Ovules in cells ∞, ∞-seriate in internal angle. Fruit capsular subglobose, from apex loculicidally 4 -valvate; valves solute from seminiferous columella. Seeds ∞, obovoid (sometimes joined in pairs); testa rugose granulate; embryo exalbuminous.-Glabrous or pubescent herbs; leaves alternate or partly opposite, petiolate, dentate ; flowers in long or short racemes at top of twigs; pedicels slender. (Mexico, Guatemala.)-Sce p. 474.

IV. TRAPEA.

16. Trapa L.-Flowers hermaphrodite, 4-merous; receptacle cupular, enclosing adnate base of germen (in great part free). Sepals 4, valvate (or lateral a little exterior), persistent, sometimes spinescent at apex. Petals 4, inserted at base of subepigynous undulate or obtusely lobate disk, sessile, undulate, imbricate or more rarely contorted. Stamens 4, inserted alteruately with petals; filaments subulate; anthers ovately oblong introrse, 2-rimose. Germen in great part free (at base only inferior) attenuated to slender style capitate at stigmatose apex; cells $\xlongequal{2}$, lateral. Ovules in cells solitarr. descending; micropyle introrsely superior. Fruit stipate with adnate calyx and receptacle turbinate coriaccous, ligneous or subosseous ; stipate to middle with $2-4$ spinescent incrassately indurate sepals and from base to apex with style, indehiscent, by abortion 1 . spermous. Sced large descending ; testa membrauous adnate spongy above; cotyledons of incurved exalbuminous embryo unequal ; one abortive minutely squamiform; the other very large fleshy; radicle superior (in germination perforating apex of seed and fruit). Floating herbs; rhizome elongate; leaves 0 -form ; the lower submerged opposite rootlike pinnatisect; the upper emerged floating rosulate, petiole inflated spongy, limb rhomboid dentate; flowers
axillary solitary, shortly and thickly pedunculate. (Europe, werm and temp. Asia and Africa.)-See p. 476.

V. HALORAGEA.

17. Haloragis Forst.-Flowers hermaphrodite or polygamous; receptacle concave turbinate or conical, in male flower less concave 4-8-costate or angular. Sepals 4, inserted in mouth of receptacle, sometimes decurrent or subpeltate, or more rarely 2 (Meionectes), valvate. Petals same in number, alternate, concave or cucullate, sessile or unguiculate, imbricate or tortuous (sometimes 0). Stamens double the number of petals, 2 -seriate; filaments short filiform; anthers oblong or linear, often 4-gonal, introrsely or laterally 2 -rimose. Germen (in male flower rudimentary or effete) adnate to receptacle within inferior; cells 2-4, complete or incomplete; styles equal to number of cells, stigmatose or plumose at apex and within. Ovules in cells solitary descending ; micropyle introrsely superior. Fruit drupaceous slightly fleshy or nutlike, indehiscent, angular or alate, 1-4-locular. Seeds 1-4, descending; testa membranous ; albumen fleshy more or less copious; cotyledons of axile subeylindrical embryo short or very short ; radicle superior terete.-IIerlos, sometimes subshrubby at base, ramose; leaves opposite and alternate, entire or serrate, minutely stipulate (?) ; flowers in racemose terminal spikes, sometimes pendulous; bracts 1-florous or cymiferous; bracteoles $\gtrsim \sim$
 nandez.)-See p. 477.

18? Loudonia Linde.-Flowers nearly of Huloragis (larger); receptacle $2-4$-pterous. Sepals and petals alternate induplicately cucullate 2-4. Stamens 4-8 (or 12 ?), 2-seriate; filaments short erect, persistent. Germen imperfectly 2-4-locular or finally l-locular; styles 2-4, stigmatose at oblique apex ; ovules 2--t, inserted under apex, descending. Fruit 2-4-alate or 2-1-gonal subelavate coriaceous, 1 -spermous. Seed richly albuminous; radicle of axile embryo elongate.-Glabrous peremial herbs (turning black or green when (lry) ; rhizome woody ; branches erect robust often simple; leaves alternate line \mathbf{r} entiro subfleshy; flowers in terminal compound cymiferous corymbs. (South Australia.)—Sce p. 479.
19. Myriophyllon Vaile.-Flowers monœcious or polygamous, 4-merous; receptacle in males slightly, in females very concave, 4sulcate. Sepals 4, or more rarely 2. Petals \mathbf{Q}_{-4}, imbricate (in female flower smaller). Stamens $2-4$ or 6-8, 2-seriate; anthers elongate basifixed, laterally 2 -rimose (in female flower sterile, rudimentary or 0). Germen entire, $2-4$ locular, in male flower very short effete or 0); styles as many short, generally recurved, plumose at apex. Ovules in cells 1 , more rarely 2 , descending; raphe dorsal. Fruit nutlike or drupaceons; flesh scanty; putamen crustaceous. Sceds oblong ; testa membranous ; albumen copious fleshy ; embryo axile cylindrical.-Glabrous aquatic herbs; braches often floating ; leaves alternate, opposite or verticillate, entire or dentate, serrate or pectinately piunatifid; flowers in axils of leaves sessile or shortly pedicellate, sometimes in terminal bracteate spikes; the lower female; the upper male ; the intermediate often hermaphrodite. (All warm and cold aquatic regions.)-See p. 480.
20. Serpicula L.-Flowers (ncarly of Myriophyllon or Haloragis) monocious; receptacle of males very short. Sepals 4 and petals same cucullate or concave. Stamens 8. Rudiment of gynæcium short ; styles 4, more or less developed. Receptacle of female flower sacciform subovoid; sepals 4 and petals same. Stamens rudimentary or 0. Gynæcium, fruit, seeds, etc., of Haloragis.-Low creeping or decumbent branched herbs; leares opposite and alternate, subsessile entire or dentate; flowers (minute) axillary glomerulate; females sessile; males few or 1 , long pedicellate. (Africa, tiop. marshy Asia and America.)-See p. 481.
21. Proserpinaca L.- Fluwers hermaphrodite (nearly of Haloragis), 3 4-merous, apetalous, 3-4-androus. Germen 3-4-locular; styles, ovules, fruit, etc., of Haloragis (or Myriophyllon).-Glabrous aquatic herbs; stem decumbent at base; leaves alternate lanceolate dentate or pectinately pipnatifid ; flotrers (minute) axillary, solitary or glomerulate. (Warm North America, Antilles.)—Sce p. 482.

VI. GUNNERE无.

22. Gunnera L.-Flowers hermaphrodite or monœcious ; rceeptacle concave obovoid or compressed, enclosing adnate germen.

Sepals (?) 2, 3, dentiform, unequal or equal, sometimes scarcely pereeptible. Petals (?) 2, lateral, longer membranous, concave or cucullate (sometimes 0). Stamens 2, opposite to petals (or more rarely 1,3) ; filaments erect short, sometimes strong ; authers basifixed oblong ; cells 2, laterally rimose. Germen inferior, 1-locular ; styles 2 , subulate or eapitate, richly papillose. Ovule 1, laterally inserted under apex of cell, descending, anatropous or (?) peritropous. Fruit drupaceous or coriaceous ; subglobose or 3-gonal ; putamen crustaceous. Seed descending ; testa thin ; albumen copious farinaceous; embryo minute subapical.-Perennial herbs, scapiferous, glabrous or hispid or scabrous; rhizome often thick creeping; leaves alternate, all radical, appendiculate stipuliform sometimes intermixed; petiole often thick; limb ovate, suborbicular or cordato-rotumdate, sometimes subflabelliform, simple or lobed, often coriaceous fleshy rugose; nerves strong; flowers (very small) either spicate, or densely crowded on the twigs of a thick compound branch, 3 -bracteolate; inflorescence 1- or oftener 2 -sexual; male flowers above. (South. and east. Africa, Java, Oceaniu, Juan Fermunde, Andean South America.)-Sce p. 482.

VIT. HIPPURIDE玉.

23. Hippuris L.-Flowers hermaphrodite or more rarely polygamous ; receptacle concave ovoid or subglobose, mouth entire or uncqually cremulate. Perianth 0. Stamen 1 (very rarely 2), epigynous, anteriorly inserted at top of receptacle; filament ereet subulate; anther ovate basifixed, introrsely 2 -rimose. Germen inferior, adnate to receptacle within, 1 -locular; style subulate, entirely stigmatose. Ovule 1, inserted under apex of cell, descending; micropyle introrsely superior. Fruit ovoid drupaceous, slightly fleshy; putamen hard. Seed 1, descending, embryo slightly fleshy fatty ; radicle of straight axile terete embryo superior.-Glabrous aquatic perennial herbs; rhizome turfy creeping; branches erect thick simple; leaves verticillate (4-l:-nate) narrow linear entire ; flowers (very small) axillary solitary sessile. (Furope, temp. and north. Asia, north. and antarctic America.)-See p. 484.

LIX. BALANOPHORACEE.

This family, the limits of which have been greatly extended, owes its name to the genus Balanophora ${ }^{1}$ (fig. 482-485), in which the

Balanophora dioica.

Fig. 483. Male flower.
gynæcium much resembles, in its organization, that of Hippuris. The flowers are unisexual, monœcious, or diœcious. In the males (fig. 482-485), the perianth has from three to six^{2} and often four valvate divisions, ${ }^{3}$ above which the receptacle is produced in a small column which bears extrorse anthers. They are either the same in number as the parts to which they are superposed, or rarely in much greater number. ${ }^{4}$ They have two cells of variable form, dehiscing by two clefts. ${ }^{5}$ The female flower (fig. 484-485) is naked;

Fig. 482. Habit (male). it consists of a free, stipitate ovary, attenuated to a simple and entire

[^578][^579]style. In the single cell of the ovary is a parietal and superior placenta supporting a descending, anatropons ovule, reduced to a nucule. ${ }^{1}$ The fruit is drupaceous with a fleshy layer generally vory thin, nonospermous putancn, and the seed filling the carity of the latter consists of an abundant oily albumen, in the upper portion of which is lodged a very small embryo. ${ }^{\text {? }}$

Bulunophorra cousists of fungiform flesly and parasitical plants ${ }^{3}$ of very peculiar habit. They have a simple, lobed or ramified tuberous rhizome, often sprinkled with star-lobed prominences from which

Balanophora fungosa.

Fig. 484. Female flowers.

Fig. 485. Long. sect of female Hower. spring the aerial branches, coloured yellow or red and covered with scaly bracts, alternate, or opposite and connate, with parallel nervures; terminated by a cylindro-conical, elaviform or globular floriferous receptacle, clothed with flowers ${ }^{4}$ of one (fig. 482) or both sexes. In the latter case, the males are below, and the females above, much more numerous and smaller. The males are pedicellate, often reflexed and accompanied with axillate bracts. The females are in small spikes often terminating in an enlarged, globular or claviform body. ${ }^{5}$ A dozen ${ }^{6}$

[^580][^581]species of Balanophora have been distinguished, found in the warm regions of Asia and Oceania. ${ }^{1}$

Surcoplyte sanguinea, ${ }^{2}$ a red and fleshy plant, growing at the Cape, parasitic on the roots of Ehehergio and Acacia, would appear to have the same general organization as Balanophora, but for its much flatter gynæcium and its ovary being sometimes uniovulate, sometimes bi- or triovulate. The male flower (fig. 486) is composed of three or four valvate sepals and an equal number of superposed stamens, inserted in the centre of the flower, formed of a thick free filament and a capitate multiovulate anther, dehiscing by

Sarcophyte sanguinea.

Fig. 486. Male flower ($\left(\frac{5}{8}\right)$. a great number of small pores. ${ }^{3}$ Its male flowers are solitary and its female united in rounded capitules.

Mystropetaton ${ }^{4}$ has also a perianth formed of three folioles. In the male flower they are quite united at the base, and the two posterior are so to a greater height. Their prefloration is valvate and the posterior is smaller than the two others. The andræcium is formed of three stamens superposed to the divisions of the perianth; but the anterior is sterile, rudimentary or even entirely absent, whilst the two posterior have anthers with two cells, each divided into two cellules, dehiscing by two longitudinal clefts. ${ }^{5}$ In the centre is a rudimentary ovary. In the female flower, the ovary is inferior, surmounted by a long slender style and a superior, tubular or urceolate, trilobed and caducous perianth. This ovary is organized like

[^582][^583]that of Sarcoiphte, and becomes a dry or scarcely drupaceous fruit, the single seed of which encloses a cellulose oily albumen and a small apical embryo. Two (?) species ${ }^{1}$ of $M y$ stropetalon are distinguished, fleshy plants of the

Cynomovilum coccineum.

Fig. 488. Long. sect. of fruit.

Fig. 487. Elowers (${ }_{1}^{15}$). Cape of Good Hope, parasitic, coloured, ${ }^{2}$ with brauches covered with seales and terminated by spikes of which the male flowers occupy the summit and the female the base.

In Cynomorium ${ }^{3}$ (fig. 487, 488), of which only one, ${ }^{4}$ Mediterranean, ${ }^{5}$ speciesisknown, the organization of the gynæcium is nearly the same as in Balanophora; but the female flower is more complete. It comprises a deep receptacle, the cavity of which lodges the unilocular, uniovulate cell, and its margin bears a perianth of from two to eight folioles ${ }^{6}$ (sepals ?) coloured like the rest of the plant. The ovule is descending, very incompletely inatropous, with micropyle directed downwards and outwards. ${ }^{7}$ The style is terminal, nearly cylindrical, canaliculate, at summit stirmatiferous obtuse or slightly enlarged. These flowers become hermaphrodite when to the parts just enumerated is added an epigynous stamen, similar to that of the male flower. The

[^584][^585]latter has, on a short receptacle, a variable number $(1-8)^{1}$ of claviform coloured sepals (?), and a posterior stamen,? with cylindrical filament and introrse, dorsifixed, versatile anther, having two cells each divided into two cellules and dehiscing by two longitudinal clefts. ${ }^{3}$ The fruit is finally dry, indehiscent, monospermous, and the seed, adherent to the pericarp, contaius under its coats an abundant oily albumen and an ovoid embryo, with pointed radicle, formed of a small number of cellules. ${ }^{4}$ (. coceineum is a reddish fleshy fungiform ${ }^{5}$ parasitic plant. ${ }^{6}$ From its rounded and cylindrically ramified rhizome rise ascending aerial branches bearing alternate, imbricate scales, ${ }^{7}$ and sereral are terminated by inflorescences in the form of thick oblong cylindrical catkins. The male flowers are sessile on their common receptacle, and the hermaphrodite or female flowers are inserted on small secondary brauches; they are accompanied by coloured bracts.

Langsdorfficu ${ }^{8}$ ought not to be separated from the preceding types, if we admit the opinion of Hofmerster on the constitution of the gynæcium ; for this author says that the unilocular ovary contains only a single descending ovule. ${ }^{9}$ The male flowers have a perianth of two or three valvate folioles. The stamens are two or three in number, superposed to the folioles of the perianth, with monadelphous filaments, united in a cylindrical column, and extrorse authers dorsally united, quadrilocellate and dehiscing by two longitudinal clefts, confluent above. ${ }^{10}$ In the female flowers, the unique prismatic ovary is crowned by a projecting edge, representing a short epigynous

[^586][^587]perianth, and a simple style at summit stigmatiferous not enlarged. The fruit is drupaceous, with monospermous putamens, and the oily albumen envelopes an axile embryo, occupying about a third of its height. The only species of the genus, L. hypegara, ${ }^{1}$ is a parasite, ${ }^{\text { }}$ with tuberous rhizome and ramified aerial branches, ${ }^{3}$ surrounded by a basilar volva eovered with persistent imbricate seales, terminated by a unisexual or bisexual cluster or spike. The male flowers are pedicellate, sometimes intermixed with rudimentary gynæciums, and the female flowers are sessile and closely packed. It is a parasitic plant inhabiting all tropical continental America.

Thönningic smanninen ${ }^{+}$inhabits tropical western Africa; it has gencrally been placed in the same group as Lungstorffict, although the internal organization of its gynæcium is still unknown. Only the tube which represents an epigynous perianth in the female flowers is here much more elevated around the base of the style, and in the male flowers, which have from 3-i; stamens with filaments united in a fusifurm cone, the prianth is replaced by linear-subulate scales, from two to six in number. It is a red-coloured parasitic ${ }^{6}$ plant, the flowers of which are in short spikes or diocious eapitules.

This family, as we hare said, has had a larger extension than we here assign to it ; a considerable number of other types have been comprised in it, particularly those designated under the name of Laphophytone, Helosidur, and Scybeliene, which have, principally in the organs of vegetation, a great number of characters in common ${ }^{7}$ with the genera we have here retained among the Balunophorurere. But by their unilocular diearpellar orary and free central placenta, the genera we have separated approach much nearer the Lorentheter,

[^588][^589]plants often parasitic and hence possessing characters of habit and colour similar to those presented by the Balanophoracete. The name was given to the latter in 1820 by L. C. Richard. ${ }^{1}$ The genera previously known were left among those of uncertain place. ${ }^{2}$ Jussieu does not mention Sarcophyte, established by Sparmann in 1776. ${ }^{3}$ In 1804 Vaill ${ }^{4}$ made known Thömingie, the relation of which to Langsdorffie was plainly discerned as soon as the latter had been published by de Martius. ${ }^{5}$ Harvey discovered the genus Mystropetalon only in 1839, ${ }^{6}$ and J. Hooker described Dactylanthus in $1856 .{ }^{7}$ By its gynæcium, the latter, as also Cynomorium, Balanophora, and especially Langsdorffier and Mystropetclon whose ovary is inferior, closely resemble Hippuris, and it is next to this that most botanists now agree with J. Hoomer, ${ }^{8}$ Weddeli, Eichler, ${ }^{9}$ etc. to range the unicarpellar Balcurophoracece. They are moreover casily distinguished by their parasitic character, their colour, their male flowers, the simple organization of their ovule and seed, etc.

Except Bulenophora, of which a dozen species are enumerated, the genera of this small family are monotypes. ${ }^{10}$ In reality therefore it comprises only seventeen or eighteen species, of which only one, Cynomorium, is European; another, Langsdorffia, from tropical America, and Dactylanthus, from New Zealand. In tropical and southern Africa are found the three genera Sarcophyte, Thömingia, and Mystropetulon; whilst all the Bulunophoras known are from tropical or subtropical Asia and Oceania.

Balanophorece has even been considered as a naked ovule, and the Gymnosperm theory has consequently been extended to them. It is by the study of the female organ of the Balanophorece with central placenta, of their ovule and their embryogeny, that the same parts of the Loranthacece and Conifere will be more satisfactorily explained and vice versa; so that, as we have already said, if the latter are gymnosperms the former must necessarily also be considered as such, etc.
${ }^{1}$ Mém. Mrus. viii. 404.
${ }^{2}$ J. Gen. (1789) 445.
${ }^{3}$ But it was not published till 1810.
${ }^{4}$ Act. Holm. xxvii.
${ }^{5}$ Eschw. Journ. Bras. ii. (1818).
${ }^{6}$ Amn. Nat. Hist. i.
${ }^{7}$ Trans. Linn. Soc. xxii.
${ }^{8}$ Loc. cit. 21.
${ }^{3}$ DC. Prodr. xvii. 119.
${ }^{10}$ There are perhaps two species of Mystropetalon.

The organs of vegetation have been the object of numerous researches. ${ }^{1}$ These plants, of a white, yellow, red, or brown colour, are gencrally of a fleshy consistence, and their tissues are often filled with a waslike substance, ${ }^{2}$ starch, ${ }^{3}$ or an astringent juice which gives them certain therapentic properties. ${ }^{*}$ They are pereunial or more rarely monocarpous. The subterrancan stem or rhizome is tuberous, simple or lobed, sometimes cylinarical or branched; it fixes itself directly to the roots of the foster phant, penctrates its substance, and attaches itself to its tissues in various ways, ${ }^{5}$ without, however, uniting with them by true suckers' (?). It is parenchymatous and traversed in different directions ${ }^{6}$ by vascular bundles, forming a system sometimes very ramified and complicated. The surface of the rhizome, in Belenophore, bears papillie consisting of simple or divided masses of cellular tissue, traversed by a passage; they are very numerous and in form of a cross in B. dinict, and are supposed to be intimately connected with the respiration of the plant. ${ }^{7}$ The true stomata have not been observed; there are rarely hairs, which exist however in certain Lenysidorfition and on the fluriferous axes of Thïmingia. Weddell describes the fibro-vascular bundles of the

[^590]according to the mode of insertion on the foster plant, in three groups: those in which the vascular fascicles of the foster root terminate definitely in the tissue of the parasite at some distance from the point of insertion; the vascular systems of the two plants being in no part in immediate affinity; those in which the connexion between parasite and nurse is solely by the intervention of a cellular tissue; those in which the fascicles of the foster root are continued with those of the rhizome. Wedoell has pointed out that the two latter modes of insertion are united in Cynomorium. He describes, in the latter, radical suckers and tubercular suckers. The former have only a central vascular fascicle; the latter correspond to grafts on the largest roots. "Nothing more variable than the disposition of the tissues in these grafts."

6 'The disposition of these fascicles becomes more regular in the cylindrical rhizomes.

7 Junghuin says (Nov. Acta xviii. Suppl. 223), and the observation has been constantly repeated, that B. glabra does not bear these papillæ except in cases where it springs from the same root as B. elongata.
rhizome of Cynomorium" as "numerous, filiform, straight or slightly flexuose and irregularly distributed in the interior of the cellular tissue, so as closely to resemble the bundles of the same nature in a Monocotyledonous stem from which they are always distinguished by their parallelism." He has seen these bundles continued from the body of the rhizome to its ramifications. The bundle is formed of two different elements: elongate cellules analogous to young woody fibre and containing fecula ; and, at the narrowest part of the bundle, rayed or sealelike vessels passiug even to reticulate vessels. The parenchyma of a large number of Batanophoracer is permeated by hard or stony cellules or fibro-cellules, punctuate, and with walls traversed by numerous channels in the direction of their thickness; they abound especially in Langsdorffu hypogere, certain Bulanophore, etc. In Langsdorffic, Eiciler ${ }^{2}$ has seen branches of a rhizome formed of a parenchyma consisting of elongate cellules in a vertical direction, and traversed lengthwise by twenty or thirty thin fibrovascular bundles, disposed on a transverse circular or elliptical section, according as the organ is cylindrical or compressed, nearly equidistant from the centre and the surface, here and there anastomose, but corresponding to the general plan of organization of Dicotyledons. The vessels are loosely reticulate, rayed or punctuate, but not annular or spiral. Prosenchymatous cellules, containing protoplasm and voluminous cytoblasts, are interposed with the vessels. Unger named this tissue pscudoparenchyma. The cellular tissue is elongate in a rertical direction and consists of smaller elements near the sur.ace. Those quite superficial are often elongated in subulate hairs, formed of two cellules placed end to end. The soft cellules of the parenchyma are ordinarily punctuate.
J. Hooker ${ }^{3}$ resumed and verified the principal points of the internal structure of Balanophora. ${ }^{\$}$ He thinks that in many species of this genus the rhizome continues to grow for many years, and after having put forth numerous floriferous branches in a single season, dies the following autumn, whilst in B. involucruta, for example, the rhizome may live a long time and flower every year. It requires several weeks for an aerial branch to emerge from the rhizome and

[^591]bear flowers. Bulctepphore is a good example of a type in which the vascular tissue of the parasite is continuous with that of the root, and J. Hooker has seen, in macerated plants of B. dioima, the vascular bundles, condensed at the time of vegetation, group themselves in continuous masses from the base of the divisions of the plant in the rhizome to the inflorescence. The root of the plant on which B. fungosa grows being destitute of medulla, he has seen the branches which it appears to send into the parasites furnished with a medulla, and the wood of these branches terminate abruptly at some distance from the base of the rhizome. The branches, terminated in cylindrical masses of cellular tissue, contained a small number of rayed or imperfectly spiral vessels. J. Hooker rejects the opinion of Geeprert and Unger, who consider the rhizome of Butanophorite as a body intermediate between the foster plant and the parasite. In B. incolncrata in germination, he observed in the axis of the rhizome faint and transparent lines, formed of elongate cellules, without wax or stone, surrounding the rudiments of vascular bundles; and, without seeing examples, he presames that these bundles deseend thence to the vascular system of the ront.

The rhizome is most frequently destitute of appendages; sometimes, however, it bears scales. The appendages of the acrial branches ${ }^{1}$ are of various kinds. At the base is a sort of case or volva which has been compared, erroneously, to that of the higher fungals. Higher up, the scales, which occupy the place of leaves, are alternate, opposite, free or more rarely connate. ${ }^{2}$ They are often wanting on a cousiderable portion or the whole length of the branch below the inflorescence. At its level, on the other hand, the sealess ordinarily reappear, often enveloping the entire infloresecuce in early age, then changing their character and becoming narrow or claviform under the flowers, sometimes peltate at the level of the secondary floral groups, as in C'ynonorimm. Bracts and bractooles are often absent under the female flowers.

[^592]
GENERA.

1. Balanophora Forst.-Flowers monœecious or diœcious. Male flower: perianth 3-6-phyllous (coloured), rarely 2 -phyllous, valvate. Stamens equal in number to folioles of perianth or more (up to 60 ; in crowded sub-6-gonal cellules, singly 1 -rimose), connate in a capitule ; filaments connate in central column ; anthers 1-2-locular, subrotund and transversely rimose or hippocrepiform, sometimes linear erect, longitudinally rimose or 6-gonal and rimose. Female flowers naked ; germen ovoid, attenuate in slender style, 1-locular. Ovule 1, inserted under apex of cell or short (1-cellular) funicle, descending, anatropous pauci-cellulose ; integument 0. Fruit nucamentaceous ; exocarp thin subcrustaceous; putamen hard, 1 -spermous. Seed completely filling cavity of putamen, descending ; albumen copions grandicellulose, oily; embryo superior very small subrotund pauci-cellulose.-Fleshy fungiform parasitic plants (coloured) ; rhizome tuberous or elongate stellately lenticellate, simple or lobed or branched; floral branches breaking from rhizome aerial, at base sheathed in volva, clothed with imbricate alternate or rarely opposite, free or connate scales or naked above ; flowers in a terminal spike or globose or elongate more rarely clavate capitule ; inflorescence 1-2sexual ; male flowers in 2 -sexual inferior, rather larger pedicellate ; female very small, in 2 -sexual inflorescence superior, shortly racemose or spicate in secondary axes, sometimes subverticillate "and growing together in a subhomogeneous velvety or minutely granular layer," ebracteate ; secondary axes small, not floriferous at apex and dilated to a clavate (spadicellate) body. (Warm Asia and Oceania.) -See p. 503.

2? Dactylanthus Поок. f.-Flowers diœcious naked; males consisting of 1,2 stamens; filaments very short; anthers subovoid, 2 -rimose. Fenale flowers consisting of bare gynecium (of Balanophora) ; internal sitructure and fruit not known.-A fleshy parasitic plant, in appearance like Bulcnophora ; rhizome (starch bearing ?) tuberous, irregularly lobed; acrial floral branches 1 -sexual ; volva short basilar ; seales imbricate, ovate or oblong, persistent; inflorescence terminal consisting of amentiform ebracteate spadicules disposed in a sulnotund corymb (?) ; flower's (very small) ebracteate. (New Zealand.)-See p. 505.
3. Sarcophyte Sparne - Flowers diocious. Male flower: perianth $3-t$-lobed ; lobes concave within, valvate or subinduplicate. Stamens 3, 4, opposite folioles of perianth and adnate with them at base ; filaments cylindrical erect; anthers terminal capitate multilucellate; cellules irregularly poricidal. Female flower naked. Germen short sessile, crowned with short discoid papillose style, 1 -locular, 1-3-ovulate; ovules descending anatropous subovoid, reduced to an amniotic sac (?); funicle short, 1-cellular. Fruit scantily drupaccous (similar to germen and a little larger); putamen obtusely 3 -gonal. Seed 1, descending, completely filling cavity of periearp; albumen large-celled, oily; embryo subcentral globose small-celled oily. - Fleshy (coloured) plants ; rhizome tuberous generally lobed, esquamate; acrial floriferous branches sheathed at base with short volva; scales persistent; flowers in a terminal bracteate ramose raceme (?) ; scoondary branches ebracteate bearing solitury male flowers or capitate female flowers comnate at base. (South. Australia.)-See p. 505.
4. Mystropetalon Haiv.-Flowers monœcious. Male flower : periauth 3 -phyllous; folioles unguiculate cochlear-subspathulate unequal, connate at base, valvate ; ${ }^{2}$ posterior more lighly connate ; anterior a little slorter narrower. Stamens 3, opposite folioles of perianth ; anterior sterile smaller or scarcely perceptible ; 乞 posterior fertile; filaments slender adnate to perianth at base ; anthers ovoid extrorse, versatile; cells 2 , 2-locellate, lougitudinally rimose. Gynaecium rudimentary sterile. Female flower: receptacle ovoid concave, enclosing adnate germen and bearing perianth inserted on margin above; folioles 3 , comate at base in pitcher or tube, free
above. Stamens 3 sterile, opposite folioles, minute, or \mathfrak{Q}, opposite posterior folioles; the third very small or 0. Germen inferior 1locular ; style slender cylindrical elongate, at apex capitate stigmatose, subentire or slightly 3-lobed. Ovules 1-3, descending, inserted on short 1-cellular funicle, anatropous, reduced to an amniotic (?) sac. Fruit seantily drupaccous; putamen thin. Seed 1, descending; albumen fleshy oily large-celled; embryo superior ovoid small-celled oily.-Fleshy (coloured) parasitic plants, starch-bearing; rhizome ...? acrial floral branches scaly; flowers in a terminal 2-sexual spike; males above; females below more numerous, l-bracteate; lateral bracteoles 2 ; female portion of inflorescence much longer than male. (South Africa.)-See p. 505.
5. Cynomorium Micheli--Flowers polygamous. Receptacle of male flower short ; folioles of perianth (?) $1-8$, oftener unequally distant bracteiform linear-clavate (coloured). Stamen 1, [or rarely (?) 2]; filament slender erect subulate; anther introrse, versatile; cells 2, introrse, 2-locellate, longitudinally rimose. Germen rudimentary oblong clavate canaliculate, obtuse at apex. Receptacle of female flower ovoid very concave, enclosing adnate germen, bearing at or under the margin of the perianth bracteiform folioles similar to those of the male flower (sometimes more rarely 0). Germen inferior, 1-locular ; style simple stigmatose. Orule 1, ∞-cellular, inserted under apex of cell, descending, incompletely anatropous; micropyle downwards; coat simple. Hermaphrodite flower similar to female; stamen 1 (as in male flower) epigynous, interior to perianth. Fruit nutlike; pericarp thin subcoriaceous. Seed 1, descending, filling cell; testa rather thick; subcorncous oily ; radicle of ovoid embryo acute facing micropyle; cellules small oily.-(Red) fleshy parasitic plants; rhizome tuberous ramose, clothed with rootlike processes of various form ; aerial floral branches scaly, partly naked; flowers in cylindrical or oblong ovoid terminal spike; males sessile on common receptacle; hermaphrodite and female small few in secondary axes, racemosely cymose (?), bracteate. (Meditorranean regions, European, African, and Asiatic, the East, Sonntrariu, Canary Isles.)-See p. 506.

6? Langsdorffia Mart.-Flowers monœcious. Male flower: perianth 2-3-merous (colourcd); folioles ovate marginate concave,
valvate; 2 anterior, the third posterior. Stamens equal in number and opposite folioles; filaments comate in cylindrical column ; anthers dorsally coherent, extrorse, 2-lucular, 4 -locellate; clefts 2 longitudinal, confluent at apex. Receptacle of fumale flower hollow linear-prismatic tubular enclosing adnate germen, above produced to irregular epigynous margin (perianth ?). Style 1 , terminal cyliudrical simple, stigmatose from middle. Ovule in cell 1, desceuding (?) ; micropyle extrorsely superior. Fruit at apex umbilicate with scar of style, sparsely drupaceons; putamen rather hard. Seed filling putamen ; albumen copious large-celled oily; embryo subglobose axile, situate higher than centre, small-celled.-Fleshy (coloured) parasitic plants, more or less pilose; rhizome tuberous lobate; brauches sometimes long eylindrical, ereeping or ascending; acrial floral luranches, girt at base with lobed volva, higher cluthed with acute imbricate scales; flowers in spikes or 1 -sexual terminal ovoid or subglobose capitules; males free ebracteate pedicellate (sometimes intermixed with abortive gynæcia); females sessile elracteate, united together above or in their whole length. (Both trop. Americas.)-See p. 507.
7. ? Thönningia Vail.-Flowers diæcious (nearly of Langsdorffici). Male flower: perianth (?) consisting of 2-6 separate linear-subulate squamules. Stamens 3-6, l-adelphous; colume thick conical fusiform ; anthers extrorse, 2-locular, 4-locellate, 2 -rimose ; valves thin. Female flowers (externally of Langstorffia); perianth (?) epigynous longer tubular; internal structure (as of fruit) unknown. -Fleshy (red) parasitic plants; rhizome ("from tuberous centre?") ramose ; brauches crecping cylindrical tomentose; floral branches acrial springing laterally from branches or lobes ("adventitious "); volva, scales, terminal inflorescence, etc. (where known) of Langsdorffia. (Trop. west. Africa.)-See p. 508.

LNDEX OF GENERA ANI）SUB－GENERA

CONTAINED IN THIS VOLUME．

Abbevillea，Berg， 355
Abelicea，Bell，142， 188
Acanthinophyllum，Allem．， 154,203
Acanthochlamys，Spacir， 227
Acca，Berg， 356
Achymus，Soland．， 198
Acicalyptus，A．Gray，313，358
Acmena，DC．， 357
Acrandra，Berg， 356
Acrossânthus，Presl， 382
Actegeton，BL．， 11
Actinodium，ScTiv，321， 370
Adamaram，Reeed， 284
Adambea，Lимк， 455
Adenaria，H．B．K．，433， 451
Adenosepalum，Spach， 386
Adenotrias，Spaci， 386
Adolphia，Meissn．，63， 92
Aetia，Adans， 263
Agallochum，Rumpir．，10：2
Agassizia，Spach， 464
Agasta，Miers， 374
Agathisanthes，BL．， 271
Agonis，DC．，316， 360
Alangium，Lașк，271，286
Alaternus，T．， 53
Alcanna，Gertn．， 456
Alicastrum，P．Br．， 211
Allæanthus，Triw．，148， 196
Allanblackia，OLIV．，401，423
Allantoma，Miers． 379
Alnaster，Endl．，2ご4
Alnaster，Spach，20．4．
Alnus，T．，2 23,257
Alphitonia，Retss．，56， 79
Alzatea，R．\＆Pav．．4， 3 ？
Amanella，Miq．， 412
Ameletia，DC．，44：
Ammania，Houst．，440， 459
Amomis，Berg， 353
Ampalis，Boл．，146， 193
Ampelocera，KL．，144， 192
Anaclissa，Endl．， 101
Anamomis，Griseb．， 309
Ancistrolobus，SPACM， 385
Androgyne，A．DC．， 233
Androsemum，All．， 387
Androstylium，Miq．， 395
Aneariscus，Presi．，40\％
¡Angolam，Adans．， 271
Angolamia，Scop．， 271
Angophora，Cav．，321， 368
Auisophyllea，R．Be．，295， 307
Anisophyllum，Don．， 296
Anisotes，Lindl．， 431
Anogeissus，Wall．，268， 283
Anogra，Spacir， 463
Anstrutheria，Gaedn．， 307
Antherylium，VABL．，434， 454
Anthodiscus，Mart．， 47
Anthodon，I．\＆Pav．． 47
Antiaris，Lescri，157，206
Aphananthe，PL．，143， 191
Aphanomyrtus，Miq．， 336
Apoterium，BL．， 410
Aquilaria，Lame．。 102,123
Argyrodendron，Kic．， 263
Arillastrum，Pancir．， $3 \pm 0,366$
Arjuna，Jones， 455
Arongana，Pers．， 384
Arrudea，A．S．－H．， 392
Arthrosolen，C．A．Mey，112，136．
Artocarpus，L．，151， 20 2
Ascyrum，L．， 358
Aspidandra，Hassk．， 167
Aspidocarpus，Neck．， 83
Astartea，DC．．317， 361
Asteranthos，DEsF．，333， 380
Asterocarpus，Ecel．\＆Zeyi．， 38
Asterogyne，Will．， 10
Asteromyrtus，Schau．，36）
Astrea，Scrau．， 373
Astrotheca，Miers， 395
Atasandria，Benth．， 360
Aubletia，Gertn．， 376
Aubletia，Lour．， 83
Aulacocarpus，Berg．，313，359
Aulomyrcia，Berg， 353
Avellana，Baum．， 227
Azima，Làк．，11， 44

Babingtonia，Livdl．， 361
Backhousia，HOok．\＆HARv．， 321， 368
Badamia，Gerrtn．，268， 283
Bacckea，L．，316， 361
Bagassa，Aubl．，155， 204

Balanophora，Forst．，503， 513
Balanops，H．Bn．，240， 261
Balaustion，Hook．，317， 361
Balboa，Pl．\＆Tri．， 399
Ballardia，Montrouz．， 366
Balsamaria，Lour．， 410
Balsamona，Vandell．， 453
Banava，Camelle， 455
Banksia，Domb．， 453
Banksia，Forst．， 138
Baraultia，Steud．， 291
Barraldeia，Dup．－TH．，291，303
Barringtonia，Hossr．， 326,374
Batis，Roxb．， 198
Baumannia，SPACH， 463
Beaufortia，R．Br．，318， 363
Beauharnoisia，R．\＆PAV．， 401
Bejuco，Loefl．， 13
Belionkandas，Celr．， 480
Belvala，Adans．， 137
Belvisia，Destx．， 331
Berchemia，Neck．，56， 80
Bertholletia，H．B．，331， 379
Bertolonia，Apreng．， 401
Betula，T．，220， 257
Betulaster，Rea．，シッ．
Betulaster，Sract，$\because \sim 2$
Bhesa，Hasr．， 39
Billiottia，R．Br．， 360
Billottia，Colla， 363
Blackstonia，Scop．，40！
Bleekrodea，Bu．，151， 201
Blennoderma，SpaciI， 464
Blepharistemma，Wall．，295， 306
Blepharocalyx，Berg．， 309
Blepharochlamys，Presl．， 505
Boaria，Grisebe， 37
Boisduralia．Spach， 461
Boscia，Velloz．， 131
Bosqueia，Dup．Trr．，160， 210
Bosscheria，Vr．\＆Teysm．．－2l2
Botryoropis，Presl．， 326
Brachysiphon，A．Juss．． 101
Brathydivin，Space， 386
Brathys，Mut．， 388
Brebissonia．Spact，47）
Brindonia，Dup．－TH．， 106
Britoa，Berg． 355
Brocchia，Maur．，49

Brosimum, Sw., 209
Broussonetia, Vent., 146, 195
Bruguiera, Lamk., 290, 303
Bucephalon, Plom., 195
Buceras, P. Br., 283
Buchenavia, Eicill., 268, 283
Bucida, L., 268, 283
Burchardia, Necた., 356
Bureava, H. Bn., 263
Butonica, J., 326
Buxus, T., 16, 48

Cacoucia, Aubl., 263
Cæsia, Velloz., 79
Cahotia, Karst., 395
Cajuputi, Adans., 362
Calaba, Plume, 410
Calius, Blanco, 167
Callæocarpus, Miq., 237
Callistemon, R. Br., $36{ }^{2}$
Calophylica, Prest., 87
Calophyllum, $\mathbf{L L}_{\text {. }}, 410,4 \geq 8$
Calopyxis, Tul., 203
Calothammus, Labille, 318,363
Calucechinus, Homerr., 237
Calusparassus, Hombr., 237
Calycampe, Berg., 353
Calycolpus, Berg., 310
Calycopteris, Iаммк., 267,283
Calycorectes, Beeg., 313, 359
Calycothrix, Meissn., 372
Calylophis, Spacti, 463
Calylophus, Space, 463
Calymmatanthus, Scriad., 371
Calyplectus, IR. \& Pav., 457
Calypso, Dúp.-TH., 47
Calyptranthes, Sw., 311, 355
Calyptrantbus, J., 355
Calyptromyrcia, Berg., 353
Calyptropsidium, BERG., 356
Calysaccion, Wight, 426
Calysericos, Ecel. \& Zeyா., 127
Calythrix, Labille, 325, 372
Cambea, Hiм, 375
Cambogia, L., 406
Camphoromyrtus, SCHAU.,361
Campomanesia, R. \& Pav., 311, 355
Camptotheca, DCNE., 271 , 285
Campylopus, Spaca, 386
Campylosporus, Spacit, 386
Campylostemon, Welw., 16, 47
Canalia, Scrim., 127
(Cannabis. 'T., 16"3, 218
Canotia, 'Torr., 7, 42
Caprificus, Gasp., 212
Capura, L., 131
Carallia, Roxb., 291
Cardiogyne, Bur., 148, 197
Cardiolepis, Lafin, 53
Careya, Roxb., 328, 370
Carica, Miq., 212

Cariniana, Casar, 328,377
Carpinites, Ung., 250
Carpinus, T., 227, 258
Caryophyllus, '1', 313, 357
Caryospermum, BL., 39
Cassine, I., 4, 34
Cassine, Mill, 4, 33
Cassipourea, Aoblo, 294, 306
Castanea, T., 233, 260
Castaneopsis, Bl., 233
Castanopsis, Don, 237
Castilloa, Cervant, 157, 207
Catalissa, Miers, 413
Catalium, HAM, 291
Catappa, Gertn., 268, 284
Catha, Endl., 36
Catha, Forsk., 3, 31
Cathastrum, Turcz, 5, 36
Catinga, Aubl., 357
Caturus, Lour, 148,196
Ceanothus, L., 57, 81
Cecropia, Loefl., 162, 216
Celastrus, L., 5, 36
Celtis, T., 142, 189
Cenchramidea, Presl., 396
Cephalotrophis, BL., 196
Ceratostachys, Bu., 271
Cercodea, J., 477
Cercodia, Murr., 477
Cercophora, Miers, 378
Ceriops, ARN., 290, 302
Cerocarpus, Hassk., 358
Cerquieria, Berg., 353
Cerroides, Spach, 233
Cervispina, Mencir., 69
Chætacme, Pl., 192
Chamæjasme, Амм., 135
Chamrlaucium, DEsF., 322, 369
Chamænerium, Tausce., 467
Chamissonia, Line, 464
Cheynia, Drums., 361
Chicarronia, A. Ricy., 284
Chiratia, Montrous, 376
Chlamydanthus, C. A. Mer., 135
Chlamydobalanus, Endl., 233
Chloromyron, PERS., 426
Chlorophora, Gaudich., 196
Chrysochlamys, P(EPP., 401, $4 \geq 3$
Chrysoliga, W., 450
Chrysorilhoe, Lindl., 371
Chrysostachys, Poirl, 263
Chuncoa, Piv., 268, 284
Chydenanthus, Miers, 374
Chylisma. Nott, 464
Chymococca, Meissn.,113,137
Chytraculia, 1'. Br., 355
Chytralia, Adans., 355
Chytroma, Miers, 379
Cienkowskia, Reg.\&Racho, 21
Circæa, L., 473, 49S
Clarisia, R. \& I'sy, 218

Clarkia, Pursin., 466, 494
Clavimyrtus, Be., 313, 357
Cleistocalyx, BL., 358
Clercia, Velloz., 47
Clethropsis, Spach, 224
Cloezia, Br. \& Gr., 366
Clusia, L., 395, 421
Clusianthemum, Vieill., 406
Clusiastrum, Pe. \& Tri., 396
Clusiella, Pl. \& Tri., 400, 42:
Cneoroides, Spacm, 134
Coapia, Pis., 38 ?
Coccifera, Spach, 233
Cochlanthera, Crois., 395
Coleophora, Miers, 129
Colletia, Commers., 62, 91
Colubrina, Ricri., 55, 78
Comarostigma, Pe.\& Tris, 407
Combretocarpus, Hook. F. 297
Combretum, L., 263, 280
Commersona, Sonner, 326
Commersonia, Commers., 38
Commirhea, Miers, 401
Comptonia, Banks, 245
Condalia, Cav., 58, 84
Conocarpus, Gertn.,268, 284
Conocephalus, Bu., 161, 215
Conophyta, Isert, 508
Conothamnus, LiNDL., 362
Cookia, Gmel., 138
Cordylandra, PL. \& Ter., 396
Coridium, Spach, 386
Cormonema, Reiss., 56, 79
Comelia, Arduin, 440
Corylus, T., 225, 258
Corynostigma, Preslo, 466
Coupoui, Autbl., 335
Couratari, Aobl., 329,378
Couroupita, Aubl., $3 \because 9,378$
Coussapoa, AUBL., 162,215
Covellia, Gasf., 212
Crantzia, Sw., 16
Cratericarpium, Spach, 461
Cratoxylon, Bl., 365, 393
Crematostemon, Hort., 424, 448
Crenea, Aubl., 451
Criuva, PL. \& Tric., 395
Cruvionsis, PL. \& T'ri., 396
Crocoxylon, Eckl. \& Zeyh.,33
Crossopetalum, P. Mr., 3!
Crossophyllum, Spaci, 356
Crossostigma, Spach, 468
Crossostylis, Forst., 293, 304
Crunemaria, Marto, 60, 86
Cryptadeniá, Meissn., 128
Cryptandra, Sm., 63, 90
Crypteronia, BLe, 438, 458
Cryptostemon, F.MUELL., 370
Cryptotheca, Bu., 44:
Cubospermum, Lour., 166
Cudrania, Tréc., 1055 , 205
Cudranus, Reмrif., 205
Cuervea, Tri., 13

Cuphea, P. Br., 433, 453
Cuphæanthus, SEEM., 313, 357
Cyathodiscus, Hochst., 132
Cyclobalanus, Ende., 233
Cynomorium, Micieli, 506, 515
Cynopsole, Endl., 503
Cynoxylon, Pluir, 269
Cystogyne, Gasp., 212

Dactylanthus, Hoor. F., 505, 514
Dactylopetalum, Bente.,295, 306
Dais, L., 109, 129
Dantia, Pet., 466
Daphnanthes, C. A. MEx., 134
Daphne, L., 111, 133
Daphnikon, Poml, 13
Daphnobryon, MeIssn., 137
Daphnopsis, Mart. \& Zucc., 130
Darwynia, Rudg., 323, 369
Davidia, H. Bn., 271, 285
Decalophium, Turcz., 322
Decaspermum, Forst., 310, 353
Decodon, Gmex., 450
Demidofia, Dennst., 291
Denhamia, Meissn., 5, 36
Denhamia, F. Muell., 5
Dessenia, Adans., 127
Diarthron, Turcz., 112, 136
Diatoma, Lour., 291
Dicranolepis, PL., 107, 127
Dicranostachys, Tréc., 162, 217
Didiplis, Rafin, 440
Didymeles, Dup.-TH.,244,262
Didymophora, MIQ., 212
Diplachne, R. Br., 371
Diplalangium, H. BN., 273
Diplandra, Hook. \& Arn., 474, 498
Diplesthes, Harv. 47
Diplocos, Bur., 149, 199
Diplodon, Spreng., 458
Diplomorpha, Meissn., 134
Diplusodon, Poml, 437, 458
Dirca, L., 110, 132
Discaria, Hook., 63, 91
Discostigma, Hassk., 407
Disomene, Banks \& Sol., 483
Distegocarpus, S. \& Zucc., 228
Ditheca, Wigitt \& Arn., 440
Dobera, J., 12, 45
Dodecas, L., 432, 451
Dofia, Adans., 132
Dorstenia, Plum., 149, 199
Dorvalia, Commers., 476
Doxoma, Miers, 375
Draparnaudia, Montroux, 365

Drapetes, Lami., 113, 138
Drosanthe, Spaci, 386
Drosacarpium, Spach, 386
Drymispermum, Reinw., 104
Dryoptelea, SpaciI, 142
Dryptopetalum, Arn., 301
Duabanga, $\mathrm{HAM}_{\text {A }}, 435,455$
Dubyæa, DC., 458
Dumartroya, Giddicii., 196
Duvernaya, Desp., 453

Edgeworthia, Meissn., 111, 133
Elæodendron, JACQ. F., 4, 33
Eliæa, Cambess., 385, 393
Ellobium, Lilu., 470
Elodea, Spacii, 386
Elodes, Spaci, 386
Elscholtzia, Rici., 378
Embryogonia, Bl., 263
Emmenosperma, F. Muell., 54, 76
Encleisocarpon, Miq., 233
Encliandra, Zucc., 470
Endodesmia, 13enti., 393
Endonema, A. Juss., 98, 101
Enkleya, Griff., 130
Entelia, R. BR., 412
Enydria, Velloz., 480
Epicarpurus, BL., 198
Epichroxantha, Ecel.
ZEYH., 127
Epilithes, Bu., 481
Epilobium, L., 467, 495
Eremæa, Lindl., 318, 364
Eremanthe, SPacH, 386
Eremopyxis, H. Bn., 373
Eremosporus, SPaCH, 388
Ericomyrtus, Turcz., 361
Eriosolena, BL., 133
Eriosycea, Miq., 212
Erosma, ВотH, 212
Erythrobalanus, SPACH, 233
Erythrogyne, Vis., 212
| Eschweilera, Mart., 379
Esculus, Gay. 233
Eubeaufortia, H. Bn., 363
Eubetula, Reg., 223
Eucalyptus, LHér., 320, 367
Eusastanea, H. Bn., 237
Eucastanopsis, A: DC., 237
Eucelastrus, H. Bn., 37
Euceltis, H. BN., 190
Eucentrus, Presl., 36
Eucharidium, Fisch. \& Mey., 467
Euclissa, Endl., 101
Euclusia, Pl. \& Tri., 396
Eucuphea, Kienne, $4 \overline{5} 4$
Eudesmia, R. Bro, 867
Euendonema, H. BN., 101
Eufagus, A. DC., 239
Eufuchsia, H. BN., 470

Eugenia, Micmeli, 312,357
Eugeniastrum, Geiseb., 358
Eugeniopsis, Berg., 311,355
Eulinostoma, Meissn., 105
Eulobus, Nutt., 464
Eumelaleuca, H. Bn., 362
Eumyrtus, H. Bn., 310
Eunesæa, 13. H., 450
Euœeotbera, Torr. \& Gre, 464
Euosanthes, Cunn., 370
Eupellacalyx, H. BNo, 305
Euquapoya, H. BNe, 400
Euryomyrtus, Schau., 361
Eusalacia, H. Bn., 47
Eusarcocolla, Endl., 100
Euonymus, T., 1, 30
Eutristania, B. H., 364
Enverticordia, Schat., 371

Fabricia, Gertn., 314
Fagites, Ung., 250
Fagus, T., 237, 260
Fatioa, DC., 455
Fatoua, Gadoicis., 150, 200
Fatræa, J., 283
Faya, Webb, 246
Fegonium, Ung., 250
Feijoa, Berg., 311, 354
Feliciana, Cambess., 356
Fenzlia, Endl., 311, 354
\& Ferolia, Aubl., 211
Ficus, T., 160, 211
Flemia, Miq., 201
Florinda, Noronif., 38
Fœetidia, Commers., 328, 375
Forrestia, Rafin., 81
Forsgardia, Velloz., ${ }^{2} 63$
Francisia, Endl., 370
Frangula, T., 53
Frauenhofera, Mart., 6, 4)
Fremya, Br. \& Gro, 365
Friedlandia, Сеам., 458
Fropiera, Hoor. f., 439
Fuchsia, Pluli., 469, 496
Funifera, Leandr., 131
Funkia, Dennet., 281

Galactodendron, H. B. K., 211
Gale, Bauri, 245
Gallifera, Spacir, 233
Galoglychia, Gasp., 212
Galumpita, BLe, 191
Garcinia, L., 405, 425
Gaslondia, Vieilic., 357
Gaura, L., 471, 496
Gauridium, SPacE, 472
Gauropsis, Presl., 466
Gayophytum, A.Juss.,465,493
Geissoloma, Lindir, 19,51
Gelpkea, Bl., 358
Genetyllis, DC., 370
Genoria, Pers., 451

Getonia, Roxb., 283
Gimbernatia, R. \& Pav., 284
Ginora, L., 432, 451
Ginoria, J ACQ., 451
Ginoria, Sess. \& Moç., 450
Gironniera, Gaudich., 143, 190
Glaphyria, J $\begin{gathered}\text { ACK, } \\ 314\end{gathered}$
Glischrocaryon, Endl., 479
Glossopetalon, A. Gray, 7, 42
Glossopetalum, Schreb., 10
Glyptopetalum, Tifw., 3
Glyschrocolla, A. DC., 101
Gnidia, L., 108, 127
Gnidium, Spaci, 134
Godetia, Spacri, 464
Gomidezia, Berg., 353
Gomphanthera, PL. \& Tris, 396
Gonatocarpus, W., 477
Gongylocarpus, CHa3r., 47ㄹ, 497
Goniocarpus, DC., 477
Gonistylus, Teysm. \& Binn, 105, 124
Gonjocarpus, Kcen., 477
Gonocarpus, $\mathrm{H}_{\mathrm{AM}}, 263$
Gonocarpus, Tirunb., 477
Gonophyllum, Ecel. \& Zeyr., 128
Goodallia, Benti., 130
Gouania, L., 59, 85
Goupia, Aubl., 10, 44
Greggia, Gertn., 357
Grias, L., 376
Grislea, Lefl., 433, 45*
Gruropsis, Presl., 466
Guaiava, 'T., 356
Guapurium, J., 357
Guiera, Adans., 267, 289
Guiina, Crueg., 411
Gunnera, L., 482, 501
Gunneropsis, (Erst., 483
Gupia, J. S.-H., 10
Gustavia, L., 328, 377
Gymnagathis, Schau., 362
Gymnococca, Fisch. \& Mex., 138
Gymnosporia, Wight \& Arn., 5, 36
Gymnothyrsus, Spact, 224
Gynotroches, BL., 293, 304
Gyrinops, Gertn., 104, 123
Gyrinopsis, Dcne., 103
Gyrolecana, BL., 233

Hæmatostrobus, Endl., 508
Hrenkea, R. \& Pav., 37
Haloragis, R. Br., 479
Haloragis, Forst., 477, 500
Hambergera, Scor., 263
Hambergeria, Neck., "63
Hapalocarpum, W. \& Arn., 44

Haplopetalum, A. Grat, 304
Hargasseria, A. Rice., 130
Hargasseria, Scified.\&Deppo, 130
Harmogia, ScHau., $3 \mathbf{t l}^{1}$
Haronga, Dup.-TH., 384, 392
Harongana, Lamk., 384
Hartmannia, Spacti, 464
Hartogia, THunb., 4, 34
Harveya, Plant., 132
Hauya, Moç. \& Sess., 469, 49 万
Havetia, H. B. K., 400, 422
Havetiella, Pl. \& Thi., 399
Havetiopsis, Pl. \& Tri., 398
Hebradendron, Grait., 407
Hedaroma, Lindis, 370
Hedraianthera, F. Muell., 37
Heimia, Line \& Otr., 450
Helianthostylis, H. BN., 155, 205
Helicostylis, Tréc., 208
Helinus, E. Mey., 60, 86
Helminthosperma, Triw., 190
Hemiptelea, PL., 142, 188
Hemiquapoya, Pl. \& Tri., 400
Henslowia, Wall., 438
Heterogaura, Roтщr., 472,497
Heterolæna, Fisci. \& Mex., 138
Heteropyxis, Harv., 444
Heterostemum, Nuit., 464
Hexachlamys, Berg., 357
Hippocratea, L., 13, 46
Hippuris, L., 484, 50^{2}
Holoptelea, Pl., 142, 187
Holosepalum, Spacir, 386
Holostigma, Spacti, 464
Homalocalys, F. Muell., 326, 373
Homalospermum, ScHAU., 314
Homoioceltis, Bl., 191
Homoranthus, CUNN., 321, 370
Horau, Adans., 281
Hornschuchia, Bl., 385
Hovenia, Thunb., 55, 77
Humulus, T., 165, 219
Huttum, Adans., 326
Hydrolythrum, Hook. f., 443
Hylas, Bigel, 480
Hypericum, Spacп, 387
Hypericum, 'T., 386, 394
Hypobrichia, Curt., 441
Hypocalymna, Endl., 317, 361

Ichthyosma, Schlenti, 505
Ilex, Gay, 233
Ilex, T., 230
Imbricaria, Smi, 361
Inophyllnm, Borm., 410
Iridaps, Concmers., 174
Isnardia, L., 463

Isophyllum, Spagh, 356

Jambosa, DC., 357
Jambosia, Rumph., 313, 358
Jehlia, Hort., 474
Johnia, Roxb., 47
Jossinia, Commers., 357
Jugastrum, Miers, 379
Jungia, Gertn., 361
Jussiæa, L., 466

Kalengi, RHEED., 164.
Kalophyllodendron, Vaillu, 410
Kamptzia, Nees., 366
Kandelia, W. \& Arn., 291, 303
Kanilia, BL., 303
Karwinskia, Zucc., 54, 76
Kayea, Wall., 409, 427
Kelleria, Endl., 113, 137
Kierschlegeria, Spacir, 470
Kissosycea, Miq., 212
Kneiffia, Spact, 463
Kokoona, Tшш., 4, $3 \mathbf{2}$
Kosaria, L., 200
Kunzea, Reicпb., 318, 36!
Kurrimia, Wall., 6,39

Lacerdæa, Bera., 356
Lachara, L., 128
Lachnea, Roy., 108, 128
Lafoensia, Vandell., 437, 457
Lagerstrœmia, L., 435, 455
Lagretto, L., 131
Laguncularia, G正RTN. F., 267 , 281
Lamarchea, Gaudicir., 318, 362
Lamarckia, Endl., 3:3
Lamprophyllum, Miers, 410
Lanessania, H. Bn., 158, 210
Langsdorffia, Mart., 507, 515
Lanigerostemma, CHap., 38 ã
Lasiadenia, Bentif. 109, 129
Lasiodiscus, IIook. F., 61, 88
Laurenbergia, Berg., 481
Laurcola, SPaCH, 134
Lauridia, Eckl. \& Zeym., 34
Lavauxia, Spacif, 463
Lawsouia, I. 436,456
Leandria, A. Gray, 309
Lecythis, Leerl., 330,379
Lecy thopsis, Scrrr., 378
Legnotis, Sw., 306
Leiopyrena, Spaci, 190
Leiosycea, Miq., 212
Leitneria, Chapm., 24: 261
Lepidobalanus, Endl., 2\%3
Lepidopelma, KL., 49

Leptospermum, Forst., 314, 360
Lepurandra, Nimm., 206
Leucocarpon, A. Ricii., 36
Leuconocarpus, Sproce, 403
Leucosmia, Bentri., 104
Lhetzkya, Sc世av., 325, 371
Limnopence, Vaill., 484
Linodendron, A. Gray, 130
Linostoma, WALL., 105, 125
Lipophyllum, Miers, 395
Lithocarpus, BL., 233
Llavea, Leebm., 21
Lopezia, Cır., 474, 499
Lophopetalum, WIGHT, 3
Lophostemon, Sciotr., 364
Lophostoma, Meissn., 107, 126
Lophozonia, Torcz., 237
Lotopsis, Spaci, 190
Loudonia, LindLe, 479, 500
Ludwigia, L., 465, 494
Ludwigiaria, DC., 466
Luma, A. Gray, 310
Lumnitzera, W., 266, 281
Lupulus, T., 165
Lyciopsis, Spach, 470
Lugia, Fasan., 135
Lysicarpus, F. Muell., 366
Lysimachia, Baטн., 447
Ljsimachion, Tausch., 468
Ly throcuphea, Kiefne, 454
Lythrum, L., 429, 449

Macahanea, Aubl., 413
Macarisia, DUP.-TH., 293, 305
Macgregoria, F. Muell., 44
Macharisia, Endl., 293
Macklottia, Korth., 314
Maclellandia, Wight, 456
Maclura, Nutt., 147, 196
Macoubea, Aubl, 413
Macromyrtus, Mre., 357
Macrophthalma, GASP., 212
Macropsidium, Bu., 309
Macropteranthes, F. Moell., 267,282
Macrorhamnus, H. Bn.. 54, 76
Macrostegia, Turcz., 138
Maillardia, Frappo, 146
Maiten, Feuill., 37
Malaisia, Blanco, 196
Mammea, Plum., 408, 426
Mangium, RompH., 457
Mangle, Plukn., 287
Manglesia, Lindl., 363
Mangostana, Gertn., 406
Maquira, Aubl., 157, 209
Marcorella, Neck., 53
Marialva, Vandell., 401
Marlea, Roxb., 273
Marleopsis, H. Bn., 273

Marlieria, Cambess., 311, 355
Maurocenia, Mill, 33
Maytenus, Feuill., 6, 37
Megadendron, Miers, 374
Megapterium, Spacir, 464
Meionectes, R. Br., 479
Melaleuca, L., 362
Melanium, P. Br., 453
Melanocarya, Tuncz., 3
Mevilla, Anders., 453
Menichea, Sonner., 326
Meriolix, Rafin., 464
Mesua, L., 409, 427
Meteorus, Lour., $3 \geq 6$
Methyscophyllum, Ecki., 31
Metrosideros, BanEs, 319, 365
Meyropeltis, WELw., 204
Mezereum, C. A. Mey., 133
Mezereum, Spaci, 133
Micranthera, Chois.。 40]
Microjambosa, BL., 357
Micromyrtus, Bentu., $3 \geq 6$, 373
Microptelea, Spaci, 140
Microrhamnus, A. Graf, 58, 81
Microrhamnus, Maxtm., 53
Microtropis, Walle, 4, 31
Middendorfia, Trattv., 440
Milleporum, Spach, 386
Milligania, Hook. F., 483
Misandra, Commers., 483
Misandropsis, (ERst., 483
Mitranthes, Berg., 355
Mitraria, Guel., 36
Molinæa, Commers., 93
Mollia, Gmel., 361
Momisia, Dumort., 189
Momisiopsis, BL., 189
Monetia, LHér., 12
Monoxora, Wight, 354
Monteverdia, A. Rich., 37
Montinia, L. F., 469, 495
Montrouzeria, Panch., 404, 424
Mooria, Montrodz., 320, 366
Moronobea, Aubl., 403, 424
Mortonia, A. Grax, 7, 41
Morus, T., 144, 193
Moya, Griseb., 37
Mullofullon, Dios, 480
Münchhaussia, L., 455
Musanga, R. Br., 162, 217
Myginda, L., 34
Myrceugenia, Berg., 310
Myrcia, DC., 311, 353
Myrcianthes, Berg., 309
Myrciaria, Berg., 357
Myriandra, Spach, 386
Myrianthus, P. Beadv., 162, 217
Myrica, L., 244, 262
1 Myrinia, Lilu., 470
Myriopeltis, Welw., 204

Myriophyllon, Vaill.,480,501
Myriophyllum, L., 480
Myrobalanus, Fisetn., 268, $28: 3$
Myrrhinium, Schotт., 312, 356
Myrteola, Berg., 309
Myrtus, T., 308, 352
Mystropetalon, HARV., 505 , 514
Mystroxylon, Ecki., 33

Nægelia, Zoll. \& Mor., 59
Nagassarium, RompII., 409
Nageia, Gertn., 246
Naghas, Herm., 409
Nahusia, Schneev., 470
Nania, Miq., 365
Napoleona, P.BEAUV.,331,380
Naucleopsis, Miq., 157, 208
Nectandra, Berg., 127
Nectandra, Roxb., 105
Neerija, Roxb., 33
Neesia, Mart., 131
Nelitris, Gextn., 353
Nematopyxis, Miq., 465
Nematostigma, PL., 190
Nematosycea, Miq., 212
Neriophyllum, B. H., 364
Nesæa, Commers., 432, 450
Nesiota, Hook. f., 61, 87
| Nimmoia, Wigпт, 440
Noltia, Reichb., 55, 78
Nordmannia, Fisch. \& Mey., 130
Norysca, Spaci, 386
Nothofagus, BL., 237
Notophæna, Miers, 91
Noyera, Tréc., 157, 208
Nyssa, L., 269, 284

Ochetophila, Miers, 91
Ochrocarpus, Dup.-TH., 408, 426
Ocimastrum, Rupr., 473
Octolepis, OLIv., 105, 125
Edematopus, PL. \& Tri., 399
Enoplea, $\mathrm{H}_{\text {Edw., }} 80$
(Enothera, L., 461, 493
Ogcodeia, Bur., 209
Oligospora, PL. \& Tri., 399
Olinia, Thunb., 48
Olmedia, R. \& Pav., 155, 206
Olympia, Spacte, 388
Omphalanthera, Pe. \& Tri., 396
Onagra, T., 461
Onosuris, Rafin., 486
Ophispermum, Lour., 102
Opisanthes, LiluJ., 466
Oreophila, Nutt., 30
Oreoptelea, Spach, 14 e

Ortegioides, Soland., 442
Orthostemon, Berg., 354
Osbornia, F. MoEll., 322, 368
Ostrya, Micheli, 229
Ostryopsis, Dcne., 227
Ovidia, Meissn., 112, 134
Oxycarpus, Lour., 406
Oxymyrrhine, Schad., 361
Oxystemon, Pl. \& Tri., 395

Pachylophis, Spacir, 463
Pachysandra, Micix., 19, 49
Pachysandria, Hoor., 49
Pachystima, Rafin., 3, 30
Pachytropbe, Bur., 193
Paivea, Berg., 355
Paletuviera, Dup.-TH., 303
l’aliurus, T., 58,83
Pamea, Aubl., 268, 283
Panke, Feuill., 483
Pankea, (Erst., 483
Papyrius, Poir., 195
Parartocarpus, H. BN., 154, 204
Parasponia, Mie., 143, 191
Paratrophis, Bl., 146, 194
Parietaria, Lescifen, 201
Parsonsia, P. Br., 453
Paryphantha, ScHav., 373
Pasania, Miq., 233
Passerina, L., 113, 136
Pautsauvia, J., 273
Peddiea, HARV., 110, 132
Pellacalyx, Kortir., 293, 305
Pelonastes, Hook. f., 480
Peltostigma, Pl. \& Tri., 407
Pemphis, Forst., 437, 456
Репæа, Ls, 95, 100
Pentadesma, Sab., 404, 425
Pentagonaster, Kı., 364
Pentaptera, Roxi., 268, 284
Pentapteris, Hall, 480
Pentapterophyllum, Dille, 480
Peplis, Lo, 440
Perebea, Aubl., 157, 209
Pereskia, Velloz., 13
Pericalymna, Endi., 314
Peripterygia, H. Bn., 39
Perissus, Miers, 413
Perpensum, Burm., 483
Perrottetia, H. B. K., 6, 39
Petalocarpum, DUp.-TH., 35
Petaloma, DC., 291
Petaloma, Roxb., 281
Petalopogon, Reiss., 87
Petersia, Welw., 328, 375
Pevrea, Commers., 263
Phæeostoma, SPACH, 466
Phaleria, JACK, 101, 124
Pharmacosycea, Mrq., 212
Phloianthera, Pl. \& TRI., 396
Phylica, L., 60, 86
Phyllocalyx, Berg., 357

Phyllochlamys, Bor., 149, 199
Phyllothyrsus, Spacir, 224
Phymatocarpus, F. Muell., 363
Physocalymma, PoIIц. 437, 457
Physopodium, Desvx., 445
Pileanthus, Labili., 325, 371
Piliocalyx, Be. \& Gr., 314, 358
Pilosperma, Pl. \& Tri., 400, 422
Pimelea, Banks \& Sol., 114, 138
Pimenta, Lindl., 310, 353
Pinastella, Dill., 484
Piptocelus, Turczo, 21
Piptochlamys, C.A.MEy., 135
Piratinera, AOBL., 160, 211
Pirigara, Auble. 377
Pisaura, Bonat., 474
Plesiantha, Hook. F., 305
Plagiostigma, Zucc., 212
Planchonia, BL., 328, 374
Planera, Guel., 142,188
Platonia, Mart., 404,425
Plecospermum, Tréc., 148, 197
Plenckia, Reiss., 7, 41
Pleurandra, Rafin., 486
Pleurocalyptus, Br. \& Gr., 319, 365^{5}
Pleurophora, Don., 431, 449
Pleurostemon, Rafin., 486
Pleurostylia, W. \& ArN., 5, 36
Plinia, L., 357
Plokiostigma, Sciád., 8
Plutonia, Noronif., 104
Podosycea, Miq., 212
Pæciloneuron, Bedd., 410,427
Pogonotrophe, Miq., 212
Poivrea, Commers., 263
Pokornya, Montrouz., 446
Polyacanthus, Peesl., 36
Polycardia, J., 6, 38
Polygonum, Poir., 164
Polyphema, Lour., 151
Polythecandra, PL. \& Tri., 395
Polyzone, Endl., 370
Pomaderris, Labill., 61, 89
Pontoppidana, Scof., 378
Portenschlagia, Tratt., 33
Pourouma, Aubl., 161, 214,
Prieurea, DC., 466
Primulopsis, Torr.\& Gr., 463
Proserpinaca, L., 482, 501
Proteophyllum, Spaci, 190
Pseudais, Dene.s, 104
Pseudalangium, F. Muell., 273
Pseudocaryophyllus, Berg., 310
Pseudngunnera, Erst., 483

Pseudolmedia, Tréc., 157, 207
Pseudomorns, Bur., 146, 194
Pseudosorocea, H. Bn., 161, 213
Pseudostreblus, Bur., 149, 198
Pseudotreculia, H. BN., 201
Psidiopsis, Berg., 356
Psidium, L., 312, 356
Psilæa, Miq., 127
Psilosolena, Presl., 132
Psiloxylon, Dur.-TH., 4.39, 459
Psorophytum, Spach, 386
Psorospermum, SpaciI, 384, 392
Ptelidium, Dop.-Tir., 5, 35
Pterocelastrus, Meissn., 6, 38
Pteromyrtus, H. BN., 313, 357
Ptilophyllum, Nutt., 481
Ptolina, Nutt., 441
Punica, T., 333, 381
Purshia, Rafin., 480
Putterlickia, EnDL., 5, 37
Pyrospermum, Miq., 39
Pyrranthus, Jack., 281

Quapoya, Aubl., 398, 421
Quartinia, Endl., 41:3
Quelusia, Vandella, 470
Quercinium, Ung., 250
Quercites, UNG., 250
Quercus, T., 230, 259
Quilina, Aubl., 411, 428
Quilamum, BLanco, 438
Quisqualis, L., 266,280

Raddisia, Leandr., 47
Rademachia, Tmune., 151
Radojitskya, Turcz., 128
Ramatuelia, H.B.K., 268, 283
Receveura, Velloz., 386
Regelia, Scinau., 363
Reissekia, Endl., 60, 85
Renggeria, Meissn., 398
Rengifa, Paspr., 398
Retamilia, Miers, 93
Retanilla, Ad. Br., 63, 99
Retinaria, Gertno, 59
Retinostemon, PL. \& Tri., 396
Reynosia, Griseb., 84.
Rhacoma, It, 5, 34
Rhamnella, MIQ., 53
Rhamnidium, Kerss., 54, 75
Rhamnus, T., 52, 75
Rheedia, L., 408, 426
Rheediopsis, H. BN., 407
Rhinostigma, Mrq., 406
Rhizophora, L., 287, 302
Rhodamnia, JACK., 311, 354
Rhodomyrtus, DC.., 310, 35^{2}
Ihyacophila, Hocnst., 443, 460

Rhyma, Ncop., 409
Rhytinandra, A. Gray, 273
Richiria, DUp.-Tн., 307
Riesenbachia, Presl., 476
Rima, Sonner., 151
Rinzia, Schav., 361
Robur, Spacir, 233
Romualda, Tri., 13
Roscyna, Spact, 386
Rotala, L., 442
Roumea, Wall., 133
Rubachia, Berg., 355
Rubentia, Commers., 33
Rudbeckia, Adans., 281

Sagaretia, AD. BR., 56, 80
Sahagunia, Liebm., 161, 214
Salacia, L., 15, 47
Salicaria, 'T., 429
Salisia, Iundl., 364
Salvadora, Garc., 12, 46
Sanamunda, Clus., 135
Sarcococca, Lindl., 19, 49
Sarcocolla, K., 97, 100
Sarcocordylis, Wale., 503
Sarcodiscus, Mart., 213
Sarcomphalus, P. Br., 55,77
Sarcophyte, SParm., 505,514
Sarcynpia, H. BN., 365
Sarothra, L., 386
Schæfferia, Jace., 6, 37

Schizocalyx, Berg., 313, 359
Schizocalyx, Hocest., 45
Schizocarya, Spach, 472
Schizomyrtus, H. BN., 359
Schizopleura, LindL., 363
Schœonobiblus, MART., 114, 138
Scholtzia, ScHav., 317, 361
Schousbcea, W., 263
Schrebera, Retz., 33
Schrebera, Tilunb., 34
Schuermannia, F.Méll., 370
Schufia, Spach, 470
Schweigreera, Mart., 399
Sciadophila, Phil., 84
Scopolia, L. F., 133
Scutia, Commers., 57, 81
Scybalium, Harv., 505
Scypharia, Miers, 62
Scyphosyce, H. Bn., 159, 210
Scytophyllum, Eckl. \& Zeym. 37
Sellowia, Roti., 440
Senftenbergia, KL. \& Karst., 507
Seringia, Spreng., 35
Serpicula, L., 481, 501
Sheadendron, Bertol., 263
Shringata, Jones, 476
sicelium, P. Br., 47
Simmondsia, Nott., 19, 50

Singana, Aubl., 413
Siphoneugenia, Bera., 357
Siphonodon, Griff., 7, 40
Sitodium, Banes, 151
Skaphium, Mıq., 105
Skinnera, Forst., 469
Sloetia, Teysm. \& Binn., 151, 201
Smythea, Seem., 57, 82
Soala, Blanco., 413
Soaresia, Allem., 214
Solenostigma, Endlı, 189
Sonneratia, L. F., 328, 376
Sorocea, A. S.-H., 161, 213
Soulangia, AD. Br., 87
Spachia, Lillue, 470
Spallanzania, Neck., 377
Sparattosyce, Bur., 161, 213
Spermolepis, Br. \& Gr., 366
Sphærandra, PL. \& Tri., 396
Sphærostigma, SER., 464
Sphalanthus, JACk., 280
Sphenocarpus, Ricir., 281
Sphondylastrum, Torr., 481
Sphondylophyllum, Torr., 480
Sponia, Commers., 190
Sponioceltis, Pl., 190
Spyridium, Fenzl., 61, 89
Stackhousia, Sm., 8, 43
Stalagmites, Murr., 405
Stauroclusia, Pl. \& TRi., 396
Stelechospermum, Bu., 413
Stellera, Gertn., 135
Stellera, Gmel., 112, 135
Stenanthemum, Reiss., 62, 90
Stenocalyx, Berg., 357
Stenochasma, Mıq., 218
Stenodiscus, Reiss., 89
Stenosiphon, Spact, 472
Stephanodaphne, H. BN., 107, 126
Stravadia, Pers., 326
Stravadium, J., 326
Streblus, Lour., 149, 198
Stromadendrum, Pav., 195
Strongylocalyx, Be., 358
Struthia, Roy., 127
Struthiola, L., 113, 137
Stylapterus, A. Juss., 97
Stylidium, Loor., 273
Stylis, Poir., 273
Styloceras, A. Juss., 19, 50
Suber, SPACH, 2 èz
Suber, T., 230
Suffrenia, Bell, 442
Sychinium, Destx., 200
Nycocarpa, Miq, 212
Sycomorphe, Miq., 212
Sycomorus, Gasp., 212
Syllysium, Mey. \& Schau., 357
Symmetria, BL., 291, 445
Symphonia, L. F., 402, 421

Symphyomyrtus, Scmat., 320, 367
Synædris, Lindl., 230
Synaptolepis, OLiv., 107, 126
Syncarpia, Ten., 319, 365, 366
Synœсіа, Miq., 212
Syzygium, Gertn., 313, 357

Talguenea, Miers, 63, 93
Tanibouca, Aubl., 284,
Taraxia, NutT., 464
Taxandria, Bentie., 360
Taxotrophis, BL., 149, 198
Taxotrophis, F. Muell., 194
Teichmeyera, Scop., 377
Temu, Berg., 309
Temus, Mol., 309
Tenorea, Gasp., 212
Tepualia, Griseb., 319, 365
Terminalia, L., 267, 283
Terpnophyllum, Tirw., 407
Tetracrypta, Gardno, 296
Tetradia, Dup.-Tн., 454
Tetrapasma, Don., 91
Tetrapora, Schau., 361
Tetrastemon, Hook. \& Arn., 356
Tetrataxis, Hook. F., 435, 454
Theaphyllum, Nott., 39
Thecanthes, Wikstr., 138
Thilco, Feuill., 470
Thiloa, Eichl., 265
Thönningia, VaHl., 508,516
Thryptomene, Endl., 326, 373
Thymelæa, T., 112, 135
Thymelina, Hoffusa, 127
Thymopsis, Spacer, 388
Tindaparua, Rieed., 198
Tita, Scop., 306
Tolypeuma, E. Mex., 450
Tombea, Br. \& Gr., 376
Tomex, Forsk., 45
Tomostylis, Montrouz., 445
Tonsella, Schreb., 47
Tontelea, Aubl., 47
Toromita, Aubl., 401, 423
Tovomitopsis, Pl. \& Tri., 401
Toxylon, Rafin., 196
Trachycarpus, PL. \& Tri, 101
Trapa, L., 476, 499
Treculia, DcNe., 154, 204
Trema, Lour., 143, 190
Trematosycea, MIq., 212
Trevoa, Miers, 63, 94
Triadenia, Spıcн, 336
Tribuloides, T., 476
Tricera, Sw., 19
Trichocephalus, Ad. Br., 87
Tridesmis, Spach, 385
Tridia, Korth., 386
Trigonocarpus, WALL., 32

Trigonotheca, Hocist., 31
Triplandron, Benth., 396
Tripterococcus, Endl., 8
Tripterygium, Hook. f., 7, 41
Tristania, R. Br., 318, 364
Tristaniopsis, Br. \& Ge., 364
Tritheca, W. \& Arn., 440
Trixis, Mitch., 482
Trophis, P. Br., 146, 195
Trophis, Retz., 198
Trymalium, Fenzl., 61, 88
Trymatococcus, Peppr, 202
Tubanthera, Commers., 78
Tubo-Avellana, Spach, 227
Tupelo, Catesb., 269
Tylanthus, Rerss., 87

Ugni, 'Turcz., 309
Ulmus, T., 140, 187

Uromorus, Bur., 194
Urostigma, Gasp., 212
Urtica, Tiúnbe, 201

Velaga, Gertn., 455
Ventilago, Gertno, 57, 82
Verticillaria, R. \& PAv., 426
Verticordia, DC., 324, 371
Vicentia, Allem., 281
Vigiera, Velloz., 466
Visiania, Gasp., 212
Vismia, Vandell., 382, 392
Vittmannia, W. \& Arn., 78
Vyenomus, Presl., 1

Walpersia, Reiss., 87
Webbia, Spach, 388
Weihea, Spreng., 295, 307

Wichurea, Nees., 90
Wikstromia, Endl., 112, 134
Willemetia, AD. Bro, 78
Wimmeria, Schlcutl., 6, 38
Winterlia, Spreng., 440
Woodfordia, Salisb., 433, 452

Xanthe, Scirmeb, 396
Xanthochymus, Roxb., 405
Xanthostemon, F. Muell., 319,365
Xylopleurum, SPACH, 463

Zauschneria, Presl., 467, 494
Zelkova, Spact, 142, 188
Zinowiewia, Turcz., 5, 35
Zizyphus, T., 58, 83
Zugygium, P. Br., 355

[^0]: ${ }_{1}$ Euonymus T. Inst. 617, t. 388.-Adans Fam. des. Pl. ii. 304. - L. Gen. n. 271. - Gen. 377.-Giertn. Fruct. ii. 149, t. 113.-Lamk. Dict. ii. 571 ; Suppl. ii. 685 ; Ill. t. 131.-DC. Prodr. ii. 3.-Turp. in Dict. Sc. Nat. Atl. t. 272. --Spach, Suit. à Buffon, ii. 404.-Endl. Gen. VOL. VI,

[^1]: n. 5676.-A. Grax. Gen. Ill.t. 171.-B. H. Gen 360, 997, n. 1.-H. Bn. in Payer Fam. Nat. 323.-Hook. Fl. Ind. i. 607.- Vyenomus Presl, Bot, Bem. 32 (inel. Glyptopetalum Thw. Lophopetalum Wight, Melanoctrya Turcz.

[^2]: ${ }^{1}$ They are extrorse in the young flowers of E. Europceus. In E. lucidus, it may be said that the younger the anther, the more introrse it is. This can be seen clearly in E. fimbriatus, Lophopetalum, etc. The pollen is generally "ovoid; three-fold; in water, spherical with three bands and papillæ," Н. Mонц. Ann. Sc. Nat. ser. 2, iii. 338), the same in Celastrus, where it may have " an external finely cellulose membrane."

[^3]: ${ }^{2}$ E. verrucosus, atropurpureus, etc.
 ${ }^{3}$ A double coat.
 ${ }^{4}$ Springing primarily from the micropyle, and may extend more or less round the umbilicus, even to its entire circumference.
 ${ }^{5}$ E. japonicus, lucidus, echinatus, latifolius,
 ${ }^{6}$ See H. Bn. Rech. sur les Ovules des Euonymus cultivés à Paris (in Bull Soc. Bot. de Fr. v 256, 314).

[^4]: ${ }^{1}$ Thw. Hook. Few Journ. viii. 267, t. 7B; Enum, Pl. Zeyl. 73.-B. H. Ger. 361,-Hoor. Fl. Ind. i. 612.
 ${ }_{2}$ Turcz. Bull. Mose. (1858), i. 453.
 ${ }^{3}$ Wight, Amn. Nat. Hist. iii, 151; Icon. t. 162.-Endl. Gen. n. $5670 .-$ B. H. Gen. 362. n. 6 .
 ${ }^{4}$ Reichb, Ic. EV. Germ.t. 309, 310.-Houk, and Arn. Becch. Voy. Bot. t. 54.-Wight and

[^5]: Arn, Prodr. i. 160.-Wall. Pl. As. Rar. t. 254. -Wight, Icon。 t. 214, 973, 1053.-Mra. Fl. Ind.-Bat. Suppl. i, 512.-Benn, Pl. Jav. Rar. t. 28.-Benth, Fl. Hongk. 62.-F. Muell. Fragm. iv. 118.-A. Gray, Man. ed. 5, 116.Boiss Fl . Or. ii. 8.-Gren. and Godr. Fl. de Fr. i. 331.-Walp. Rep. i. 530 ; ii. 827 ; i. 188 (Lophopetalum), 189; vii. 5074, 575 (Glyptopetalum).

[^6]: 1 The genus Alzatea R. et Pay. placed near the preceding, but without any certainty, becauseno one since Pavon has been able to study it, is distinguished by its campanulate calyx, its apetalous 5 -androus flowers, and a bilocular

[^7]: obcordate ovary, followed by a loculicidal capsule of the same form, with numerous superposed winged seeds. It is a Peruvian shrub, with opposite entire leaves and flowers in terminal corymbiform cymes.

[^8]: ${ }^{1}$ Denhamia, Australian plants, with capsular osseous fruit, are also distinguished from Celastrus by pluriovulate ovarian cells. But there

[^9]: ${ }^{1}$ Siphonodon Griff, Javan and Australian plants, abnormal in this group, cannot however, as it appears, be far removed from the preceding genera, from which they are immediately distinguished by their deep receptacular cup enclosing an ovary formed of numerous

[^10]: ${ }^{1}$ Sm. Trans. Lim. Soc. iv. 218.-Endl. Gen. n. 5763.-Lindl. V'ég. Kingd. 589, fig. 400.Šнисır. Limax, xxvi. 1.-B. H. Gen. 371, 998. -H. Ds. Payer Fan. Nat. 219 ; Adansonia, xi. 289.-Schnizl. Iconogr. t. 250,-Benth. DC. I'rodt: xv. sect. i. 500.-Tripterococcus Endu.

[^11]: Etum. Il. IHugel. 17; Ger. n. 5764.-Plokiostigma Schuch, loc.cit. 39.

 2 "Pollen sub-4-lobum echinulatum."(Benth).
 ${ }^{3}$ The mesocarp is often at first somewhat fleshy and separable from the putamen.

[^12]: ${ }^{1}$ At first the mesocarp is a little fleshy, and the wings separate from the hard and striated putamen, externally very rugose.
 ${ }^{2}$ Labill. Pl. Souv.-Holl. i. 77, t. 104.-Sieb. in Spreng. Syst. Cur. Post. 124; Hook. Journ. of Bot. ii. 421.-Hook. Icor. t. 269.-Lindl. Bot. Reg. t. 1917.-Sm, Rees Cycl. xxxiii.-A. Rich.

[^13]: ${ }^{1}$ Aubl. Guian. i. 295, t. 116,-J. Gen. 378. -Lami. Dict. iii. 15 ; Ill. t. 217.-DC. Prodh. ii. 29.-Benti. Hoole. Hew Journ. iv. 11.-Endi. Gen. n. 5696.-MIERs, in Am. Nat. Hist. ser. 3, ix. 289, 203 ; Contrib. to Bot. ii. t. 74.-B. H. Gen. 369, n. 35.-H. Bn. Payer Fam. Nat. 325.

[^14]: J. S. H. Exp. Fam. ii. 267.-Glossopotalum Scureir. Goz, n. 526.
 = A. glabra Auble-Walp. Rcp. i. 539 ; Ann. iv. 427 ; vii. 583.- ? G. tomentosa Aubl. Glossopctalum glabrum Schres. loc. cil.-W. Sprc. n. 588.

[^15]: ${ }^{1}$ Lamk. Dict. i. 343 (1783) ; Ill. t. 807.-J. (Actegiton),-H. Bn. Adansoniu, ix. 282, t. 10 , Gcn. 420゙-A, DU. Prodr. xvii. 29.-Monetin Lher. Stip. 1, t. 1.-Endi. Gen. n. 5711, 6891. -H. Bn. Adansonia, ix. 285, 289.
 ${ }^{2}$ Bl. Bijdr. 1143. - Endi. Gen. n. 5693
 (Actegiton),-H. Bn. Adanson
 fig. I-3.-A. DC. loc. cit. 20 .
 ${ }^{3}$ Equal or unequal, as if caused by the tear. ing of a monophyllous envelope.

[^16]: ${ }^{1}$ Lamk. loc. cit.-A. DC. loc. cit. 29, n. 1.-? A. nova Blanco, Fl. Filip. ed. 2, 49.-Fugonia Montana Hoнen. herb.-Monetia barleroides Lher. loc, cit.-H. Bn. Adansonia, ix. 285.
 ${ }^{2}$ Sect. Azima H. Bn. loc. cit.
 ${ }^{3}$ Wight. Ill. t. 152.-Harv. and Sond. \boldsymbol{F} /.

 Cap.i. 474 (Monetia) --Tul. Am. Sc. Nat. sér. 4. viii. 113 (Monetia),-Walp. Rep. i. 541 (Monetia); Ann. i. 16.
 ${ }^{4}$ II. BN. Adansonin, ix. 286.
 ${ }^{5}$. Small, white or pink, odorous.

[^17]: ${ }^{1}$ Hippocratere L. Gen. n. 54.-J. Gen. 251.Iasme. Dict. 395; Suppl. i. 606 ; Ill. t. 28.DC. Prodr. j. 567.-Turp. Dict. Sc. Nat. Atl. t. 162.-Spach. Suit. ù Buffon, ii. 399.-Endl. Gen. n. 5700.-Payer, Organag. 163, t. 35.-H. Bn. Payer Fam. Nat. 326.-B. H. Gen. 369,

 998, n. 36.-Hook. Fl. Ind. i, 623.-Coa Plum. Gen. 8, t. 35.-Pcreskia Velloz. Fl. Flum.34, i. t. 81 (not Mill, nor Plum.) - Bejuco Idefl. It. 404.-Daphnikon Poul, Flore (1825), 183 (from Endl.) - ? Romualda Tr. Am. Sc. Nat. sér. 5, xจi. 370.-Cucrvea Tr. (ex B. H.).

[^18]: ${ }^{1}$ Each cell often divides into two cellules for a longer or shorter time distinct.
 ${ }^{2}$ Tho pollen is similar to that of the Celas-
 trea in general.-(H. Mohl, Ann. Sc. Nat. sér. 2, iii. 838.)

[^19]: ${ }^{1}$ White, yellow, or greenish.
 ${ }_{2}$ R. et Pav, Fl. Per. t. 47.-Roxb. Pl. Coromand. t. 130, 205.-Rudg. Guian. t. 8, 9.-Bl. Bijdr. 218.-A. S. H. Fl. Bras. Mher, ii. 102.Wight and Arn. Prodr. i. 103.-Wight, $1 l l$. t. 46,47 ; Icon. t. 380,963 . - Guillem et

[^20]: Perr. Fl. Seneg. Tent. i. 111, t. 25, 26.-OLiv. Fl. Trop. Afr. i. 366.-Tul. Ann. Sc. Nat. sér. 4, viii. 91.-Griseb. Fl. Brit. W.-Ind. 148.Walp. Rep. i. 400 ; ii. 812 ; v. 146 ; A nn. ii. 193; vii. 583.

[^21]: ${ }^{1}$ Buxus T. Inst. 578, t. 345,-L. Gen. n. 1053.-Adans. Fam. des Pl. ii. 355.-J. Gen. 388.-Geertn. Fruct. ii. 125, t. 108.-Lamk. Dict. i. 510 ; Suppl. i. 742 ; Ill. t. 761.-A. Juss. Tent. Euplorbiac. 13, t. 1, fig. 3.-Nees, Gen.t. 56.-Spacir, Suit. ii Buffon, ii. 491.Ennl. Gen. n. 5869.-H. Jin. liall. Soc. Hot. de Fs. iii. 285 ; Monogr. des Iiuxac. et des Stylocér. (1859), 2, 5S, t. 1, 2; Allansomia, xi. 283.-M.

[^22]: 1 The dried endocarp separates entirely from the more external layers of the pericarp. VOL, VI.

[^23]: ' On its mode of development, see IL. Bn. Godr. Fl. de Fr. iii. 101.-W. Spec, iv, 337.Monogr. Duxac. et Styloc. 35 .
 ${ }^{2}$ Thunb. Fl. Jap. 77.-Duham. Arbr. i. 82. Reichb. Ic. Fl. Geem, v. t. 1v3,-Gren. et

 GODR. Fl. de FY. 111. 101, -W. Spec. iv. 337.Brit. W.-Ind. 31.-Borss. Diagn. Pl. Or. xxii. 107.-H. Bn. Buxac. 58 ; Adansonia, xi. 268.

[^24]: ${ }^{1}$ Eubuxus H. Bn, Buxac. 58.-M. Arg. Prodr. 17, sect. 2.
 ${ }^{2}$ Sw. Fl. Ind. Occ. i. 333, t. 7.-Evdl. Gci. n. $5868_{0}-\mathrm{H} . \mathrm{BN}_{\mathrm{N}}$ Buхас. 66.
 ${ }^{3}$ Lindl. ex K. Linnea, v. 678.-A. Juss, Ann. Sc. Nat. sér. 3, vi. 19, 27, t. 4.-Sowd. Limпa, xxiii. 105.-Endl. Gen. n. 2118.-H. Bn. Payer Fum. Nat. 334 ; Bull. Soc. Lim. Par.

[^25]: 31 ; Adansonia, xi. 2S1.-A. DC. Prodr. xiv. 492.

 The two latcral envelop the two others, which are primarily contorted or imbricate,

[^26]: A. De Candolle has seert the lateral sepals interior.
 ${ }^{2}$ Similar to that of the Boxes.

[^27]: ${ }^{1}$ G. marginatum A. Juss.-Penaa marginata L. Mantiss. 199.-Thunb. Berl. Mag. 1, t. 3 ; Fl. Cap. (ed. Sch.) 150.-Vent. Malmais. t. 87, fig. 1.
 ${ }^{2}$ Covered with simple hairs when young, thickened at the edges.
 ${ }^{3}$ Glanduliform, blackish.
 4 Flind. Voy. Bot. 22; Misc. Workis (ed. Bexn.) i. 27 (Celastrincee).-Celastracere Lindl. V'g. Kingd. (1846), 586, Ord. 325.
 ${ }^{6}$ Fam. des Pl. ii. 303, sect. 1.
 ${ }^{6}$ Ger. 376, Ord. 13 (1789).
 ${ }^{6}$ Prodr. ii. 2, Ord. 55.
 ${ }^{8}$ Lour, Fl. Cochinch. (ed. 1790), 157.-DC. Piodi. ii. 11.-Endl. Gen. n. 5694. "Whether Caryospermum BL. ?" (B. H.).
 ${ }^{9}$ Gen. 1085, Ord. 236.
 ${ }^{10}$ Gen. 357, Ord. 47.

[^28]: 11 Liemm. Iijober. Fed. Mreduel. (1853), 95.B. H. Gen. 370, n. 39.-Walp. Ann. iv. 421.Very ramose small shrubs from Mexico (two species), with alternate leaves, unisexual, pentamerous, apetalous flowers, and trilocular ovary. The cells are pluriovulate, and the fruit is dry and furnished with three large wings. The male flower is unknown. The genus Piptocelus Presl (ex Turcz. Bull. Mosc. (1808). i. 449), has also been doubtfully referred to this family, but Bentham and Hooker (Gen. 360) say of it: "Verisimil. ab Ord. expellend. ob calyc. longit. ruptum, petala basi calyc. adnata, anther. acum. incurv. arillumque hirsutum." The genus Cicnkowskia (Reg. et Raci, Ind. Sem. Hort. Petrop. (1858), 48 , has been shown by us (Bull. Soc. Linn. Par, 143) to be synonymous with Patagorula (Cordiea).

[^29]: ${ }^{1}$ Adansonia, x. 18 (1871).

 - Adansonia, ix. 277 (1870).

 3 Monogr. Buxac. et Styloc. 39 (1859).
 ${ }^{4}$ Broll. Soc. Lim. Par. 31; Adansonia, xi. 281 (1874).
 ${ }^{5}$ Adansonia, loc. cit. 290.
 ${ }^{5}$ DC. Prodr. ii. 3, trib. 2.-Ende. Gen. 1085,

[^30]: ${ }^{1}$ Goupiacece Miers. Aun. Nat. Hist. sér. 3, ix. 289.
 ${ }^{2}$ Azimacer Wight et Gandn. Cale. Journ. (1845). -Salvadoracece Lisdl. Introd. (1836) 269; Veg. Kingd. 652, Ord. 250.-Pl. Ann. Sc. Nat. sér. 3, x. 189.-A. DC. Prodr. xvii. 27, Ord. 127 bis. -Sulvadorece II. Bn. Adansonin x. 27G.-Ifonetiect H. Bn. loc. cit. 289.
 ${ }^{3}$ B. H. Gen. 369, trib. 2.-Hippocraticea J. Amn. Mrus. xviii. 483.-R. Br. Congo, 187.Hippocrateacea H. B. K. Nov. Gen. ct Spec. v. 136.-DC. Prodr. 1. 567, Ord, 37.-Endl. Gerr. 1090, Ord. 237.- Linnl. Veg. Kingd. 584,

[^31]: ${ }^{1}$ As in Mortonia, and, to a less degree, Perrottetia, including Caryospermum, of which it has been rightly said that they are Rhammacece, except that their stamens are altornipetalous.
 ${ }^{2}$ The structure of the Cilastracere is especially interesting in the climbing species, as Celastrus, where we have seen the woody axis divided into three lobes, the separation being indicated externally by furrows spirally crossed (A. Juss. Malpigh. 117). On the stem of C. scandens, see H. Монц, Ueb. d. Bau der Ranken-

[^32]: wnd Schling. Pf. Tubing. (1827), § 75. On that of Euonymus: Lindl. Introd. i. 213. Oliver (Stem Dicot. 25) says that the organisation of the woods of saluculora deserves the attention of botanists. Wo have pointed out in our Monogr. des Bruxacere, the structure of the branches of Sarcococec (7), of the stems of the Boxes (8), of the rhizomes Pachysandra (10), of the roots, leaves, etc. (t. 2, fig. 1-12). On the Box, sce also Schacht, Der Baum, 195.

[^33]: ${ }^{1}$ Endl. Enchivid. 575, 577, 593.-Lindi. Fl. Rosenth. Synops. Plant. Diaphor. 791, 1153. Med. (1838), 197; Veg. Iingd. 584, 587.-

[^34]: ${ }^{1}$ L. Spece. 2S5.-Schmerur, Handb. i. t. 47.DC. Prodr. ii. G, n. 15.-EConymzus scandens Mcencir (Bowreau des Arbres).
 ${ }^{2}$ Lamk. Dict. i. 661. - Guillem. et Perk, Fo. Sen. Tent. i. 143.-C. phyllacanthes Lher. Sert. G, д. 28.-C. decolor Dfi. Cent. pl. Afi. 100, t. B, fig. 6 (Dek. Suctt, Ghenondck).
 ${ }^{3}$ Var. (Harv. and Sond, Fl. cap. i. 459) du C. buxifolius $\mathrm{I}_{\text {t. - Catha venchata Prese. }}$
 ${ }^{4}$ W. Spec. i. 1125.-Roxb. F\%. Ind. i. 621.Royle, Ill. Himal. 167.-Lindl. Fl. Med. 198. -C. mutrns Roxb. loc. cit. 623.-C. Rothianus DC. Prodr, n. 44.
 ${ }^{5}$ Orixa Thunde, Fl. Jap. 3.
 ${ }^{6}$ Fl. Por. iii. 8, t. 230, fig. 16.-DC. Prodr. ii. 6, n. 12.-Hankea multiflara R. et Pav. Syst. 65.
 i R. et Pay. Fl. Per. iii. 6, t. 229, fig. B.Maytomes verticillatus DC. Prodr. ii. 10, n. 4.
 ${ }^{8}$ C. Maytenus W. Spec. 1. 1127.-Senacia Mraytenus Lamk. Ill. n. 2712. - Maytenus Boaria Mol. Chil. 152.-Desr. Dict. Suppl. iv. 2.M. Chilensis DC. Prodr. n. 3.-Linnl. Bot. Reg. t. 1702 ; Fl . Med. 198.-Maiten Feulll. Obs. iii. $39, \mathrm{t}$. 27 . In Brazil the leaves are equally used as a febrifuge (Reiss. Mart. Fl. Bras. Celastr. 10).

[^35]: ${ }^{9}$ According to Feuillée, even the shadow causes swellings which disfigure a man. In these accidents the branches of Maytenus are put in infusion, boiled, and the body washed with the decoction is speedily restored to its natural condition.
 ${ }^{10}$ L. Spec. 286, a.-- DC F\%. Fr. iv. 620; Prodr. ii. 4, n. 1.-Gren. et Godr, Fl, de Fr, i. 331.-Mér. et Del. Dict. Mat. Méd. iii. 294.IRosentir. op. cit. 791.--Cazin, Plo Méd. Indog. éd. 3, 460 (Bonnet-de-prêtre, Garais, Bois Carré B. à Lavdoires).
 ${ }^{11}$ Scop. Fl. Camiol. i. $165 .-\mathrm{J}$ ace. Fl. Austr. t. 289.-Duham. Arbr. éd. nouv. 3, t. 7.-DC. Prodj: n. 3.-Gren. et Godr. loc. cit. 332.E. Europecus $\beta \mathbf{L}$.
 ${ }^{12}$ Scor. Fl. carmiol. ed. 2, n. 269.-JJAcQ. loc. cit. t. 49.-Duham, loc. cit. t. 8 (Fusain léprcux).
 ${ }^{13}$ L. spec. 286.-Dumam. loc. cit. t. 9.-A. Gray, Man. ed. 5, 116.--E. semz eververs Marsh, Arbr. Amer. n. 3.
 ${ }^{14}$ Nutt. Gen. i. 155.
 ${ }^{15}$ Jacr. Hort. I'indob. if. t. 120.-Turp. Dict. Sc. Nat. Atl. t. 272.-E. carolinensis Marsh, op. cit. n. 1.

[^36]: ${ }^{1}$ DC. Prodr. ii. n. G.-Harv. and Sond. Fl. Cap. i. 468.-Hex crocea Trunb.-Rhamnus Capensis Spreng.-Crocoxylum cxcelsum Eckl. et Zeyr. (Saffianhout).
 ${ }_{2}^{2}$ Wight et Arn. Prodr. i. 157. - Lindl. Fl. Med. 107.-Nerecja dichotoma Rose.
 ${ }^{3}$ Mystroxylon spharophyllum Eckl. et Zexh. -Hart. and Sond. Pl. Cap. i.470.-M. Fubue Eckl. el Zeyh.
 ${ }^{4}$ Mart, ex Rosenty. p. cit. 796. In Brazil these fruits have the vernacular name of Sapala.
 a DC. Prodr. i. 570.-Gulleem et Perr. Fl. Sen. Tent. i. 113, t. 27.-S. Affinis Ноок. $\mathrm{F}_{\text {. }}$ Niger, 281 (kebett des Nègres).

[^37]: ${ }^{6}$ Walp. Rep. i. 402.-Oliv. Fl. Trop. Afr. i. 374.-Calypso pyriformis Dox, Gard. Dict. i. 629.

 - Sw. Fl. Ind. Occ. i. 77.-DC. Prodr. i. 568, n. 12 (Amandier des Bois).
 ${ }^{8}$ Lamk. Ill. i. 100, t. 28, fig. 1.-H. scandens, Jaç. Amer. 9, t. 9.
 ${ }^{9}$ Afzel. ex Spreng. N. Entd. iii. 234.-Oliv. $\mathrm{Fl} . T$ op, $A f \mathrm{f}, \mathrm{i} .370$.
 ${ }^{10}$ Myginde Uragoga JACQ. Amer. t. 16.Lamk. 1ll. t. 76.-DC. Prodr. ii. 12, n. 3.Ci ossopetalum P. Br. Jam. t. 17, fig. 1.
 ${ }^{11}$ L. Spec. 169 (part.).-Maginda Rhacon Sw. Fl. Ind. Occ. 348.-DC. Prodr. n. 8.

 18 See p. 10 , note 2.

[^38]: ${ }^{1}$ See Rosentir. op. cit. 792.-II. Bn. Dict. t. 1, 2 ; Dict. Encycl. Sc. Mél. xi. 296 (Bouis, Encycl. Sc. Méd. xiii. 302. Bois lênit, Ozanne.
 ${ }^{2}$ Kàt. Tchai at Choa. ${ }^{4}$ Buxine ($\mathrm{C}^{33} \mathrm{H}^{22} \mathrm{AzO}^{6}$) has been extracted
 ${ }^{3}$ Buxus sempervirens L. Sspoc. 283.-Gren. et Godr, Fl, do Fr, iii. 101.-Guib, Drog. simpl. ed. 6, ii. 369.-H. BN. Monogr. Buxac. 41, 59, from the liox.
 © B. Balearica W. Spec. viii. 337.-H. Bno Mconogr. Buxac. $45,62$.

[^39]: 1 Among the Cclastracie with wood useful for cabinet-work or making musical instruments are also mentioned, at the Cape of Good Hope, Celastrus acuminatus L. (Zybast), l'Hartogia capensis Thunb. (Lepelhout, Smalblad), Maurocenia capensis (Hottentot Cherry-tree of the English), Pterocelastrus rostratus Meissn. (Witpeer), and P. typicus (Spekboom), used for

[^40]: ${ }^{1}$ Amer. Monthl. Mag. (1818), from A. Gray, phila Nutt. Torr. et Gr. Fl. N. Amer, i. 258. Il. Fendler, 29.-B. H. Gen. 361, n. 5.-Oreo-

[^41]: 1 White.
 ${ }_{2}$ Green
 ${ }^{3}$ A genus distinguished from Eitonymous only by the forms of its floral parts and fruit, and by its incompletely 2 -celled germen.
 ${ }^{4}$ Spec. 1. \vec{P}. myprinites Rafin.-Wats. Expl. Fort. Parall. Bot. 50. - Myginda myrtifolia Nutr.-Hook. Fl. Bor.-Aner. i. 120, t. 41.Oreophila myrtifolia Nutr. Gen. Pl. i. 100.Walp. Rep. i. 538. P. Canbyi A. Gray (Am. Journ. Sc. (1874), 442, is another species recently unknown to us.
 ${ }^{5}$ Fl. Eg.-Arab. 63 (not of others). -Endl. Gen.

[^42]: ${ }^{1}$ Mre. Fl. Ind.-Bat. i. p. ii. 590.
 2 Testa red or dusky.
 ${ }^{3}$ Nearly of Clusiacea or Rhizophorea.
 ${ }^{4}$ Small white, sometimes recalling those of some Ilicinece, the petals for instance being oftener free.
 ${ }^{5}$ Spec. 7, 8. Wigнт, Icon, t. 761, 976, 97\%, 1052.-Thw. Enzm. Pl. Žyl, 71.-Walp. Rop. i. 534; Ann. i. 191 ; vii. 575.
 ${ }^{6}$ Hook. Kew Jourrn. จ. 379 ; Enum. Pl. Zeyl. 52.-B. H. Gen. 362, n. 8.-Hoor. Fl. Ind. i.
 616.-Trigonocarpus Wall. Cat. n. 6520 (not Velloz. whose is a species of Cupania.

 7 In a Bornean species (herb. Bcccari).
 ${ }^{9}$ In a Ceylon species.
 ${ }^{9}$ For the Order rather large (recalling those of Hippocratea) ; petals bright yellow.
 ${ }^{10}$ Spec. 2. Walp. Am. iv. 368.
 ${ }^{11}$ Prodr. 40, t. 7; Fl. Per et Chil. iii. 20, t. 241, fig. a.-DC. Prodr. ii. 10 (" apparently alliod to Maytenus"),-EwdL. Gcn. n. $6698 .-$ B. H. Gen. 362 , n. 9 .

[^43]: ${ }^{1}$ Small, white.
 ${ }^{2}$ A genus generally referred to Ilicinere, distinguished from Elcodendron by the direction of its ovules (a character of very small moment in Entonymus) and by the nature of its pericarp.
 ${ }^{3}$ Spec. 1. M, capensis Harv, and Sond. Fl. Cap. i. 465.-Walp. Ann. vii. 577.-Frangula sempervirens... Dill. Elth. 146, t. 121, fig. 147.Cizsine Maurocenia L. Spec. 385.-Thunb, Fl. Cap. 268.- Hook. Icon. t. 552.
 ${ }^{4}$ Diss. Nov. Ger. v. 35, c. ic.-L, F. Suppl. 128.-DC. Prodr. ii. 12.-Endl. Gen. n. 5687. -B. H. Ger. n. 363, n. 10.-Sehrebera Thunb. Nov. Act. Upsal. i. 91, t. 5, fig. 1 ; Prodr. t. 2 (not Retz, nor Roxb, nor Th.).
 s Small white.
 ${ }^{6}$ Perhaps Lauridia (Eckl. et Zeym, Enum.

[^44]: 124 ;-Hary, and Sond. Fl. Cap. i. 462 ;-B. H. Gen. 363, n. 13), whose 4-merous flowers appear to us quite the same in form, belongs to this genus.

 7 Spec. 1. II. Capensis Thunb. loc. cit.Harv, and Sond. Fl. Cap. i. 464.-H. capensis Eckl. et Zeyh.-H. multiflora Eckl. et Zeyh. H. riparia Eckl. et 'Zeyh.-Schrebera schinoidea Thunb.
 ${ }^{8}$ Gen. n. 144.-Crossopetaiun P. Br. Jam. 145, t. 17, fig. 1 (not Roth.).-Myginda T. Gen. n. 178.-Jace. Stirp. Amer. 24, t. 16 ; Ic. Rar. t. 311.-J. Ger. 378.-Lamk. Ill. t. 76.-Poir. Dict. iv. 395 ; Suppl. iv. 41.-DC. Prodr. ii. 12 (part.).-Endl. Gen. n. 5689.-1. H. Gen. 366, n. 24.
 ${ }^{9}$ Sometimes of a reddish appearance.

[^45]: ${ }^{4}$ Spec. 1. P. ovatum Poir. loc. cit.-Tul. Alin. Sc. Nat. sér. 4, viii. 103.-Seringia ovata Spreng.
 ${ }^{5}$ Bull. Mosc. (1859), i. 275.-B. H. Gen. 364, n. 15.

 - Nearly of Senuridace the smaller sometimes recalling the legumen of Nissolia.

 7 Small crowded green.
 s A genus distinguished from the oppositifolious Elcodenura only by its alate fruit.
 ${ }^{9}$ Spec. 1. Z. integerrima Turcz.-Walp. Am: vii. 577.-Wimeria ? integervina Turcz。 Bull. ALosc. (18058).

[^46]: ${ }^{1}$ Prodr. i. 157.-Ende. Gen. n. 5686.-B. H. Gen. 363, n. 14.-H. Bx. Payer Pam. Nat. 325.Hook. Fl. Ind. i. 617.-Baker, Fl. Mraurit. 49.
 ${ }^{2}$ Minutely glandular.
 ${ }^{3}$ Small and few, white.
 4 Spec. about 2. Wrght, Icon. t. 155.-Tul. Am. Sc. Nat. sér. 4, viii. 104 (Pleurostylia).Walp. Rep. i. 536 ; Ann. vii. 577.
 ${ }^{5}$ Bull. Mose. (1858), ii. 448.-B. H. Gen. 362, n. 7.
 ${ }^{6}$ Spec. 1. C. capense Turcz.-Harr. and Sond. F\%. Cap. i. 527.-Walp. Ann. vii. 576.
 ${ }^{7}$ Gen. п. 270.-J. Gen. 378.-Gתertn. Fruet. i. t. 95.-IAAMK. Dict. i. 660 ; Suppl, ii. 143 ; Ill t. 130.-DC. Piod): ii. 5.-Spach. Suit. à Buffon, ii. 410.-Endi. Gen, n. 5679.-Payer, Organog.

[^47]: 167, t. 36.-A. Grax, Gen. Ill. t. 170.-B. H. Gen. 364, 977, n. 16.-Hoor. $\boldsymbol{F l}$. Ind. i. 617.Baker Fl. Materit. 50.-H. Bn. Payer Fan. Nat. 321 (incl.: Denhania Meisss. Gymnosporia Wight and Arn. Maytemes Feull. Putterlickia Ende.).
 s Wight and Arn. Prodr. i. 159.-B. H. Gen. 365, n. 18; Hook. $F l$. Ind. i. 618.-Catha Endl. Gen. n. 5078. (not Forsk,) Encentrus Presl, Bot. Bem. 33.-Polyanthus PresL, loc. cit.
 ${ }^{9}$ Meissn. Gen. 18; Commn. 16.--Endl. Qen. n. $5065 .-\mathrm{B} . \mathrm{H} . \mathrm{Gen} .366,997$, ก. 23.-Leucocarpon A. Rich. Voy. Astrol. Bot. 46, t. 46.- ? Medraianthera F. Muelit. Fragm. y. 58.

[^48]: ${ }^{1}$ Celastrus B. M. loc. cit.-Orixa 'Тнunbs. Fl . Jap. 3 (ex Miq.).

 2 In some species of Maytenus certainly ${ }^{2}$.
 ${ }^{3}$ Feuill. ex J. Gen, 449.-Mol. Chil. 177.Limk. Dict. iv. 2.-DC. Prodr. ii. 9.-Endl. Gen。 n. 5860.-Payer, Organng. 169, t. 36.-IB. H. Gen. 364, 998, n. 17.-H®nkea I2. et I'av. Prodr. 36, t. 6 (nee Salisb.). - Mcnteverdich Rich. Cub. i. 246.—? Moya Griseb. Il. Lorenz. 63, fig. 3.-Maiten Feulll. Obs. iii. 39, t. 27.Boaria (Mol. DC. Prodr. iii. 299) syn, of Maytепия.
 ${ }^{4}$ Endi. Gen. n. 5674.-Payel2, Organog. 169. --13. H. Gen, 366, n. 22.
 ${ }^{5}$ In D. pittosporoide F. Muell, we have oftener seen 2 ovules in each cell.
 ${ }^{6}$ Ecisl. et Zeyif. Enum, 124.-Endl. Gen. n. 5688.

 Red or yellow, very rarely 0 .
 White, golden or greenish.
 Spec. 130, R. et Pav. Fl. Per. et Chil. t. 229.-H. B. K. Nov. Gen. et Spec. vii. 64, not.-

[^49]: -Br. Bijir. 1144.-Hook. Icon. t. 587 (May-tenus).-Guillem. et Perr. Fl. Sen. Tent. i, t. 36.-Werb, Phyt. Canar. t. 69 B (Catha).Habv, and Sond. Fl. Cap. i. 452, 465 (Cassine), 471 (Scytophyllum).-Oliv. Fl. Trop. Afr. i. 360.-A. Grax, Amer. Expl. Exp. Bot. i. t. 23. -Griser. Fi. Brit. W. $=$ Ind. 145 (Maytenus).Chaps. Fl. S. Unit. St. 76.-Boiss. Pl. Esp, t. 38 ; Fl. Oi. ii. 10.-Benth. Fl. Austral. 1. 398, 400 (Gymmorporia), 401 (Denhamia).-Tul. Ann. Sc. Nat. عér. 4, viii. 97 (Catha).-F. Muell. Fragn, v. 203 (Lcucocrrponz),-Reiss. Mrart. Fl. Eras. Cilastr. 3, t. 1-4, 6-9 (Maytenus).-Tr. LMn. Sc. Nat. sér. 5 , xvi. 336 (Maytenus).-Bot. Reg. t. 1:02 (Maytenus),-Bot. Mag. t. 2070, 2114.-Walp. Rep. i. 532 ; ii. 827 (Maytenus); v. 401 ; Ann. i. 189 ; ii. 263 ; iv. 427 ; v. 402 ; vii. 575 (Catha), 578, 579 (Maytenus), 580.
 ${ }^{10}$ Slirp. Aner. 259.-Lank. Ill. t. 809.Pork. Dict. vi. 727; Suppl. v. 83.-DC. Prodr. ii. 40.-Endl. Gen. n. 5750.-B. H. Gen. 367, ก. 26.

[^50]: ${ }^{1}$ H. BN. Adansonia, xi. 266.
 2 Spec. 7, 8. Harv. and Sond. Fl. Cup. i. 461.
 ${ }^{3}$ Cat. n. $4334 .-\mathrm{Arn}$, Act. Acad. Nat. Cur. xviii. 328.-B. H. Gen. 365 , n. 20.-H. BN. Payer Fam. Nat. 325.-Hook. Fl. Ind. i. 621.Bhese Ifam, Edinb. New Phil. Journ. xvi. 315 (part.).-Ende. Ger. n. 5692.-Pyrospermerm MIs, Fil. Ind.-Bat. Suppl. 402.

[^51]: ${ }^{4}$ White, "yellowish. Capsules brown. Aril white or reddish."
 ${ }^{5}$ Spec. about 3. Thw, Enum. Pl. Zeyl. 72.Walr. Rep, i. 53 S (Bhesa).
 ${ }^{6}$ Nov. Gen. et Spec. vii., 73, t. 622.-Endl. Gen. n. 5697.-B. H. Gcn. 367, n. 29.-? Theaphyllum Nutr. (ex Turcz.).-Caryospermum Be. Mus. Lugd.-Bat, i. 176.-B, H. Ger. 367, n. 27.

[^52]: 1 Minute, white or greenish.
 ${ }^{2}$ Spec. 6 (2 of which are Old World). A. Ghay, Amer. Expl. Exp. Bot.i.290, t. 24.-КA1st. Il. Columb. ii. 47, t. 124. - 'Тurcz, Bull. Mo:c. (1863), i. 605 (Theaphylhum).-Mra. Fl. Ind.Bat, i. p. ii. 591 (Curyospermum).-F. Muell. Fragm. v. 202 (Caryospermemt), Walp. liep. i. 539; Ann.iv. 427 ; vii. 581 (Caryospermzem), 582. There is no valid distinction between Perrottetia and Caryosperma, whose cells are 2-ovuIate; the spurious septum often observed in the Perrottetia being produced between the seeds of the same cell. The flower, except its alternipetalous stamens, is quite thamnaceous.
 ${ }^{3}$ Nov. Gen. et Spec. iii. 85, t. 235.-Endl.

[^53]: ${ }^{4}$ From description and figure nearly of Catha (" 1 in. long, $\frac{1}{4}$ in. thick "), by which alone the genus is distinguished from the otherwise closely allied Perrottctia.
 ${ }^{5}$ Very small, according to figures, palc pink.
 ${ }^{6}$ Spec. 1. F. muttiflora Mart.-Ierss. Mart. Fl. Bras. Celastr. 32, t. 4, fig. 16.-Walp. Rep. ii. 536.
 ${ }^{7}$ Calc. Journ. of Nat. Hist. iv. 247, t. 14.B. H. Gen. 370, 998, n. 38.-Hook. Fl. Ind. i. 629.-Asterogyne Wall. Irort. Culc.

 8 Very likely 5 , "divided by spurious septa between the ovules" (Hоок, r.). (\%)
 ${ }^{9}$ Stigmas cristate according to Hook. F. in Icon.

[^54]: 1 Yellow, purple striped.
 ${ }^{2}$ Spec. 2. Miq. Fl. Ind.-Rat. i. p. ii. 592. -Hassm, in Retzit, i. 150.-Ноoк, f. Trans. Limn. Soc. xxii. 133, t. 26.-Bente. Fl. Austral. i. 403.-Walp. Rep. v. 404 ; Ame iv. 431 ; vii. 585.

 Mart. Fl. Bras. Celastr. 30, t. 5, 10.-B. H. Gen. 368, n. 33.

[^55]: ${ }^{4}$ One variety, very narrow.
 ${ }^{5}$ Small, white or yellow.
 ${ }^{6}$ Spec. 1, 2. Fruit, nearly of Fraxinus.
 7 Gen. 36S, n. 32.
 ${ }^{*}$ Semi-uncial.
 ${ }^{9}$ Spec. 1. T. Wilfordii Ноок. r.
 ${ }^{10}$ Pl. Wright. i. 35, t. 4; ii. 28.-B. H. Gcir. 368. n. 30.

[^56]: Small, white.
 2 A genus resembling some Rhamnacice in the form of its receptacle and its ovules, differing chiefly in its alternipetalous stamens. The structure of its flowers strongly recalls certain Myrlacece, from which it is distinguished gencrally by the leaves and the germen not being free.
 ${ }^{3}$ Spec. 3, 4. Turcz. Bull. Mosc. (1858), i.
 453.-Walr. Aun. iv. 425 ; vii. E83.
 ${ }^{+}$Proc. Amer. Acad. xi. 73 (Sapindaccre?) Pl. Wright. ii. 29, t. 12, B.-B. H. Gcn. 3GS, n. 31.
 ${ }^{\circ}$ Stigma hence omarginate subreniform.
 ${ }^{6}$ Small, white.
 ${ }^{7}$ Spec. i. G. spinescens A. Gray.-Walr. Ann, iv. 426.
 ${ }^{8}$ Wippl. Exp. Bot. 12.-H. Bn. Adansonia, x. 18 .

[^57]: Nuovo Giorn. Bot. Ital. (1873), 128; Fragn, Pluyt. Arstral. viii, 160.

 One species (M. racemigerce F. Muell.) connects the Stackhousias as defined by us with
 the Floerkeas of the order Geraniacec. It differs from Floerkea chiefly in its exalbuminous secds.

[^58]: ${ }^{1}$ Gen. 425.-Porr. Dict. Suppl. ii. 493.-PL. Ann. Sc. Nat. sér. 3, x. 191,-H. Bn. Adansonia, x. 31.-A. DC. Prodr. xvii. 30.-Tomex Forsk. Ag.-Avab. 32 (notL. norThenb.).-Schizocalyg Hochst. Flora (1844), Beibl. 1.-A. Ricer.

[^59]: ${ }^{1}$ Mantiss. 293.-J. Gen. 424.-Porr, Dict. vi. 450.-DC. Prodr. i. 570.-Spach, Suit. à Buffon, ii. 400.-Endl. Gen. n. 7502.-B. H. Gen. 370 , n. 37.--H. Bn. Payer, Fam. Nat. 326...-Ноок. Fl. Ind. i, 625.
 ${ }^{2}$ Aubl. Guian. i. 31, t.-Lamr. Ill. t. 26.-Endl. Gen. n. 5701.-Tonsella Schreb. Gen. n. 74.-Sicelium P. Br. ex Poir. op. cit. v. 146.Johnia Roxb. Fl. Ind. i. 168.- Anthodiscus Mart. Schult. Mantiss. i. 253 (not Mey.).
 ${ }^{3}$ Harv. Hook. Lond. Journ, i, 19.
 ${ }^{4}$ R. et Pat. Fl. Pe9. et Chil. i. 45, t. 74.Clercia Velloz. Fl. Flum. 29, t. 73, 74.-Raddisia Leandr. Münch. Denksehr. vii. 244, t. 15 (Exdl.).
 ${ }^{5}$ Dup.-Th. Hist Vég. Iles Afr. Austro i. 20, t. 6.
 ${ }^{6}$ Sometimes green.
 7 Small, yellowish or white.

[^60]: a "Small, sulphur coloured."
 z One species, unknown to us, closely connects

[^61]: ${ }^{1} \mathrm{Fl}$. Bor.-Aner. ii. 177, t. 45.-A. Juss. Tent. Euphorbiac. 13, 1. 1, fig. 2.-Turp. Dict. Sc. Nat. Atl. t. 277.-Entl. Gen. n. 5870.H. Bn. Alonogr. Buxac. 10, 19, 55, t. 3, fig. 1-14; Adansonia, xi. 283.-M. Arg. Prodr. 21.
 ${ }^{2}$ Pollen stellately reticulate.
 ${ }^{3}$ Integument 2-plicate.
 4 Thickly annular, concave within, white.
 ${ }^{5}$ Generally reddish.
 ${ }^{6}$ Sepals red spotted; stamens very conspicuous, white.

[^62]: 7 Spec. 2. Purse. Fl. N.-Ancr. i. 117.-A. Gray, Man. ed. 5, 439.-Sieb. et Zucc. Abh. Math.-Phys. Ǩl. Baicr. Akad. iv. p. ii. 142; Fl. Jap. Fam. 34.-Lodd. Bot. Cab. t. 910.-Bot. Reg.t. 33.-Bot. Mag. t. 1964.
 ${ }^{8}$ Bot. Reg.t. 1012.-Endl. Gen. n. 5875.H. Bn. Monogr. Buxac. 48, t, 3, fig. 15-30.M. Arg. Prodr. 11.-Lepidopelma Kl. Waldem. Reis, Bot. 118. t. 22.
 ${ }^{9}$ Pollen stellately subreticulate (M, Arg.).

[^63]: ${ }_{1}$ Small, grecnish or yellowish.
 ${ }^{2}$ Spec. 4, 5. Don, Prodr. Fl. Nepal. 63 (Buaus).-Hook. Exot. Fl. t. 148 (Pachysandria 8).-Wall. Cat. n. 7979 (Tricera).Wight, Icon. t. 1877.-Thw. Enum, Pl. Zeyl. 290.-Bu. Mrus. Lugd.-Bat. ii. 191.
 ${ }^{3}$ Hook. Lond. Journ. (1844), 400, t. 16.M. Arg. Prodr. xvi. p. i. 22.-Lem, et Dcne. Tr. Gen. 255.-Brocchia Maur. Cat. Hort. Napol. (1845), 80.
 ${ }^{4}$ In a doubtful species (? of this genus), S. pabulosa Kell. Proceed. Calif. Acad. Sc. ii. 21),

[^64]: the male flower is described as having 5 petals.
 ${ }^{5}$ Of which the 5 exterior are alternisepalous.
 ${ }^{6}$. In S. pabulosa the male flowers are said to be 2 -chotomous cymose.
 7 Spec. 1, 2, Livk, Enum. Hort. Berol. ii. 386 (Buxus).-Torr. Mexic.) Bound. Surv. 202, t. 49.
 ${ }^{3}$ Tent. Euphorb. 117, t, 17, fig. 56.-Endl. Gen. I. 5773.-H. Bn. Ét. Gên. du Groupe des Euphorbiacées (1858), 665, t. 20, fig. 25-37; Monogr. Buxac. et Styloc. 72, 77.-M. Arg. Prodr. 9.
 ${ }^{9}$ Pollen not reticulato (M. Arg.).

[^65]: 638.-K. Sym. Ph. Aquin. iv. 206.-Sprena.

 Syst. iii. 906 .

 Tellowish.
 ${ }^{2}$ Spec. 3, 4. W. Spec. iv. 733 (Trophis).H. B. K. Nov. Gen. et Spec. vii, 172, t. 637,

[^66]: ${ }^{1}$ Rhammus T. Inst. 593, t. 366.-L. Gen. des Rhamn. (1826), 53, t. 2.-Turp. Dict. Sc. n. 265 (part.),-Adans. Fam. des Pl. ii. 305.- Nat. Atl. t. 270.-Spach, Suit. à Buffon. نi. 447. J. Gen. 380-Grertn. Fruct. ii. 110.-Lamk. -Endl. Gen. n. 5722.-Payer, Oigmog. 490, Ill. t. 128.-Poir. Dict. iv. 461 ; Suppl. iv. 88. DC, Prodr. ii, 23,-Ad. Br. Mrém. sur la Fam. t. 97.-A. Gray, Gen. Ill.t. 168.-B. H. Gen。 377. 998, n. 10.-H. Bn. Payer Fam. Nat. 327.

[^67]: ${ }^{1}$ Jace. Amer. 261.-L. Ger. n. 1157.-J. Ger. 381.-G.ertn. F. Fruct. iii. 19.-Lami. Dict. iii. 4; Suppl. ii. 819 ; Ill. t. 845.-DC. Prodr. ii, 38.-AD. Br, Rhamn. 71. t. 5.-Endl. Gen. n. 574.-B. H. Gen. 385, п. 35.-H. Bn. Payer Fam. Nat. 329.-Hoor, Fl. Ind. i. 643.

[^68]: -Baker Fl. Maurit. 52.-Retinaria Gertn. Fruct. ii. 187, t. 120, fig. 4.-Nagelia Zoll. et Moritz. Verz. 20.-Hassk. Flora (1852), 114.

 2 They may even rise along the internal face of the sepals, to which they adbere.
 ${ }^{3}$ Wight and Arn. Prodr. i. 166.-Wigut,

[^69]: Icon. t. 974.-Tul. Amn.Sc. Nat. sér. 4, viii. 129 (Guania).-Seem. Fl. Vit. 43.-A. Gray, Amer. Expl. Exp, Bot. i. 28\%.-Griser. Fl. Brit. W.-Ind. 101.-Tr. loc. cit. 381.-Thw. Enum. Reiss. Mart. Fl. Bras. Rhamn. 102, t, 36-39. -Walp, Am. i. 196; ii. $27{ }^{2}$; iv. 436 ; vii. 607.
 ${ }^{1}$ Small, white or yellowish.

[^70]: ${ }^{1}$ Commers. ex J. Gen. 380.-Lamk. Ill. t. 129.-Poir. Dict. Suppl. ii. 311 (part.).DC. Prodr, ii. 28 (part.),-Ad, Br, Rhamn, 58 (part.), t. 3.-Endl. Gen. n. 5730.-Miers, Ann. Nat. Hist. sér. 3, v. 203; Contrib. i. 251, t. 34-36.-D. H. Gen. 383, п. 28.-H. Bv. Payer Fam. Nat. 330.

 2 White, generally scented.
 ${ }^{3}$ These alone perhaps are the representatives of the calyx, the remainder belonging to the receptacle, and perhaps it is the same in the

[^71]: $P_{\text {cuacece }}$ and other neighbouring groups.
 ${ }^{4}$ Below the point where they become free, these filaments are traceable on the tube.
 ${ }^{5}$ Included or sometimes a little exserted.
 ${ }^{6}$ In the Scypharia Miers. Ann. Nat. Hist. ser. 3, vi. 8 ; Contrib. i. 299, t. 42), placed here with some doubt.

 7 Sometimes at the swollen summit of the hollow style, six lobes may be observed, three of which, very maall, alternate with the three larger.

[^72]: ${ }^{1}$ A double envelope.
 ${ }^{2}$ After floration, the perianth often detaches itself circularly above the interior projection of the disk and falls with the androccium.
 ${ }^{3}$ At least looked at in profile.
 ${ }^{4}$ H. B. K. Nov. Gen. et Spec, vii, 59.-Sprena.

[^73]: Syst. i. 825 (Condalia),-Hook, and Gill, Bot. Misc. i. 151, t. 43, 44 ; iii. 172.-VENT. Jard. Cels. t. 92-Lindl. Journ. Hort. Soc. v. 29, Ic.C. Gay, Fl. Chil. ii. 28 (part.).-A. Gray, Amer. Expl. Exp. Bot. i. 276.-Wedd. Chl. Andin, ii. 183.-Bot. Mag. t. 5033.-W Walp, Ann. vii. 603.

[^74]: ${ }^{1}$ Flind. Voy. ii. 554; Misc. Works (ed. Benn.), i. 26 (Rhamnea).
 ${ }^{2} 376$, Ord. 13 (1789).
 ${ }^{4}$ Mémoire sur la Famille des Rhamnées (Ann. Sc. Nat. sér. 1, x. 320).
 ${ }^{5}$ Prodi. ii. (1825), 19, Ord. 56.
 ${ }^{3}$ Fam. des Pl. ii. 297. Fam. 42 (1763).
 ${ }^{6}$ Gen. 1094, Ord, 239 (Rhamnex).

[^75]: ${ }^{1}$ Enum. Pl. Hueg. (1837).
 ${ }^{2}$ Bot. Misc. i. (1830).
 ${ }^{3}$ Plant. Nov. Fasc. i. (1832).

 + Gen. 70 (1836-1843).
 - Trav. in Chil. and la Plata, ii. (1826).

 6 On the tribe Colletiece, with some Obs, on the Secd in Rham. (Ann. Nat. Hist. ser. 3, v. 76; Contrib. i. 230, t. 33-24).
 ${ }^{7}$ Mrart. Fl. Bras. Rhamn. (1861).
 ${ }^{8}$ Limnaen, xxix. (1857-58).
 ${ }^{9}$ Gen. 371, Ord. 49 (1862).
 ${ }^{10}$ Bonplandia (1861).
 ${ }^{11} \mathrm{Pl}$. Wright. p. i. (1852).
 ${ }^{12}$ Fragm. Phyt. Austral. iii. (1862-63).

[^76]: ${ }^{13}$ Adansonia, xi. (1874).
 ${ }^{14}$ For example the various genera of the group Colletiec. Among the Rhamnea, the Alphitonias seemed at first to constitute a perfectly distinct genus. Now that we know better certain Colubrinas with a ferruginous down, smooth seeds persisting on the placenta after the fall of the cocci, and an ovary presenting the same adherence, the distinction between the two genera becomes scarcely appreciable. The fruit of Nesiota once known, this type becomes very difficult to separate otherwise than as a section of Phylica with broad whitish leaves, etc.

[^77]: ${ }^{1}$ A. Gray, Pl. Wright, p, i. 34.
 ${ }^{2}$ So that the base of the latter is accompanied to a very variable height by a small tablet or frame of a capule with cicatrised

[^78]: ${ }^{1}$ Ada , xi. 273.
 ${ }^{3}$ DO. Theor. Elém (éd. 1), 217.
 ${ }^{2}$ Rhami. 11. ${ }^{\text {Nat. IIist. of Ilants, } \mathrm{v}, 342,392 .}$

[^79]: ${ }^{1}$ In their organs of vegetation, the Rhamnacco are sometimes very similar to certain Euphorbiacere, such as Bridelia. On the structure of the wood of the Rhamnacea, see:Crueoer, Bot. Zeit. (1850), 126 (Gouania).Carrent, Mierosc. 433 , c. fig.-Olif. Stem. Dicot. 11.
 ${ }^{2}$ Evdl. Enchivid. 582. - Lindl. Fl. Med. 165 ; Veg. Kingd. 582.-Guir. Drog. Simpl. éd. 6, iii.

[^80]: 635.-Rosenth. Syn. Pl. Diaphor, 798, 1151.
 ${ }^{3}$ L. Spec. 279.-DC, Prodr. ii. 24, 1. 9.Mer. et Del. Dict. Mat. Mél. vi. 54.-Guib. op. cit. 537, fig. 722.-Berg et Schm. Darst. Off. Gevo. t. 16, e.-Cervispina cathartica Mexch. Meth. 686.-Spina alba Lonic.-S. infectoria Matte. (Noirprun, Bourg-Epine, Quemot, Epine de Cerf).

[^81]: ${ }^{1}$ R. Frangula L. Spec, 280,-DC. Prodr. n. 30.-Duham. Arbr. (éd. 2), iii. t. 15.-Gren. ot Godr. Fl. de Fr. i. 338.-Berg. et Schm. Darst. Off. Gew. t. 19, £.-Caz. Pl. Méd. Ind. (éd. 3), 208.-Rev. Fl. Med. du XLXe Siècle, i. 193.-Frangula rulgaris Reichb. Fl. Exsc. 488 (Bowdaine, Aune Noir, Nhubarbe des Poysans, Pouverne.
 ${ }^{2}$ R. Alatermus L. Spec. 281,-DC. Prodr. n. 1. Duham, op. cit." 42, t. 14.-Mér. et Del. Wict. Mat. Méd. vi. 54.-H. Bn. Dict. Encycl. Sc. Méd. ii. 384.-Alatermus Phylica Mill. Dict. n. 1. Dambourney has employed the branches and leaves to dye wool and cotton. The fruit gives sap-green.
 ${ }^{3} \mathrm{~L}$.: Spec. 1G71.-Jace. Fl. Avstr. t. 53.DC. Prodr. n. 12; Fl. Fr. iv. 623.-Gren. et Godr. Fl. de Fr, i, 336.
 ${ }^{4}$ L. Mantiss, 49.-DC. Prodr. n. 12.-Gren. et Godr. Fl . de Fr . i. 336.-Lindl, Fl. Med. 167.-Guib, op, cit. 538. - R. tinctorious Mut. (Petit-Nerprun, Epine puante). - R. tinetorius Waldst, et Kir. (Pl. Rar. Hung, iii. t. 255 ;DC. Prodr. n. 11), considered as a very distinct

[^82]: species, has, however, the same properties.
 ${ }_{5}$ L. Spec. 280.-Gren, et Godr. Fl. de Fr. i. 336.-Alatcrnus alpinu, Mench.
 ${ }^{6}$ L. Mantiss. 49.-Gren. et Godr. Fl. de Fr. i. 337.
 ${ }^{7}$ L. Spec. 279.-Desf. Fl. Atl. i. 197.-Gren. et Godr. loc. cit. 337.
 ${ }^{8}$ Poir. Diet. iv, 463.-DC. Prodr. n. 15.
 9 Desf. Fl. Atl. i. 198.
 ${ }^{10}$ Compt. Rend. Acad. Sc. xliv, 1141. The former ($P_{a}-b i-10-a \pi$ of the Chinese) is the R. hirsutus of India. The latter (Hom-bi-lo-za) seems applied to as many forms as are obtained from R. catharticus.
 ${ }^{11}$ Rem. et Sch, Syst. v. 342.-Gertn. Fruet. i. 203, t. 43.-P. aculeatus Lamk. Ill. t. 210.Duham. op, cit. iii. t. 17.-DC. Prodr, ii, 22.P. vulgaris Don.-Rhannus Palitures L. Spec. 281.-Zizyphus Paliurus W. Spec. 1, 1103 (Argalou, Arnaraou, Capelet, Porte-chapeat, Chapeau d'évéque, ELpine noire, E. de Christ). It is supposed that its branches formed the crown of thorns of Christ.

[^83]: 1 Miergues, Bull. Soc. Bot. i. 216.-Rosenth. op. cit. 798 (Пa入loupoo Diosc.).
 ${ }^{3}$ Ad. Br. Rhamn. 53.-Rhamnus theezans L, Mantiss. 207.-H. B. K. Nov. Gen. et Spee. vii. 54, not.-DC. Prodr. ii. 26, n. 38.-R. Thea Osb. It. 232.
 ${ }^{3}$ Ad. Br. Rhamn. 62.-Ceanothus asiaticus L. Spec. 284.-Lamk, Ill. t. 129.-DC. Prodr. ii. 30, n. 7.-Tubanthera Commers. (Toutou of the Polyresians).

 4 Mers. Trav. Chil. ii. 529; Contrib. i. 291, t. 40 A .
 ${ }^{5}$ Mart. Syst. Mat. Med. Bras. 37.-Rbiss. Mart, Fl. Bras. Rhainn. 101, t. 35 (Kina of Brazil).

 - Reiss. loc. cit. 90, 24.

[^84]: ${ }^{1}$ Z. chinensis Lamk. (Dict. iii. 318) is doubtless, like many of the following species, a var. of Z. vulgaris.
 ${ }^{3}$ Lamk. Dict. iii. 316.-DC. Prodr. n. 3.Ad. Br. Rhamn. 40.-Rhamnus Lotus I. Spec. 281.-Desf. Act. Acud. Par. (1788), t. 21 (Jujubier of the Lotophagi).
 ${ }^{3}$ W. Spec. 1105.-DC. Prodi\% n. 6.-Desf. Fl. All. i. 201.-Heasl. Oliv. Fl. Trop. Afr. i. 380 .
 4 W. Enum. 251.-Harv, and Sond. Fl. Cap. i. 475.-Z. Baclei DC. Prodr. n. 8.-Guill. et Perr. Fl. Sen. Tent. i. 144, t. 37.-Z. witis A. Rice, Fl. Abyss. Tent. i. 137.

 - DC. Prodr. n. 20. Guill. et Perr. Fl. Sen. Tent. i. 145. -Perhaps a var. of Z. Jıjuba Lame.
 ${ }^{6}$ W. Spec. Plant. 1104.-DC. Prodr. n. 7.Rhamnus Napeca L. Spec. 282, (not Forsw.).

[^85]: 7 Roxb. ex Rosenth. op. cit. 801.
 ${ }^{3}$ Mill. Dict. n. 3.-DC. Piodi. n. 18.Rhamms Enoplia L. Spoc. 282. (See Burm, Thes. Zeyl. t. 61).
 ${ }^{9}$ Schult. Syst. v. 341.-Rhamuus agrestis Lour. Fl. Cochinch. (ed. 1790), 158 (Cay-12a).
 ${ }^{10}$ Lamk. Dict. iii. 319.-DC. Prodr. n. 27.
 ${ }^{11}$ W. Spec. ii. 11 (not Hochst).-Rhamus Xylopyrus Retz. Obs, ii. 11.
 ${ }_{12}$ Mart. Reis, ii. 581.- Retss. Mart. Fl. $_{\text {Fl }}$ Bras. Rhamn. 86, t. 24, 27.
 ${ }^{13}$ DC. Prodic: n. 29.-Z. trinervis Poir. Dict. Suppl. iii. 192.-Thamnus trivernes Cav. Icon. t. 505 , fig. 1 (not Roth).

 14 Schult. Syst. v. 337.-DC. Prodr. n. 22.Z. trinervius a Rotir (perhaps a var. of Z. Jujuba).
 ${ }^{15}$ Schult. loc. eit. 340.-Rhamnus soporifer Lour. Fl. Cochinch. 158 (Soan-tsdo).

[^86]: ${ }^{1}$ Rhammus capensis Tnunb. Prodr. i. 44; Fl Ctp. ii. 73.-Ceanothus capensis DC. (syn? of S. Commersoni Ad. Br.).-Harv, and Sond. Fl. Cap, i. 477 (Katdoon).
 ${ }^{2}$ Tuunb. ex Rosenth, op, cit. 1154.
 ${ }^{3}$ Gerin. Fruct. i. 223, t. 49.-DC. Prodr。 i. 38.-Rosenth. op. cit. 798.

[^87]: ${ }^{1}$ MLart. F'l. Bras. Rhamn. 94, t. 31.-B. H. Gen. 378, n. 11.

[^88]: 1 White or slightly green.
 ${ }^{2}$ A genus very close to Rhammes, distinguished only by its less deep receptacle, incomplete cells and indehiscent fruit, its basilar cupule and apiculate style.
 ${ }^{3}$ Species about 7. Griseb. Cat. Pl. Cub. 32.
 ${ }^{4}$ Adansonia, xi. 273.
 s "Rel."
 ${ }^{6}$ A genus imperfectly known, but apparently very close to Rhamnus, and distinguished chiefly by its elastic dissilient fruit (nearly Euphorbiaceous).

[^89]: 7 Spec. 1. M. decipiens H. Bn.
 ${ }^{8}$ Nov. Stirp. Fasc. i. 349, t. 16.-Endl. Gen. n. $5723 .-$ B. H. Gen. 377, n, 9.
 ${ }^{9}$ A genus very near Rhammidium, distinguished chiefly by its 2 -ovulate cells, a character of very small value, since the cells of Rhamuas are sometimes 2-opulate (PAYEr, Organog. 491).

 10 Spec. about 3. Cav. Ic. t. 504 (Rhamnus).H. B. K. Nov. Gen. el Spec. vii. 52, t. 618 (Rhammers). - An. Br. Rhamı. 55 (Rhammes). -A. Gray, Pl. Wright. i. 33.
 ${ }^{11}$ Fragm. iii. 62.-B. H. Ger. 999, n. 21 a

[^90]: ${ }^{1}$ Red.
 ${ }^{2}$ Spec. 3, 4. Benth. Fl. Austral. i. 414 (Em-menospermem).-H. BN. Adansonia, xi. 269.
 ${ }^{3}$ Jam. 179.-Griseb. Flo. Brit. IV.-Ind. 100.
 -B. H. Gen. 376, n. 7.

 * And then with the habit and leaves of some Cinnamoma.
 ${ }^{5}$ Spec. 4, 5. L. Amœen. v. 395 (Rhamnus),II. B. K. Nov. Gen. et Spec. vii. 57, not. (Rham-mus).-DC. Prodi. ii. 30, n. i. (Ceanothus).-

[^91]: Griseb. Cat. Pl. Cub. 31. (Zizyphus haranensis K. is [Griseb. loc. cit.] a species of Sarcomphali, notwithstanding its inflorescence, which is rather that of Zizyphuss).
 ${ }^{6}$ Fl. Jap. 101.-J. Gen. 381.-Lame. Dict. iii. 138 ; Ill. t. 131,-DC. Prodi. i. 40.-Ad. Br. Rhamn. 60, t. 4.-Spach, Suit. ad Buffon, ii. 456.-Exdl. Gen. n. 5721,-B. H. Gen. 378, n. 12.-Ноoк. Fl. Ind. í. 640.

[^92]: 1 Habit of Tilia.
 2 White, odorous
 ${ }^{3}$ Spec. 1. H. dulcis 'Thuns - Bot. Mag. t. 2360.-Sieb. et Zucc. Fl. Jap. t. 73, 74,-II. acerba Lindl. Bot. Reg. t. 501.-H. inaçualis CB. loc. cit. n. 2.-Sicleu K empf. Amern. 808, 809.
 ${ }^{4}$ Consp. 145.-Endl. Gen. n. 5725 (Noltea).B. H. Gen. 381, n. 21.-Vitmamia Wight and Arn. Prodr. i. 166 (not Turr, nor Vabl). Willemetra Ad. Bu. Rhamn. 63, t. 5.-Spach, Suit. à Buffon, ii. 462.

[^93]: ${ }^{1}$ Sometimes persistent on the summit of the receptacle after the fall of the cocci; testa crustaceous nitid.
 ${ }^{2}$ Yellow or greenish.
 ${ }^{3}$ Spec. about 12. Wight and Arn, Prodr. i. 165.-Wight, Ill. t. 74.-A. Grax, Pl.Wright, i. 33 ; A mer. Expl. Exp. Bot. i. 277.-Griseb. Fl. Brit. W.-Ind. 100.-Miq. Fl. Ind.-Bat. i. p. i. 648.-Thw. Enum. Pl. Zeyl. 75.-Reiss. Afart. Fl. Bras. Rhamn. 98, t. 33.-Benth. Fl. Austral. i, 413.-Seem. Fl. Vit. 42.-Oliv, Fl. Trop. Afr. i. 383.-Walp. Ann. ii. 268; iv. 435.

[^94]: ${ }^{4}$ Ex Endl. Gen. n. 5727.-B. H. Gen. 379, n. 16.-Casia Velloz. Fl. Flum. 107 ; iii. t. 23; (nec R. Br.).
 ${ }_{5}$ Whitish.
 ${ }^{6}$ A genus closely allied to Colubrina (of which perhaps a section ?), distinguished bs the glandules of the limb.

 7 Spec. 1, 2. Reiss, Mart. Fl. Bras. Rhamn. 96, t. 32.
 ${ }^{8}$ Ex Endl. Gen n. 5729.-B. H. Gen. 381, 999, n. 22.
 ${ }^{9}$ Concerning tha structure of the seed, see Mirrs, Contrib. i. 245, t. 33.

[^95]: ${ }^{1}$ Ferruginous or sometimes white, pendent.
 ${ }_{2}$ A genus from its germen mostly inferior (within adnate to receptacle) and fruit cupulate to middle, very closely allied to Colubrina, from which it can scarcely be generically separated, while there are some species of Colubrina (e.g. C. ferruginosa) with seeds persistent on torus after the fall of the cocci.
 ${ }^{3}$ Spec. about 5 , of which 1 is tomentose, very various in form: A. Gray, Amer. Expl. Exp. Bot. i. 277, t. 22.-Bentir. Fl. Austral. i. 414.-Seem. Fl. Vit. 42.-H. Bn. Adansonia, xi. 270.

 4 Elem. n. 800.-DC. Prodr. ii. 22.-Ad. Br. Rhamn. 49, t. 2.-Spacir, Suit. à Buffon, ii. 446. -Endl. Gen. 5719.-B. H. Gen. 377, n. 8.Hook. Fl. Ind. i. 637.-Einoplea Hedw. r. Gen. i. 151 (ex DC.).

[^96]: ${ }^{5}$ Purple or black.
 ${ }^{6}$ Greenish or whitish.
 ${ }^{7}$ A genus hence allied to Colubrina, thence to Zizyphus (n. 19).
 ${ }^{9}$ Spec. 8-10. JacQ. Ic. Rar. t. 336 (Rhammus). Hoor, and Arn. Beech. Voy. Bot. t. 37.Torr. and Gray, Fl. No-Amer. i. 260.-Miq. Fl. Ind.-Bat. 1. p. i. 644 ; Suppl. i. 331.-THw. Enum. Pl. Zeyl. 74.-Benth. Fl. Hongk. 67.A. Gray, Man. ed. 5, 114.-Chapm. Fl. S. Uuit. St. 73.-Oliv. Fl. Trop, Afr. i. 381,-Maxim. Rhamn. Or.-Asiat. 5.-Walp. Ann. i. 966 ; vii. 588.
 ${ }^{9}$ Rhamn. 52, t. 2.-Spach, Suit. à Buffon, ii. 446.-Endl. Gen. n. 5720.-A. Gray, Gen. Ill. t. 166.-B. H. Gen. 379, n. 15.-Hook. Fl. Ind. i. 641,
 ${ }^{10}$ Very small.

[^97]: ${ }^{1}$ A genus distinguishable from the preceding only by the nature of its inflorescence.
 2 Spec. about 10. H. B. K. Nov. Gen. et Spec. vii. 50, t. 619 (Rhamnus).-Torr, and Gray, Fl. N.-Aner. i. 263.-Сhapm, Fl. S. Enit. St. 73.-Wight, Icon. t. 19 (Berchemia).-Borss. Fl. Or. ii. 22.-Tr. loe. cit. 381.-Maxim. Rham. Or.-Asiat. 20.
 ${ }^{3}$ Ad. Br. Rhamn. 55, t. 4.-Endl. Gen. ก. $5724 .-\mathrm{B} . \mathrm{H}$. Gen. 379, n. 14.-Ноок. $F l$. Ind. i. 640.-Baker Fl. Maurit. 51.
 ${ }^{4}$ Spec, 7, 8. Varl, Symb, iii. t. 58 (Rhummus). -Wight. Icon. t. 1071 ; 1ll. t. 73.-DC. Prodr. ii. 29 (Ceanothas, sect. 1).-Harv. and Sond.

[^98]: Fl. Cap. i. 477.-Kl. Pet. Reis, Mossamb. Bot. 110, t. 21.-Tul. Ann. Sc. Nat. sér. 4, viii. 116. - Сhapm, Fl. S. Unit. St. 72.-Reiss. Mart. Fl. Bras. Rhamn. 92, t. 24, 30.-Walp. Am. i. 193; vii. 592.
 ${ }^{5}$ Gen. n. 267.-J. Gen. 380 (part.).-Gertn. Fruct. t. 106, fig. sup. - Lamk. Dict. i. 659 (part.) ; Suppl. ii. 140 ; Ill. t. 129.-DC. Prodr. ii. 29 (part.).-AD. Br. Rhamn. 62, t. 4.Spach, Suit, à Buffon, ii. 457.-Endl. Gen. n. 5726.-A. Gray, Gen. Ill. t. 169.-B. H. Gen. 378, n. 13.-H. Bn. Payer Fam. Nat. 328.Forrestia Rafin. N.-Fork Med. Repos. ii. hex. v. 350 (ex Evdl.).

[^99]: ${ }^{1}$ White, yellow or azure ; pedicels and calyx often coloured.
 ${ }^{2}$ Spec. 20-25. H. B. K. Nor. Gen et Spec. vii. t. 615.-Hook. Fl. Bor,-Amer. t. 45.-Tore and Gray, Fl. N.-Amer, i. 264.-A. Gray, Man. ed. 5, 115. - Снарм. Fl. S. Unit. St. 74. - Bot. Mrag. t. $4660,4664,4806,4810,4815,5127$, 5165, 5177.-Walp. Ann. ii. 267; iv. 434 ; vii. 591 .
 ${ }^{3}$ Fruet. i. 233, t. 49.-Porr. Dict. viii. 451. -DC. Prodr. ii. 38.-Ad. Br. Rhamn. 50, t. 1. -Endl. Gen. n. 5715.-B. H. Gen. 375, n. 1.Ноок. Fl. Ind. i. 630.

[^100]: ${ }^{1}$ Spec. 2, 3.
 ${ }^{2}$ Inst. 616, t. 387.-Adavs, Fann. des $P l$. ii. 304.-J. Gen. 380.-Gertv. Fruct. i. 203, t. 43. -Lamk. Ill. t. 210.-Sav. Lamk. Dict. iv. 697; Suppl. iv. 262.-DC. Prodr. ii. 22.-Ad. Br. Rhamn. 46, t. 1.-Spach, Suit. à Buffon, ii, 439. -Endl. Gen. n. 5716.-B. H. Gen. 375, n. 3. -Aspidocarpus Neck. Elem. n. 802. - Aubletio Lour. Fl. Cochinch. (ed. 1790), 283 (not G.errn. nor Jace. nor Ricy. nor Schreb.).
 ${ }^{3}$ Small, yellow.
 ${ }^{4}$ Spec. 2, of which 1 is Chinese, L. Spec. 281 (Rhamnus).-W. Spcc. i, 1103 (Zizyphus).-Don,

[^101]: ${ }^{1}$ Small, greenish.
 2 'A genus distinguished from Paliurus only by its fruit.
 ${ }^{3}$ Spec. 40-50. L. Spec. 282 (Rhammus).Pall. Flo Ross. ii. t. 59 (Rhamzus)-Desf. Act. Acad. Iar. (1788), t. 21 ; Fl. Atl. i. 200. - Cav. Icon. t. 105. - VAHL, Ecl. iii. t. 23 (Paliurus).-W Wight, Icon. t. 99, 282, 339. -Bl. Bijds. 1141.-Guillem. et Perr. Fl. Sen. Tent. i. 144, t. 37.-Oliv. Fl. Trop. Afr. i. 379. -Harv, and Sond. Fl. Cap. i. 475.-Miq. Fl. Ind. Bat. i. p. 1, 641; Aum. Mus. Lugd.-Bat. iii. 30.-Maxim. Rham, Ae。Or. 3.-'Hiw, Enum. Pl. Zeyl. 73.-Benth, Fl. Austral. i. 411.Boiss. Fl. Or. ii. 12.-Sibth. and Sm. Fl. Grrec. t. 241.-Reiss. Mart. Fl. Bras, Rhamn. 86, t. 27.-Tr. Ann. Sc. Nat. ser. 5, xvi. 380.-Gren. et Gomp. Fl. de Fr. i. 334.-W Alp. Ann. i. 192 ; ii, 266 ; vii. 587.

[^102]: ${ }^{4}$ Ann. Scienc. Nat. i. 39, t. 4 ; Icon. vi. 16, t. 525.-DC. Prodr. ii. 28.-Ad. Br. Rhamn. 48, t. 1.-Endl. Gen. n. $5717 .-\mathrm{H} . \mathrm{Bn}$. Adansonia, ii. 257 ; Payer Fam. Nat. 331.-A. Gray, Gen. Ill. t. 164.-B. H. Gen. 376, n. 5.-Reynosia Griseb, Cut. Pl. Cub. 33.-Miororhamnus A. Gray, Pl. Wright. i. 33 (not Maxmm.).-B. H. Gen. 376, n. 6.
 ${ }^{5}$ Often small, sometimes parallel lineate beneath.
 ${ }^{6}$ Small, greenish, or whitish.

 - Spec. 8-10. Hook. Icon. t. 287.--Torr and Gray, Fl. N.-Amer. i. 685.-C. Gay, El. Chil. ii. 20.-Griseb. Fl. Brit. W.-Ind. 100.-A. Gray, Amer. Expl. Exp. Bot. i. 275.-Reiss. Mait. Fl. Bras. Rhamn. 89, t. 24, 28.-Walp. Ann. iv. 432 (Microrhamnus), 433 ; vii. 587 (Sciadophila Puil. is a species of Condalia, Mrers, Contrib. i. 304).

[^103]: ${ }^{1}$ Gen. n. 5747. -B. H. Gen. 386, n. 37.
 ${ }^{2}$ Small, golden.
 ${ }^{3}$ A genus very near to Coumnia, differing in its fruit and also its inflorescence, which is quite that of Helinus (differing in its apterous fruit),
 ${ }^{4}$ Spec. 1. R. smilacina - R. cordifolia EteUd.

[^104]: --Reiss, Mart. Fl. Bras. Rhamn. 112, t. 26, 40.
 -Gouania smilacina Sm. Rees Cyclop. xvi. n. 8.
 \rightarrow G. cordifolia Radd. Mem. Soc. della Scienz. Moden. xviii. 39 (1820).-Celastrus umbellatus Velloz. Fl. Flum. 98 ; ii. t. 137.

[^105]: ${ }^{1}$ Nov. Gen. et Spec. ii. 68, t, 160,-Ad. Br. Rhamr. 73.-Ennl. Gen. n. 5748.-B. H. Gen. $385, \mathrm{n} .34 .-\mathrm{H} . \mathrm{BN}$. Adansonia, xi. 290.
 ${ }^{2}$ In 1 spec. viz. C. decumbens Mart.-G. Don, Gen. Syst. ii. 44.
 ${ }^{3}$ Small, white.
 ${ }^{4}$ Spec. 3, 4 (1 of which is membranous-leaved; root annual, in habit very different from the rest, but in no generic sense distinct). Reiss. Mart. Fl. Bras. Rhamn, 112, t. 41.
 ${ }^{5}$ In Herb. Drège (ex Endl. Gcn. n. 5745), B. H. Gen. 385, n. 36.-Hook. Fl. Ind. i. 644.

[^106]: ${ }^{6}$ Spec, 3. Ait. Hort. Hevo. i. 266 (Rhamnus). -A. Rich. Tent. Fl. Abyss. i. 139, t. 31.Harv, and Sond. Fl. Cap. i. 479.-Javb. and Spach, $1 l l$. Pl. Or. v. t. 472.-Walf. $A n n$. vii. 608.
 ${ }^{7}$ Gen. n. 266.-J. Gen. 381.-Gmertn, Fruct. i. 114, t. 24.-Lamk. Ill. t. 127.-Poir. Dict. v. 286; Suppl. iii. 400--DC. Prodr. ii. 34.-Ad. Br. Rhamn. 68, t. 6, ii.-Spach, Suit. à Buffon, ii. 467.-Endl. Gen. n. 5738.-B. H. Gen. 380, n. 18.-II. Bn. Payer Fam. Nat. 329.-Baker Fl. Afaurit. 53.

[^107]: ${ }^{1}$ Presl, Bot. Bem. 39.
 ${ }_{2}$ AD. Bre. Rhamn. 67, t. 6, 1.-IWalpersia Reiss, ex Endl. Gen. n. 5736.
 ${ }^{3}$ Ad. Br. Rhamn. 70, t. 6, iii.-Endl. Gen. n. 5740 .

 4 Reiss. ex. Exdl. Gert. n. 5739.
 ${ }^{5}$ Reiss. Nov. Stirp. Tindob. Dec. 82.--Endl. Gen, n. 5737.
 ${ }^{6}$ Oftener dark.
 ; In 1 spec. (P. stipularis L.) developed.
 ${ }^{8}$ Spec, about 60. L. Spec. 283 ; Mantiss, 208.
 -L. P. Suppl. 153.-Thunb. Prodr. 45 ; Fl. Cap.

[^108]: ${ }^{1} \boldsymbol{\Delta}$ genus scarcely to be retained, though in some cases in the form of its apical fruit, in other cases, in its ample leaves and loose cymes. distinct from most Phylicas, it would perhaps be better regarded as a section of the latter in which the above characters are occasionally observed.
 ${ }^{2}$ Spec. 1. N. elliptica Hoor. r.-Phylica elliptica Roxb. Beats. App. 316, -DC. Prodr. ii.

[^109]: 34. n. 1.
 ${ }^{3}$ Gen. 381, n. 20.
 ${ }^{4}$ Spec. 2. Oliv. Fl. Trop. Aff. i. 385.-II. Bn. Adansonia, viii. 209. Epigynous disk in Western species densely velutino-lanate, in that of Madagascar rather glabrous.
 ${ }^{5}$ Heug. Enum. 20.-Endl. Gcn. 2. 5744.B. H. Gen. 382, n. 34.
 ${ }^{6}$ Often coloured.
[^110]: 1 Generally white.
 ${ }^{2}$ A genus scarcely distinguished from the following.
 ${ }_{3}$ Spec. 5. Labill. Pl. Nouv.-Holl. i. 60, t. 84 (Ceanothus).-Fenzx, Hueg. Enum. 21, n. 5, 6. -Benth. Fl. Austral. i. 423.-Walp. Aun. ii. 270 , п. 2, 3, 6-12; vii. 595.
 ${ }^{4}$ Il. Nouv.-Holl. 1, 61 (part.), t. 86, 87.-DC. Prodr. ii. 33.-AD. BR. Rhamn. 64, t. 5.Spach, Suit. à Buffon, ii. 467.-Evdl. Gen. n. 5743.-B. H. Gen. 381, 999, n. 23.-H. Bn. Payer Fam. Nat. 229.
 ${ }^{5}$ Golden or greenish.

[^111]: ${ }^{6}$ Spec. 18. Fenzl, Hueg. Emun. 21 (part.)Hook. Journ. Bot. i. 256.-A. Cunn. Field N.S. Wales, $351 .-F$. Muell. Fragm. ii. 131 ; iii. 68, 166, 168.-Reiss. Linncea, xxix. 266.-A. Gray, Amer. Expl. Exp. Rot. 1. 282.-Hook. F. Fl. N.-Zel. i. 46 ; Man. N.-Zeal. 43 ; Fl. Tasm, i. 76. -Bentif. Fl. Austral. i. 415.-Lodd. Bot. Cab. t. 120.-Bot. Mag.t. 1823, 3219, 3212,-Walp, Ann. vii. 594.
 7 Hueg. Enum. 24,-Endl. Gen. n. 6741,B. B. Gen. 382,999, n. 25.
 ${ }^{8}$ Reiss. Linnexa, xxix. 295,

[^112]: ${ }^{1}$ Bot. Misc. i, 156, t. 44, 45.-Endl. Gen. n. 5731.-Miers, Ann. Nat. Hist. ser. 3, v. 370 ; Contrib. 1. 273, t. 38.-B. H. Gen. 383, n. 29.Tetrapasma Don, Gen. Syst. ii, 40.
 ${ }^{2}$ Miers, Contrib. i. 266, t. 37.
 ${ }^{3}$ Poepp. Endi. Gen. n. 5733.-Miers, Ann. Nat. Hist, loc. cit. 376; Contrib. i. 279, t. 39.
 ${ }^{4}$ Double integument.

[^113]: ${ }^{1}$ A genus very often referred to Colletia, of which, with others following, it would be better regarded as a section, notwithstanding the form of the perianth and receptacle and the structure of the disk, the nature of the pericarp, the twigs imperceptibly or not at all articulate, characters apparently here of no moment.
 ${ }^{2}$ Spec. 10-12. Spreng. Syst. Cur. Post. iv. 108 (Condalia). - Vent. Jard. Cels, 92, t. 15 (Colletia).-Hook. and Arn. Dut. Misc. iii,

[^114]: 173. -Ad. Br. Rhamn. 59, n. 1, 4 (Colletia). -A. Rich. Foy. Astrol. Bot.t. 14 (Colletia).Ноoк. Icon, t. 538 (Colletia).-Raul, Ch. de It. 29.-C. GAy, Fl. Chil. ii. 19 (Rhamnus), 35-37 (Colletia), 38 (Ochetophila).-Hook. F. Fl. Tasm. i. 69 ; Fl. Ant. ii. 255 (Colletia) ; Man. N.-Zeal. Fl. 43.-Reiss. Mart. Fl. Bras. Rhamn. t. 35.Walp. Ann. vii. 605.
 ${ }^{3}$ Gen. 70 ; Comm. 50.-Endl. Gen.n. 5732.Miers, Contrib. i. 284.-B. H. Gen. 384, n. 30.
[^115]: ${ }^{1}$ Spec. 1. A. infesta Meissn--A. Gray, $P l$. Wright. 34.-Colletia infesta Ad. Br, Ihamn. 59, n. 5.-Ceanothus infestus H. B. F. Nov. Gen. et Spec. vii. 61, t. 614.-Colubrina infesta Schltl, Linnaa, xv. 468.
 ${ }^{2}$ Rhamn. 57, t. 3.-Endl. Gen. n. 5734.B. H. Gen. 384, n. 31.--Retamilia Miers, Aun. Nat. Hist. ser. 3, v. 483 ; Contrib. i. 285, t. 39 DE.-Molinaa Commers. MSS. not of others. ${ }^{3}$ Habit of Epledrec.

[^116]: ${ }^{4}$ Spec. 2, 3. Vent. Jard. Cels, t. 92 ; Choix de Pl. t. 16 (Colletia).-Porr, Dict. Suppl. ii. 311, n. 1 (Colletia),-DC. Prodi. ii. 28 (Colletio sect. Retanilla),-Lodd. Bot. Cab. t. 1820 (Colletin). -Hook. Bot. Mise. i. 157 ; iii. 173.-C. Gar, Fl. Chil. ii. 25.-Phil. Limnaa, xxviii. 679.Walp. Ann. vii. 606.
 ${ }^{5}$ Trav. Chili, ii, 529; Ann. Nat. Hist. ser. 3, v. 6 ; Contrib. i. 296, t. 41.-ENdL. Gen. n. 5735. -B. H. Gen. 385, n. 33.

[^117]: ${ }^{1}$ Char. from Miers, loc. cit.
 ${ }_{2}$ Spec. 2. Gill. and Hook. Bot. Misc. i. 158, t. 45 B. (Tievoa)-Bert. from Colla, Mem. Torin. $\mathbf{x x x i i}$. 53, t. 7 (Colletia),-C. GAy, Fl. Chil. ii. 23 (Trevoa).-Walp. Ann vii. 607.
 ${ }^{3}$ Trav. Chiti, 529; Amn. Nat. Hist. ser, 3, v.

[^118]: ${ }^{1}$ L. Hort. Oliff. 37 ; Gen. n. 138 (not Plum. not Lour.).-Adans. Fam. des Pl. ii. 225.-J. Gen. 419.-Gertn. f. Fruct. iii. 243, t. 225.Porr. Dict. vi. 538 (part.).-K. Linncer, v. 676 (part.).-A. Juss. Ann. Sc. Nat. sér. 3, vi. 22, t. 1.-Endl. Gen. n. 2116.-H. Bn. Payer Fam. Nat. 323 ; Adansonia, xi. 287.-A. DC. Prodr. xiv. 484.
 2. White or pink. The nature of the tube (which we here only provisionally attribute to the perianth, and which we shall call a calyx only in imi-

[^119]: mode of placentation, see H. Bn. 'Adansonia, xi. 228. The branches of the style correspond, not to the cells, but to the incomplete ovarian partitions.

[^120]: ${ }^{1}$ If there are four instead of two, the lateral are the more exterior, and the interior are, one anterior and the other posterior (P. fruticulosa).
 2 A. Juss. loc. cit. 23, t. 1, fig. 2.-A. DC. Prodr. xiv. 486.

[^121]: ${ }^{3}$ L. Spec. ed. 2, 162.-L. F. Suppl. 121.Thunb. Fl. Cap. 149.-Vent. Malmais, t. 87.Meisen. Hook.Journ. (1843), 456 bis.-Meerb. Icon. t. 51.-Lodd. Bot. Cab. t. 1770.-Krauss, Flora (1845), 76.

[^122]: ${ }^{1}$ Introd. 71; Veg. Iİingd. (1846), 577, Ord. 209.-Sweet, Hort. Brit. (1827), 488.
 ${ }^{2}$ Gen. (1789), 419.
 3 Linncea, v. (1830), 676.
 ${ }^{1}$ Enchivid. 213, Ord. 112; Gen. 335.
 ${ }^{5}$ Ann. Sc. Nat. sér. 3, vi. 15.
 ${ }^{6}$ Prodr. xiv. 483, Ord. 165.
 7 Gen. Suppl. iv. 73.
 8 The transverse section of the wood gene-

[^123]: rally has a square or lozenge shape, in accordance with the arrangement of the leaves. In the medullary cellules and in those of the vertical parenchyma is found a yellowish or brownish resinous substance, in appearance much resembling the gum-resins of the Bursera, and also certain Sarcocols, probably spurious, found here and there in commerce.

[^124]: ${ }^{1}$ Adansonia, xi. 289.
 2 It is said to be the इapкокó $\lambda \lambda \alpha$ of Dioscorides. The Arabs call it Unzeroot. It contains a sweetish principle (sarcocollin), and is said to be brought from Ethiopia. There is no proof, says Endlicher (Enchivid. 214), that it comes from the Pencacea, as Dioscorides makes it come from Persia, and Mésuś reports

[^125]: ${ }^{1}$ Linnaa (1830), 677.-Endl. Gen. n. 2117.
 -A. Juss. Ann. Sc. Nat. sér. 3, vi. 25 (part.).
 -H. Bn. Payer Fam. Nat, 334 ; Adansonia, xi.

[^126]: 287.-A, DC. Prodr. xiv. 488.
 ${ }_{2}$ Persistent, accrescent, coloured.
 ${ }^{3}$ Endl. Gen. Suppl. iv. p. ii. n, $2117 a$.

[^127]: ${ }^{1}$ A. Juss. loc. cit. 24, t. 2, fig. 3. - Endl. Gen. n. 2116^{1} (Suppl. iv. 73).
 ${ }^{2}$ Endl. loc. cit. (Brachysiphon, sect. a).
 ${ }^{3}$ Endl. loc. cit. sect. b.
 ${ }^{4}$ Often unctuous-resinous.
 ${ }^{5}$ Spec. about 10. L. Mantiss. 199, 331 (Pe-naa).-Thunb. Fl. Cap. 149 (Penca).-Berg. Cap. 36 (Penca).-Lamk. Ill. i. 317, t. 78 (Penaa). - Porr. Diet. vi. E40 (Penea). Grah. Bot. Mag. t. 2809 (Penaa).-Bot. Reg. t. 106 (Pencor).
 ${ }^{6}$ Ann. Sc. Nat. sér. 3, vi. 19, 26, t. 3.Endl. Gen. n. 2117^{1}.-H. Bn. Payer Fam.

[^128]: ${ }^{1}$ Lamk. Dict. i. 49 ; Suppl. ii. 709 ; Ill. t. 356. - DC. Prodr. ii. 59. - Spach, Suit. ̀̀ Buffon, xiii. 289.-Turp. Dict. Sc. Nat. Atl. t. 248.-Lindl. Veg. Kingd. 579, fig. 392.-Endl. Gen. n. 2111.-H. "Bn. Payer Fan. Nat. 332 ; Adarsonia, xi. fasc. 10.-Merssn. DC. Prodr. xiv. 601.-Ophispermun Lour. Fl. Cochinch. (ed, 1790), 280.-Agallochum Rumph. Herb. Amboin. ii. 34, t. 10 .
 ${ }^{2}$ This corresponds to what, in all descriptions, is considered as the tube of the perianth. It is lined with a very thin glandular layer, covered with hairs; and it is this disk which, thickening at the throat, there separates into

[^129]: alternipetalous tongues described a little farther on.
 ${ }^{3}$ Their course can be traced lower down on the internal face of the receptacle in the form of a slightly prominent thread. Their presence here is owing to the late development of the receptacular cup which, at first, is scarcely concave and afterwards enlarges from top to bottom as it becomes more pronounced.
 ${ }^{4}$ In some species it separates clearly a little after fecundation, following a transverse line, a little above the point where it becomes free. Its upper portion gonerally begins to change before this disarticulation.

[^130]: ${ }^{1}$ While the sepals are reflexed.
 ${ }^{2}$ Here and there with three carpels.
 ${ }^{3}$ They have always appeared to me complete, though the separating partition is formed of two halves meeting along the middle line with margins tolerably thick, but not uniting and easily separable with the slightest traction. Always in Lachnolepis (Mre. Ann. Mus. Lugd. Bat. i. 132), to us waknown, but apparently ought not, for this single character, to be separated from the other Gyrinops, the two parietal placentæ remaining, it is said, but slightly salient.

 4 With double envelope.

[^131]: ${ }^{5}$ The exterior is crustaceous, blackish, often covered with small salient scales.
 ${ }^{6}$ The prolonged external coat envelopes this conical projection. When it decays (which happens sooner or later), it lays bare a bundle of lung hairs, originally planted on the chalazaic region, afterwards disengaged, but previously united in a brush in this kind of sheath which keeps them together
 7 Dcne. Ann. Sc. Nat. sér. 2, xix. 41, t. 1 B.Meissn. Prodr. 602.
 ${ }^{8}$ Greenish or reddish.
 9 Spreng. Syst. ii. 356.-Roxb, et Colebr. Trans. Linn. Soc. xxi. iii. 119, t. 21.-Roxb.

[^132]: Fl. Ind. ii. 422.-CAv. Diss. vii. 377, t. 224.Royl. Ill. Himal. 173, t. 36.-Ноок, Icon, t. 6. -Benth. Hook. Kew Jowin. v. 195 ; Fl. Hongh. 297.-Mıq. Fl. Ind.-Bat. i. p. i. 882 ; Suppl. i. 141 (part.).-H, Bn. Adansonia, xi. fasc. 10.
 ${ }^{1}$ Gertin, Fruct. ii. 276, t. 140. - DC. Prodr. ii. 60. - Arn. Linal. Nat. Syst. ed. 2, 442.-Hook. Icon. t. 5.-Endl. Gen. n. 2110.Thw. Enum. Pl. Zeyl. 251.-Meissn. Gen. 73: Prodr. 602, 700.-H. Bn. Payer Fam. Nat. 333.
 ${ }^{2}$ At its base exists a small glandular swelling, scarcely perceptible.

[^133]: ${ }^{3}$ JAck, Mal. Misc. (1820-22).-Ноок. Comp. to Bot. Mrag. i. 156.-Endi. Gen. n. 2109.H. Bn. Adansonia, xi. fasc. 10.-Drymispermum Reinw. Syll. Nov. Pl. Ratisb. (1818), 15, t. 2.-Meissn. Prodr. 603.-Pseudais Dene. Ann. Sc. Nat. sér. 2, xix. 40.- Leucosmia Benth. Hook, Lond. Journ. ii. 231 ; Voy. Sulph. Bot. 179, t. 57 (in some copies.),-Plutonia Norone. (ex Hassk.).
 ${ }^{4}$ Which are the lobes of the calycinal limb according to most authors; generally white, like the tube.

[^134]: 1 "Genitalibus, more quarumd. Rubiac. etc. dimorphis." (A. Gray, Seem. Journ. of Bot. iii. 305.)
 ${ }^{2}$ Forst. Prodr. 33, 192 (Dais). - Wikstr. Thymel. 349 (Dais), Gavdich. Voy. Uran. Bot. 443, t. 44 (Dais). - Bu. Bijdr. 651 (Dais). - Dcne. Ann. Mus. iii. 41 (Dais); Aun. Sic. Nat. sér. 2, xix. 33, t. 1 A (Drymispermum); Voy. Venus, Bot. 13, t. 1012 (Drymispermum) ; 17 (Leucosmia).-Zolı. Verz. ii. 117 (Drymispermum).-A. Gray, loc. cit. 305 (Leucosmia).-THw. Enum. Pl. Zeyl. 251 (Drymispermum),-Mıа. Fl. Ind-Bat. i. p. i. 883 (Pseudais), 884 (Drymispermum); Suppl. i. 142 (Drymispermum).-Seem. Fl. Vit. 207 (Drymispermum).-F. Muell. Fragm. ₹. 26;

[^135]: vii. 1 (Drymispermum).-Hook. f. Bot. Mag. t. 5787.-Benth. Fl. Austral. vi. 37.
 ${ }^{3}$ The genus shaphium (Mra. Fl. Ind.Bat. Suppl. i. 142), very imperfectly known, appears tolerably analogous to Phaleria by its fruit, but it differs, apparently, in its mode of inflorescence. Its flower must be analysed.

 4 Wall. Cat. n. 4203.-Kndl. Gen. n. 2102 ; Suppl. iv. p. ii. 67, n. 2106^{4}-Meissn: Denkschr. Bot. Ges. Regensb. iii. 293, t. 7 ; Prodr. 599, 700.-Nectandra Roxb. Fl. Ind. (ed. 1832), ii. 425 (not Berg. nor Rottb.).-Eulinostoma Meissn. Mart. Fl. Bras. Thymel. 71.
 ${ }^{5}$ And Phaleria may have, as we have seen, a unilocular ovary.

[^136]: ${ }^{1}$ Such is probably the signification of the tube which, in generic descriptions, we shall often refer to the perianth, following raost authors, the question being still undecided. On these coats are delineated moro or less

[^137]: clearly the lincar descending threads of the staminal filaments, partly concealed by hairs.
 ${ }^{2}$ Or more or less crenate.
 ${ }^{3}$ Griff. Calc. Journ. of Nat. Hist. iv. 234, not.-WALr. Ann. i. 587.

[^138]: ${ }^{1}$ Fam. des Pl. ii. 278, Fam. 40.
 2 Veprecula L. Phil. Bot. (1751), 33.
 ${ }^{3}$ Gen. (1789), 76, Urd. 2.
 ${ }^{4}$ Introd. (ed. 2), 194; Veg. Kingd. (1846). 530, Ord. 203 (Thymelacece).

 5 Gen. 329, Ord. 109 (Daphnoidea).

[^139]: ${ }^{6}$ See Nat. Ifist. of Plants, ii. 449.
 7 Mal. Misc. (1820-22).
 ${ }^{8}$ Linuca, xiv. 3800 ; Denkschr. Bot. Ges. Regensb. iii. 274; Gen. 323,330 (242); Mart. Fl. Bras. Thymel. (fasc. 14); DC. Prodr. xiv. 493 (1857).

[^140]: ${ }^{1}$ Hook. Icon, t. 1074 (1870).
 ${ }^{2}$ Adansonia, xi. fasc. 10 (1875).
 ${ }^{3}$ Dict. ii (1806).
 ${ }^{4}$ Fruct. ii (1791).
 5 Congo (1818), 443; Misc. Works (edit. Benn.), i. 126.
 ${ }^{6}$ Ann. Sc. Nat. sér. 2, xix. 35, t. 1.

[^141]: 7 Voy. Vénus, Bot. 13, tab.
 ${ }^{8}$ Reinw. Syllog. Pl. Ratisb. 15 (1828).
 ${ }^{2}$ For the most complete demonstration of these facts. now scarcely credible, see Adansonia, xi. fasc. 10.
 ${ }^{10}$ Prodr. xiv. 601 (1857).

[^142]: ${ }^{1}$ F\%. Vit. 207.
 ${ }^{2}$ Hook. Lond. Journ, ii. 231.
 ${ }^{3} \mathrm{Fl}$. Austral. vi. 37.
 4 Fl. Ind.-Bat. Suppl. i. 357.

[^143]: ${ }^{5}$ Amn. Mus. Lugd.-Bat. i. 134.
 ${ }^{6}$ Amm. Mus, Lugd.-Bat. loc. cit. t. 4.
 ${ }^{7}$ Jownn. Linn. Soc. viii (1865).

[^144]: ${ }^{1}$ The comparative study of types such as Octolepis, Aquilaria and Daphne, for example, without speaking of the intermediaries, seems to prove that the part considered as the tube of the calyx here represents a receptacle, bearing perigynous stamens, the true calyx consisting only of the parts of the limb. Payer (Organog. 481) arrived at the same conclusion, Adansonia, xi. fasc. 10.

 2 There are other characters nearly constant in the organs of vegetation. In this respect

[^145]: must be mentioned the simplicity of the leaves, the absence of stipules, and, in the organisation of the stems, the peculiarities traceable in the liber, tenaceous, sometimes textile, with the remarkable fascicular structure which renders the leaflets reticulate, in form of cloth, lace, thread, and which prevents the branches of the Thymelec from being easily and cleanly broken. (See Link, Alat. Pl. (1843), t. viii, 6.A. Juss, Elém, Bot. 65, fig. 96.-Oliv. Stom. Dicot. 31.)

[^146]: ${ }^{1}$ Peddiea has been cited as sometimes having two orules in one and the same cell, and De Martius has seen two or three ovules and as many stones in Funifera utilis.
 ${ }^{2} \mathrm{H} . \mathrm{Br}$. Adansonia, xi. fasc. 10. The gynæcium of Aquilaria is sometimes tricarpellar.
 ${ }^{3}$ The Lauracece are everywhere distinguished from the Thymelece: 1, by the perianth formed of two or more verticils; 2 . by the character, quite peculiar, of their valvicide anthers; 3. by the position of the micropyle, which, in the descending ovule, is interposed between the hilum and the placenta. The Hernandicee are Lauracea, and have besides, as we have seen (vol. ii. 449), a double perianth, free stamens and an inferior (adherent) ovary, surmounted by an epigynous disk. It is difficult in the

[^147]: present day to understand the opinion of authors who placed them among or after the Thymelece, perhaps on account of their induviate fruit. The Proteacea frequently have one ovule like the Thymelec; it is then either orthotropous and descending, or anatropous and ascending; which is never seen in the latter. The stamens, always the same in number as the divisions of the perianth in the Proteacece, are superposed to those divisions, whilst in the isostemonous Thymelacece (except in Schenobiblus, a genus still imperfectly known) the stamens alternate with the sepals, and, when they are opposite, as in Pimelea, they are fewer.
 ${ }^{4}$ See p. 96, fig. 60-63.

[^148]: ${ }^{1}$ Adansonin, xi. 290, etc.
 ${ }^{2}$ Oliver compares these with Penca.
 ${ }^{3}$ Endl. Enchiitd. 209.-Lindl. Fl. Med. 324 ;「̌eg. Kïugd. 531.-Guib, Drog. Simpl. éd. 6, ii. 384.-Rosenth. Syn. Pl. Diaphor. 240, 1133.
 ${ }^{4} \mathrm{C}^{64} \mathrm{H}^{42} \mathrm{O}^{46}$. Sweng. Ann. Chem. und Pharm. exv. 1.-Gueilliot, Etude sur les Daphne. -(Thès. Ecole . . . Pharm, Par. 1867.
 ${ }^{5}$ Daphne Gnidiun L. Spec. 357.-Duham. Ar3). ii. t. 23.-Sibтн, et Sm. Fl. Grece, t. 356. -Mér. et Del. Dict. Mat. Mécr. ii. 580.Hayne, Arzn, Gew. iii. t. 45.-Reiche. $1 c$. Fl. Germ. t. 553.-Gurb. op. cit. ii, 384, fig. 471.Gren. et Gúdr. Fl. de Fr. iii. 60.-Caz. Med. Indig. éd. 3, 365.-Rev. Fl. Méd. du XIXe Siecle, ii. 75.-Rosenth. op. cit. 240-D. Chi-

[^149]: ${ }^{1}$ D. Laurcola L. Spec. 3556.-Blackw. Herb. t. 62.-JacQ. Fl. Austr.ii, 49, t. 183.-MÉr. et Del. Dict. Mat. Méd. ii. 584.-HAyne, Arz. Gew. iii. t. 44.-Guib. op. cit, ii. 386.-Gren. et Godr. Fl. de Fr, iii, 57.-Caz. Pl. Méd. Ind. éd. 3, 366.-Rev. in Fl . Mred. du XIXe Siecle, i. 449.-Rosenth. op. cit. 240.-D. major Lami. Fl. Fr. iii. 221.-Thymelca Laurcola Scop. Fl. Carniol. i. 276 (Laurier-Epurge, L. des Bois, Auriole, Lauréole MAâle).
 ${ }^{2}$ Sm. Spicil. ii. t. 18.-Meissn. Prodr, xiv. 535, n. 15.-Bot. SLag. t. 428.
 ${ }^{3}$ L. Spec. 356.-D. cardida Wirtm.-Thymelaa candida Scor. Fl. Cam. ed. 2, i. 277.
 ${ }^{4}$ L. Spec. 357.-Andr. Bot. Repos. t. 73,Bot. Mag. t. 1282. We are assured that the poisonous honey of Asia Minor is collected partly from this plant.
 ${ }^{5}$ Pall. Fl. Ross. i. 53, t. 35.-Lodd. Bot. Cab. t. 399.-Bot. Mag. t. 1875.
 ${ }^{6}$ L. Spec. 357.-JacQ. Fb. Austr. v. 12, t. 426.-Curt. in Bot. Miag. t. 313.-Bull. IIerb. t. 121.-Mér. et Del. loc. cit. 580.-D. odorata Lamk. Fl. Fr, iii. 222.-D. Verloti Gren. et Godr. Fll de Fr. iii. 59 (D. Fausse-Chamélée).

 7 Schreb. Dec. i. 13, t. 7.-D. caucasica Bieb? -D. Jasminea Sibth. et Sm. Fl. Groe. t. 358.
 ${ }^{8}$ Don, Prodr. Fl. Nepal. 68 (Bholu Swa). D. Gonkwa (Sieb, el Zucc. Fl. Jap. i. 137, t. 75) is also used for blistering in Japan; the
 internally as febrifuge, hydragogue and vermicide.
 ${ }^{9}$ See p. 130, note 9. Bigel. Med. Bot. ii. t. 37.-Lindl. Fl. Med. 325.-IUusenti, op. cit. 240 (Bois de cuir, B. de plomb).
 ${ }^{10}$ C. A. Mex. Bull. Pétersb. iv. n. 4.Meissn. Prodr. 543, n. 1.-W. Forsteri Dene. in Jacquem. Voy. Bot. 146.-W. nutans Benth. Hook. Journ. (1853), 190.-Daphne indica L. Spec.511.-D. fatida L. r. Suppl. 223.-Foret. Prodr. n. 168.-Capura Purpurata L. Mantiss. 225 (Ooo, Oao, Avan=0-a0 iv the Sandwich Isles).
 ${ }^{11}$ Meissn. Prodr. 522, n. 9.-Duphne occidentalis Sw. Prodr. 63.
 ${ }^{12}$ Meissn. Prodr. n. 14.-Daplne tinifolia Sw. Prodr. 63.-Nordmannia tinifolia Fisce. et Mey. (Mahot).
 ${ }^{13}$ All. Fl. Pedem. i. 133.-Meissn. Prodr. 556, n. 16.-Daphne Tartonraira L. Spec. 356. -DC. Fl. Fr. iii. 357.-Mér. et Del. Dict. Mat. Mréd. ii. 587.-D. Candicans Lamk.Passerina Tartonraira Schuad. N. Journ. iv. p. i. 89.-Gren et Godr. Fl. de Fr. i. 63.Chlanydanthus Tartonraiva C. A. Mey-Sanamunda argentea latifolia angustifolia Barrel (Trintanelle, T. Malherbe, Gros-Retombet).
 ${ }_{14}$ Notably G. pinifolia L. simplex L. and imberbis Dryand, species from the Cape. G. odorifcra Lour. from Cochin China, yields a kind of tar which serves to calk ships.

[^150]: ${ }^{1}$ P. Filiformis L. hirsuta L. ciliata L. and villosa L. are cited as evacuants, as also Stellera Chamajasme L.
 ${ }^{2}$ L. .F. Suppl. 225. - Lasiosiphon pubescens Dene.-Meissn. Prodr. 597, n. 16.
 ${ }^{3}$ Dais Madagascariensis Lamk. Dict. ii. 25゙4, 1ll. t. 368, fig. 2.

 + Wall. ex Steud. Nomenel. 483.
 ${ }^{5}$ D. Papyrifera Sieb. Act. Bat. sii. 24.-Edgeworthia Chrysantha Lindl. Journ. Hort. Soc. i. 148; Bot. Reg. (1847), t. 48.-E. Papyrifera Zucc. in Abh. Baier. Akad. iv. 199 (Mitsmata of the Japanese).
 ${ }^{6}$ Linodendion Lagetta Grisers.
 7 A. Riсн. Cub. xi. 193.

[^151]: ${ }^{8}$ Lamk. Dict. iii. 376, 440 ; Suppl. iii. 236 ; Ill. t. 289.-Mér. et Del. Dict. Mat. Mêd. iv. 19.-Lindl. Fl. Mél. 325.-Hook. Kew Gard. Misc. ii.t. 4 ; Bot. May. t. 4502.-Lindl. Pazt. Fl. Gard. i. n. 60, c. ic.-Lem. Jard. Flear. t. 19. - Meissn. Prodr. 526. - Endl. Euchirid. 209.-Rosenth. op. cit. 242.-Lagetto Lunan, Jam. i. 473.-Daphne Lagetto Sw. Prodr. 63; Fl. Ind. Occ. i. 680 (Lace-bark, Gauze-tree).
 ${ }^{9}$ Leandro, MSS. C. A. Mey. Bull. Acad. Petersh. iv. n. 5.-Meissn. Mart. Fl. Bras. Thymel. 67; Prodr. 525, n. 1.-Daphne Brasiliensis Raddi. - D. Thereminii Lhotzk.-Lagetta fenifera Mart. et Zece. Nov. Gen. et Spec, i. 66, t. 34 (Embira branca).

[^152]: ${ }^{1}$ Lamk. Nict. i. 4G; Ill. t. 35̄6.-DC. Prodr. ii. 59.-Turp. Dict. Sc. Nat. Atl. t. 248.Meisen. Prodr. 602, n. 3 (not Benth.).A. Orata Cav. Diss, vii. 377, t. 224.-Mia, Fl Ind.-Bat. i. p i. 882 ; Suppl.'i. 141.
 ${ }^{2}$ DC. Prodr. ii. 59,-Meissn, Prodtr. 601, n, 2.- Agallochum seandarium Rumpir. Herb. Amboin. ii. 34, t. 10 (var.? of the preceding species).

[^153]: ${ }^{3}$ Roxıs, Cat. Hort. Calc. 33 ; Fl. Ind. ii. 422 .Loyle, $1 l l .173$, t. 36 , fig. 1.-Boxb. et Colebr. Trans. Limn. Soc. xxi. 199, t. 2L.-Merssn. Prodr. 601, n. 1.-H. Bn. Dict. Encycl. Sc. Méd. v. 754 (Lignam verum Agallochum, s. Agahagin, 8. Calcmbac, s. Aggur, s. Aloes),
 ${ }^{4}$ Guib. op. cit. ced. 6, iiỉ. 337.
 ${ }^{5}$, Herb, Amboin. ii. 402.
 ${ }^{6}$ See p. 125, note 1 .

[^154]: ${ }^{1}$ Bot. Zeit. (1862), xx. 265.-Mie. Ann. Mus. Lugd.-Bat. i. 184, t. 4.-H. BN. Adansonia, xi.
 ${ }^{2}$ Very like a cupular receptacle; sepals somewhat perigynous free (?)

 3 "Porni majoris mole, aurautiaca."

[^155]: ${ }^{1}$ Spec. 1. G. bancanus. - G. Miquelianus Teysm. et Binn. loc. cit.-Aquilaria? bancana Mı, Fl. Ind.-Bat. Suppl. i. 355.-A. mucrophylla Mia. loc. cit. - Agallochum spurium

 IiUMPH, Herb. Amboin. ii. 402.
 2 Journ. Lim. Soc. viii. 161, t. 12.
 3 "White," small.
 ${ }^{4}$ Spec. 1. O. Casearia Oliv, loc, cit.

[^156]: ${ }^{1}$ DC. Prodr. xiv. 600
 ${ }^{2}$ In habit, leaves, structure of Howers very near to Linostoma Merssn. of which it formerly formed a section. It differs in inflorescence, absence of hypogynous disk, sometimes in nature of fruit clothed with calyx.
 ${ }^{3}$ Spec. 1. 2. Meissn. Mart. Fl. Bras.

[^157]: Thymel. (fasc. 14), 72 (Linostoma).
 *Hook. Icon. ser. 3, 59, t. 1074. Olryer describes another species (S. alternifulia) remarkable for its alternate leaves (Hook, Ic, t. 1194).
 ${ }^{5}$ Spec. 1, 2 ?
 ${ }^{6}$ Adansonia, xi. fasc. 10.

[^158]: ${ }^{1}$ Spec. 2. H. Bn. loc. cit.
 ${ }^{2}$ Hook. Icon. viii. t. 798; Niger, 496, t. 49.Meissm. Prodr. 599.
 ${ }^{3}$ Or 5, 2-fid, or 2-partite.

 + Spec. about 4. H. Bv. Adansonia, xi. 302. -Walp. Ann. i. 588.
 ${ }^{5}$ Syst. ed. 2, 22; Gen. n. 487.-J. Gen. 77.Lamk. Dict. ii. 764 ; Ill.t. 291.-Endl. Gen. ne 2100, 2102 (Suppl. iv. p. ii. 63).-Meissn. Linnaa, xiv. 423 ; Prodr. 580.-Dessenia Adans. Fam. des Il. ii. 285.-Struthia Roy, L. Gen.

[^159]: ed. 2, 154.-Nectandra Bera. Pl. Cap. 131,Thymelina Hofrmsg. Terz. i. 198 (part.).Endl. Gen. n. 2101.-Canalia Schm. N. Pflanz. Prag. (1793), n. 5. - Epichroxantha Eckl. et Zeym.-Calysericos (part.) Ecrl. et Zeym. (ex Meissn.).
 ${ }^{6}$ Fresen. Flora (1838), 602.-Dcne. Jaequem. Voy. Bot. 147.-Endl. Gen. n. 2106^{3}.-Enkleia Grif. Calc. Journ. Nat. IIist. iv. n. 13.-JJack, Cat. Ph. Hort. Calc. (1843), 138;-P Psilaa Mra. Fl. Ind.-Bat. Suppl. i. 355.

[^160]: 1 The leafy branches are said to resemble the compound leaves of Psilea (of the Leguminose).

 2 White, yellow, lilac or reddish.
 ${ }^{3}$ Spec. about 65 I. F. Suppl. 225.-WiEstr. Thymel. 315.-Lindl. Bot. Reg. t. 757.-Dcne. Voy. Jacquem. Bot. (Lasiosiphon).-Mr. Anal. Bot. Ind. ii. 3, t. 1. -Walp. Ann. i. 587 (Lasiosiphon), 587 (Enkleia), 588 (Psilosolena).
 ${ }^{4}$ L. Gen. ed. 2, n. 382.-J. Gen. 77.Gertn. Fruct. iii. 195, t. 215.-Lamk. Dict. iii. 373 ; Ill. t. 292.-Endt. Gen. n. 2094 ; Suppl. iv. p. ii. n. 2193،-Meissn. Linaa, xiv.

 408 ; Prodr. 574.—Lachara L. Syst. ed. 2, 22.Gonophylla Eckl. et Zeyh. MSS. (Meissn.)Radojitskya Turcz. Bull. Mosc. (1852), 176.
 ${ }^{5}$ Meissn. Linncea, xiv. 404; Prodr. 573.Endl. Gen. Suppl. iv. p. ii. n. 2101.-Calysericos Eckl. et. Zeym. (Meissn.).
 ${ }^{6}$ Staminodes?
 1 Oftener rosy or lilac.
 ${ }^{8}$ Spec. about 22 L. Spec. ed, 1, $660 .-B u r s$. Afr. t. 46, 48 (Thymelaa).-Тнимв. Fl. Cap. 375 (Pasesrina), 378 (Gnidia). -Andr. Bot. Repor, t. 104.-Turcz. Flora (1853), 743 (Radnjitskya).—Bot. Mag. t. 1295, 4143 (Fasserina.).

[^161]: ${ }^{1}$ Gen. n. 540.-J. Ger. 77.-Gzkwn. Fruct. i. 187 , t. 3才, fig. 3.-Lamk. Dict. ii. 254 ; Ill. t. 368.-Endl. Gen. n. 2093; Suppl. iv. p. ii. n. 2106.-Merssn. Linnaa, xiv. 388 (part.); Prodr. 528.
 ${ }^{2}$ Rosy or white?
 ${ }^{3}$ Spec. 2, 3. Wikstr. Act. Holm. (1818), 270 , 348 (part.).-C. A. Mex. Bull. S.-Pétersb. iv. n. 4.-Dene. Am, Sc. Nat. sér. 2, xx. 51.VOL. VI.

[^162]: Curt, Bot. Jag. t. 147.-Herb. Amat. t. 214.
 ${ }^{4}$ Am. Nat. Hist. ser, 2, vii. 196.-Merssn. Prodr. 548.
 ${ }^{5}$ Spec. 1, to us quite unknown, viz. C. genmifora Miers, loc. vit.-Meissn. Mart. Fl. Bras. Thymel. 70.
 ${ }^{6}$ Hook, Lond. Jour\%. iv. 632.-Endl. Gen. n. 21069.-Meissn. Prodi. 527.

[^163]: ${ }^{1}$ Greenish white, half inch.
 : Spec. 1. L. rupestris Benth.-Meissn. Mart. Fl. Bras. Thymel. 69, t. 29.
 ${ }^{3}$ Cub. xi. 193 (not Schiet), et Deppe).Linodendion A. Gkay, Pl. Wright. i, 187.
 4 A genus distinguished from Lasiosiphon, a section of Guidia, only by the esquamate throat of its perianth.

 Spec. 4 (llowers in 1 species said to be white. Meissy. Prodr, 522, n. 10 (Daphnopsis?). -Gribel3. Cat. Ill, Cub. 109.

[^164]: ${ }^{6}$ Hook. Lond. Jotun. iv. 633 (not Bowd.).Endl. Gen. n. 21065.-Meissn. Prodr. 527.
 i Spec. 1. G. guianensis Benth.- Meissn. in Mart. Fl. Bras, Thymel. 68.
 ${ }^{8}$ Jor. Gen. et Spec. i. 65.-Endl. Gen. Suppl. iv. p. ii. n. $2106{ }^{13}$--Meissn. Prodr. 520, 700.Hargasseria Schied. et Deppe, ex C. A. Mey. Bull. S.-Petersb. iv. n. 4 (not A. Richi.) - Endm. loc. cit. n. 2100^{8}.-Nurdmamia Fisch. et Mey. -loc.cit.

[^165]: ${ }^{1}$ In the male often not the same.
 ${ }^{2}$ Habit of Drphene or Funiferr.
 ${ }^{3}$ Flowers white or greenish.

 + Spec. about 15. Sw. Prodr. 63; Fl. Ind. Occ, ii. 683 (Daphne). - K. Synops. i. 446 (Daphne).-H. B. K. Nov. Gch. et Spec. ii. 1 sı (Daphne).-Bentir. Pl. Hartueg. 147 (D.zphne, Thymelca).-Griseb. Cat. Pl. Cub. 110.
 ${ }^{5}$ Ger. 77.-Lavk. Dict. iii. 376, 440 ; Suppl. iii. 236; Ill. t. 289.-Wıstı. Act. Holm, (1818), 293.-Grertw. Fruet. iii. t. 21ē.--Spach, Suit. à Truffon, x. 437.-Endl. Gel. n. 2106; Suppl. iv. p. ii. n. 2106^{16}.-Melssn. Piod;. 526.

 7 White or slightly green.
 ${ }^{3}$ Spec. 1. L. lintlaria Lamk.-Hook. Hew Gard. Misc, ii, t. 4.-Lindl. Paxt. Fl. Gard. i. n. 60, Icon.-Lem. Fl. Jard. t. 19.-A. Rich. Cub. xi. 192.-Griser. Cat. I'l. Cub. 111.-Bot. Mag. t. 19.-Lagettu Lunan, Hort. Jam. i. 473. - Daphue Lagetto Sw. Frodr. 63; Fl. Ind. Occ. i. 680 .
 ${ }^{9}$ Ex. C. A. Mey. Bull. Acud. S.-Pêlersb. iv. n. 4.-Endl. Gen. n. 2106is-Meissn. Mart. Fl. Bras. xiv. 67 ; Prodr. $525 .-$ Neesia Mart. MSS. (Meissn. not Bl.) --Moscia Velloz. Fll. Fizm. iv. 150, t. 11 ;

[^166]: 1 Sometimes abnormally 2,3 (Mart.), whence 2, 3, pyrenæ occasionally occur in fruit.
 ${ }^{2}$ Textile ductile.
 ${ }^{3}$ Spec. 2. Raddi, Piont. Brus. add. 12 (Daphne),-Mart. et Zucc. Nov. Gen. et Spec. i. $66, t, 34$.
 ${ }^{4}$ Hook. Jourr. (1840), ii. 266, t. 10.-Endl. Gen. л. 2106^{1}; Suppl. iv. p. ii. n. 2106^{14}.Meissn. Gen. 331 (243) ; Prodr. $528,700$. Cyathodiscus Hochet. Flora (1842), 240.Psilosolena Prest, in Abh. d. Boehm. Ges. ser. 3, v. 532; Bot. Bem. 102. - Harveya Plant (Meissn.).
 s Sometimes thinly glandulose-annular (on

[^167]: account of very thin disk being there a little thickened).
 ${ }^{6}$ Sometimes, as said, 2-ovulate; drupe hence 2-pyrenate (?)

 7 Spec. about 3. Walis. Amn. i. 588 (Psilosolena).
 ${ }^{9}$ Diss. Chenon (1751); Gen. (ed. 5), n. 437 ; (ed. 6), n. 486 ; Amocn. Acad. iii. 12, t. 1, fig. 7. -J. Gen. 79.-Lamk. Dict. iii. 287; Ill. t. 293. -Schevir, Matdl. i. 337, t. 107.-Spach, Suit. à Buffon, x. 436.-Erde. Gen.n. 2091 ; Suppl.iv. p. ii. n. $2106{ }^{6}$.-Metssn. Prodr. 527.-Dofia Adans. Fam. des I'l. ii. 285^{5}.

[^168]: ${ }^{1}$ Pale yellow, early.
 ${ }^{2}$ Spec. 1. D. palustris I.-Pursw, Fl. Bor.Amer. i. 268.-Ноок. Fl. Bor.-Amer. i. 268.A. Gray, Man. ed. 5, 424.-Bot. Reg. t. 292.
 ${ }^{3}$ Gen. n. 311.-J. Gen. 77. Lamk. Diet. iii. 434 ; Suppl. iii. 314 ; Ill. t. 290.-Wikstr. Diss. de Daphne (1817); Act. Holm. (1818), 294 (part.).-Nees, Fl. Germ. f. vii. t. 1.-Spach, Suit, à Buffon, x. 438.-_Endl. Gen. n. 2092; Suppl. iv. p. ii. n. 2106^{7} (part.),-Merssn. Regensb. Denkschr. iii. 282; Prodr. 630, 700.Thymelece T. Inst. 594 (part.), t. 366,-G.ERTN. Fruet. i. 188, t. 39.-Scopolia L. F. Suppl. 60, 409 (not Adans. nor Forst. nor Jace. nor Sm.). - Eriosolena Bl. Bijdr. 651. - Rownea

[^169]: Wall. MSS. (not Port.) - Mezereum C. A. Mex. Bull. S.-Pétersb. iv. n. 4.
 4 Pollen globose punctulate; pores minute very close, H. Mohl (Ann. Šc. Nat. sér. 2, iii. 3.4), in Daphne; sometimes in other genora (Ginidia, Passerina, Dais, Pimelca).
 ${ }^{5}$ Integument double.
 ${ }^{6}$ Meissn. Regensb. Denksehy. iii. 280, t. 8 ; Prodr. 542 (not Falcon.).-Endl. Ger. Suppl. iv. p. ii. n. 2106^{1}.

 7 Liber of caustic bark textile very tenacious.

 3 White, golden or pink, more rarely greenish, often early and odorous.

[^170]: ${ }^{1}$ Sect. (Mifissn.) ō: 1^{0} Mezereum (Spach), leaves herbaceous deciduous; calyx deciduous; berry oftener Heshy.- 2^{0} Daphnanthes (C. A. Mey. ; Cneorvides Spach, Ill. Pl. Or. t. 305), leaves persistent; flowers terminal ; calyx sub-persistent.- 3^{0} Gnidium (Spach), leaves annual ; racemes terminal ramose, ebracteate; calyx finally deciduous.-40 Laureola (Spach; Laureoloides Spach), leavos coriaceous perennial coetaneous; racemes axillary.-50 Eriosolena (BL. ; Scopolix L. r.), leaves coriaceous; capitules lateral pedunculate involucrate; sepals often tortnous ; to which add. -6^{0} Edgeworthia (Meissn.), leaves highly coetaneous, head pedunculate in uppermost axils, style rather long subclavate; anthers subsagittate.
 ${ }^{2}$ Spec. about 35. Pall. Fl. Ross. i. 53, t. 35.-Lour. Fl. Cochinch. (ed. 1790), 236.Schreb. Dec. i. 13, t. 7.--V'ahl, Symb. i. 28.Tratt. Aych. i. 120, t. 133.-Thunb. F\%. Jap. 159.- Bl. Bijd, 651. - Sw. Spicil. ii. t. 18; Ic. ined. ii. 34, t. 34. - Sieb. et Zucc. Abh. Math. - 1 hys. Klo Ba'er. Alo. iv. p. iii. 199; Flo Jap. i. 137, t. 75.-LindL. Joum. Hort. Soc.

[^171]: i. 147 ; ii. 34, t. 1.-Wall. As. Ies, xiii. 388, t. 9.-Sieb. Hook. Lond. Journ. vi. 46 (Edge-worthia).-Benth. Fl. Hongh. 296.-Jaub, et Spact, Ill. Pl. Or. t. 303-306.-Mig. Fl. Ind.Bat. i. 877 ; Aunz. Mess. Lugd.-Bat. iii. 133, 135 (Edgercorthia),-Gren. et Godr. Fl, de Fr. iii. 57. - Bot. Reg. t. 1177; (1847), t. 48.Bot. Mfag. t. 206, 313, 1282, 1875. - Walp. Ann. i. 582.
 ${ }^{3}$ Prodr. 524 (not Rafin.).
 ${ }^{4}$ C. Gay, FF. Chil. v .314.
 ${ }^{5}$ Greenish or yellow.
 ${ }^{6}$ Spec. 4. H. B. Syn. Pr. Alquin. i. 447, (Daphme),-H. B. K. Nov. Ger, et Spec. ii. 151 (Daphne).-Pepp. et Eindl. Nov. Gen. at Sjec. ii. 60, t. 191 (Daphme).

 7 Prodr. Fl. Norfoll. 47 ; Gen. n. 2105 ; Suppl. iv. P. ii. n. 2106.-Meissn, Dcnkschr. Regensb. Bot. Ges. iii. 286; Prodj. 543.-Decne. in Jacquem. Foy. Bot. 144, t. 149.-C. A. Mex. Bull. S.-Pétersb. iv. n. 4 (not Schrad. nor Sprevo.).-Capura L Mantiss, 224 (not Bl.). -Diplomorpha Meissn. Denkschr. Regensb. iii. 289.

[^172]: ${ }^{1}$ Sometimes excrescent from axis, subspicate.
 : Spec. about 22. L. Spec. i. 511 (Daphne).Forst. Prodr. n. 163 (Daphne).--Lovr. Fl. Coch. (ed. 1790), 236 (Daphne).-Blanco, Fl. de Filip. ed. I, 309 (Daphne).-Benth. Hook. Jour. (1853), 195.-BuxGe, Enиm. Pi. Chin. Bur. 58 (Passerina). - Mor. et Zoll. Arch. Nat. Ges. Ned. Ind. (1844), 615 (Eriosolena).Seem. Fl. Vit. 206.-Miq. Fl. Ind.-Bat. i. 878 ; Suppl. 141, 354 ; Ann. Mus. Lugd. Bat. iii. 134. -Meissm. Prodr. 550, n. 9, 10 (Stellera).Walp. Ann. i. 589.
 ${ }^{3}$ L. Diss. Dasson (1747), Amœen. i. 399 ; Gen. (ed. 5), n. 439; (ed. 6), ก. 488 (not Gertno),-C. A. Met. Bull. S.-Péterob. iv. n. 4.-Endl. Gen. Suppl. iv. p. ii. n. 2098.Meissn. I'rodr. 548 (part.).-Chamajasme Amm. Ruth. 16, t. 2.

 - White, yellow or reddish.

[^173]: ${ }^{5}$ Spec. about 8. Wiкstr. Act. Holm. (1818), 321 (Passerina).-Ledeb. Fl. Ross. iii. 546 (Pas-serina).--Jacb, et Spach, Ill. Il. Or iv, t. 301, 302. - Meissn. Denksehr. Regensb. iii. 287 (Wikstremin).
 ${ }^{6}$ Inst. 594 (part.).-Endl. Ger. Suppl. iv. n. ii. 65.-Melssn. Irodr. 551 .-.Stelieta Gisktn. Fruct. i. 186, t. 39. fig. 2 (not Gmel.).-Lygia Fasan. Alt. Acc. Napol. (1787), 230̄, t. 19.Piptuchlamys C. A. Mer. Bull. So-Pétersb. iv. n. 4.-Chlamydanthus C. A. Mey. loc. cit.

 7 Greenish or yellow, more rarely white or reddish, olten small.
 ${ }^{3}$ Sper, about 20. Clus. Hisp. Icon. 176.-(Sanamtuda).-Barrel. Icon. t. 221 (Sana-mииda).-L. Spce. (ed. 1), 3056, 509 (Daphue), 512, 519 (Stelleru).-Fontк. Fl. Agypt.-Arab. 81 (Passtrina).-Vaul, Symb。i. 28 ; iii. 58.

[^174]: (Daphne).-Allion. Fl. Pedem. i. 139; Auct. 9 -Pourr. Chlor. Narbon. 27 (Passerina),-Lank. Dict. iii. 436, 437 ; Ill. t. 290 (Daphne)-DC. Fl. Fr. iii. 72 (Passerina), 356 (Daphwe) ; vi. 466 (Passerma).-Desf. Fl. All. i. 331, t. 95 (Pusserina).-Wimstr. Act. Holm. (1818), 320 (Tusserina),-Guss. F\%. Sicul. Prodr. i. 466 ; Suppl. i. 114 (Stellera).-Cambess. Entm. I'l. Balear. 183 (Passerina)-D'Urv. Eirum. Pl. Archip. 42.-Sırth. et Sm. Fl. Grac. i. t. 355 (Daphne).-Nees, Fl. Germ, iii. t. 47 (Passerina). -Botss. Voy. Esp. ii. t. 157 (Passcrina).Ginen, et Godr, Flo de Fr. iii. 60 (Passerina).

 1 Bull. S.-Pétersb. iv. n. 4. - Endl. Gen. Suppl. ir. p.ii. n. 2100.-Meissy. Prodr. 659.
 : Spec. about 8. Thunb. Fl. Cap. 70, 376 (Passerina). - Wennl. Obs. 19, t. 2, fig. 19,

[^175]: ${ }^{1}$ Mersen. Prodr. 665.
 ${ }^{2}$ Oftener rather reddish, small.
 ${ }^{3}$ Spec. 4, 5. L. Spec. (ed. 1), 560 (Lachncen) ; Mrantiss. i. 23G.-Thunb. Prodr. 75 ; Fl. Cap. 374.-Poir. Dict. v. 40.-Wikstr. Act. Holm. (1818), 232.-Lodd. Cat. (1816), 18.-W. Spee. ii. 434.-Meissn. Lezncea, xiv. 299.-Wennia Obs. 18, t. 2, fig. 15.
 ${ }^{4}$ Mantiss. n, 1244.-JJ. Gen. 77.-Lami, Ill. t. 78.-Polr. Dict. vii, 475.-Gertn. F. Fruct. iii. 194, t. 120.-Endl. Gen. n. 2099 ; Suppl. iv. p. ii. n. 2096.-Meissn. Linnaa, xiv. 463 ; Prodr. 566.-Belvala Adans. Fam. des Pl. ii. 285.

[^176]: 5 White, golden or reddish.
 ${ }^{6}$ Spec. about 20. Thune. Fl. Cap. 382.Houtт. 1ff. Syst. v. 35 g, t. 40 , fig. 2.-Burm. Afr. 127, t. 47 (Thymelea).-Retz. Obs. iii. 25 , 26.--Hornem. Hort. Hafh. ii. 955.-Wikstr. Thymel. 286.-Ait. Hort. Kew. (ed. 2), i. 272. -Rem. et Sch. Syst. iii. 20, 330.-Wendl. Obs. 9, t. 2.-Andr. Bot. Repos. t. 113, 119, 149. -Lovd. Bot. Cab. t. 11, 74, 75, 141.—Bot. Mag. t. 1212, 2138. ${ }^{7}$ Gcr. Suppl. iv. p. ii. n. 2095.-Meissw.
 Prodr. 665.-Daphnobryon Meissn. Prodr. 566 . 7 Ger. Suppl. iv. p. ii. n. 2095.-Meissw.
 Prodr. 665.-Daphnobryon Meissn. Prodr. 566.

[^177]: ${ }^{1}$ Rather small.
 a A genus by Bentham (Fl. Austral. vỉ. 35) conjoined with Drapetes, to which indeed it is very close, but from which it is decidedly distinct by the scales of the throat (absent in Drapetes).
 ${ }^{3}$ Spec. about 3. Hook. Lond. Journ. ii. 497, t. 17 (Drapetes),--Hoor. F. Fl. N.-Zel. i. 223; ii. 222: Handb. N.-Zeal. Fl. 245; Hook. Ieon. t. 895 ; Hook. Jown. (1853), 299, t. 7 (Drapetes). 4 Journ. d'Hist. Nat. i. 186, t. 10, fig. 1 ; Ill. t. 915.-Poir. Dict. Suppl. ii. 523.-Banks. Giertn. Fruct. iii. 199, t. 215,- J. Amı. Mus. vii. 479.-Wikstr. Thymel. 284.-Endl. Gen. ก. 2097 ; Suppl. iv. p. ii. n. 2094.-MEISSN. Prodr. 518 (not Bentr.).

 - Calyx petaloid coloured.
 ${ }^{6}$ Spec. 1. D. muscoides Lami.-Gaudich. Voy. Uran. Bot. 133.-D'Urv. Mén. Soc. Hist. Nat. Par. iv. 605.-D. museosus Rezm, et Sch.

[^178]: Syst, iii. 333.-Houk. F. Autarct. Voy. Bot. i 343 (not Fl. N.-Zel.).-C. Gay, Fl. Chil. v. 317.
 7 Nov. Gen. et Spec, i. 65.-Endl. Gen. Suppl. iv. p. ii, n. 2106^{12} - Meissn. Prodr. 519.
 s "White, puberulous."
 ${ }^{9}$ Spec. 1. S. daphnodes Mart. et Zucc.Meissn. Mart. Fl. Bras, Thymel. 65, t. 28, fig. 1
 ${ }^{10}$ G.elitn. Fruct. i. 186, t. 39. - Deyand. Ainz. Bot. ii. 205.-Wikstr. Act. Holm. (1820), 118, 270, 273.-Spach, Suit. à Buffon, x. 448.Endl. Gen. n. 2098; Suppl. iv. p. ii. 60.Payer, Organog. 4S2, t. 96.-Meissn. Prodr. 496, 700.-Banksia Forst, Cher. Gen. n. 4 (not L. nor Domb.) -Cookia Gmel. Syst. i. 24 (not Sonner, nor Spreng.).-Thecanthes Wikstr. loc. cit. 269, 271.-Endl. Icon. t. 11.-Heterolema Fisch, et Mey. Ind. Sem. Hort. Petrop. (1845), 46.-Gymnococea Fisch, et Mex. loe, eit. -Macrostegia 'I'vicz. Bull. Mosc. (1852), iii. 177.

[^179]: ${ }^{1}$ Ulmus. T., Inst. 601, t. 372.-L. Gen. n. 239. -Adans. Fam. des Pl. ii. 377.-J. Gen. 408.Gertn. Fruct. i. 224, t. 49.-Poir. Dict. iv. 609 ; Suppl, iv. 187.-LAMK. Ill.t. 185.-TURP. Dict. Sc. Nat. Atl. t. 282.-Nees, Gen. ii. 34.Spach, Ain. Sc. Nat. sér. 2, xv. 359; Suit a

[^180]: Buffon, xi. 99.-Endl. Gen. n. 1850 ; Suppl. ii. 29 ; iv. p. ii. 33.-Payer, Fam. Nat. 167.-Pl. in Ann. Sc. Nat. sér. 3, x. 259; DC. Prodr. xvii. 154.-Microptelea Spach, Amn. Sc. Nat. loc. cit. 358 ; Suit. à Buffon, xi. 113.-Ennl. Gen. n. 1849°.

[^181]: ${ }^{1}$ That is to say a little perigynously.
 ${ }^{2}$ The pollen is (H. Mohl, Ann. Sec. Nat. sér. iii. 2, 312) "ellipsoid flat; five oval pores,
 surrounded by a narrow halo, situated along the equator (U. campestris)."
 ${ }^{3}$ It has a double coat.

[^182]: ${ }^{1}$ Planchon divides the genus into 3 sections (or sub-genera): 1 Oreoptelea (Spach) ; 2 Dryoptelea (Spach) ; 3 Microptelea (Spach) founded on the form of the perianth, the time of appearance of the lowers, the form and position of the pedicel, the ciliation or otherwise of the margins of the samara.
 ${ }^{2}$ Fouger. Mém. Acad. Sc. Par. (1787), t. 2. -Jaca. Hort. Schonbr. t. 261. - W. Linum.

[^183]: ${ }^{1}$ Mforus T. Inst. 589, t. 362.-L. Gen. n. 33.-Lamk. Ill. t. 762.-Spach, Suit. à Buffon, 1055.-Adans. Fam. des Pl. ii. 377.-J. Gen. 402.-Scheuhr. IIandb. t. 290.-Gertn. Fruct. xi. 39.-Endl. Gen. n. 1856.-Payer, Fam. Nat. 171.-H. BN. Adansonia, i. 214, t. 8, fig. 1-12. ii. 199, t. 126.-Ponr. Dict. iv. 373 ; Suppl. iv. --Bur. DC. Prodr. xvii. 237̄.

[^184]: ${ }^{1}$ Between it and the pistil are seen, in early age, the stamens the development of which is generally soon arrested.
 ${ }^{2}$ Dicarpellous and bilocular at first ; but one of the two cells soon ceases to grow.

[^185]: ${ }^{3}$ Its coat is double.

 * Compt. Rend. Acad. Sc. Par. lii. 19 ; Adansonia, loc. cit. 221, t. 8, fig. 9-11.
 ${ }^{5}$ L. Spec. (ed. 3), ii. 1398.-W. Spcc. iv. p. i. 368.-Ser. Descr. et Cult. des. Mûr. 191.-Lovd.

[^186]: s.l'Ile de la Réren. Ann. P. 3 ;-Bur. Prodr. 220), a tree unknown to us, which, with spikelike male inflorescence, has solitary female flowers, but accompanied by an involucre formed of numerous imbricate and pluriseriate bracts. The uniovulate ovary is described as "semi-adherent;" a character which at the same time brings this plant near Trophis (vulg. Bois de sagaie, de requir, de Gaillard, de Maillet).

[^187]: 1 More rarely 2-4-nate.
 2 The stamens as far as we have seen are short, with a straight erect filament and an erect introrse anther: By that, this genus,
 inseparable from the preceding, would approach quite as near to Arlocarpus. But (according to the figure of it given by Wigut) thoy appear finally rather far exserted.

[^188]: ${ }^{1}$ In this group has been placed, not without some doubt, Trymatococous Pepp, a Brazilian tree the juice of which, it is said, is not milky; for if its stamens have, according to Pappig, filaments inflexed in the bud, they do not always appear so in the adult flowers under our eyes; and in most of its characters, the plant seems very near Pseudolmedia. There is also an African T.-Calius lactescens (Blanco, Fl. d. Filip. ed. 1, 698.-Bur. Prodr. xvii. 278), remains also a most doubtful genus. The flowers of the two sexes are said to be mixed in axillary pedunculate fascicles or glomerules. The males have four stamens elastically straightened at anthesis, and the

[^189]: ${ }^{1}$ This is consequently perigynous, At other times the sepals were supposed hypogynous, but united in a tube and also welded, except at
 the summit, with those of the neighbouring flowers.

 2 Sometimes the number of carpels is three,

[^190]: and it may even persist to the end ; the ovary is then trilocular and triovulate.
 ${ }^{1}$ Exceptionally it continues to develop, and the ovary has two fertile cells.

 - It may be free in its upper portion (Adan-

[^191]: ${ }^{1}$ Forst. Prodr. 64 ; De Plant. Esc. Oc., 23.W. Spec. iv. 188.-Spreng. Syst. iii. 804.Tuss. Ft. des Ant.t. 2-4.-Wigit, Icon. t. 678-682.-Kı. Linnaca, xx. 535.-Hassk. Flora, ii. 18.-Zoll. Verz. ii. 89.-BoJ. Hort. Maur. 290. -Ноок. Bot. Mag. t. 2833, 2834, 2869-2871.—

[^192]: Miq. Pl. Jungh. 44. Mart. Fl. Bras. Urtic. 121 ; Fl. Ind.-Bat. i. p. ii. 284 ; Suppl. i. 171, 417.Teysm. et Binn. in Nat. Tijdsehr. Ned. Ind, xxv. 401.-Kruz, op. cit. xxvii. 182.-Tew. Emun. Pl. Zeyl. 262.-Benth. Fl. Mongh. 325.-Seem. Fl. Vit. 255.-Walr. Ann. i, 658.

[^193]: vol. vi.

[^194]: Suit. ì Buffon, xi. 31, t. 133.-Endl. Gen. n 1890.-Payer, Organog. 281, t. 61 ; Fum. Nat. 169.-Schnizl. Icon. t. 95.-Gasparr. So Canape, in Mem. Bot. t. 1-3.-A. DC. Prodr. x vi. p. i. 30 .

[^195]: ${ }^{1}$ The lines of dehiscence may become lateral, then slightly extrorse. The pollen is "spherical; three small umbilica surrounded by a large halo; external membrane transparent" (H.

[^196]: 1 With double envelope.
 ${ }^{2}$ C. sativa L. Spec. 1457.-Reichb. Ic. Fl. Gemm. t. 655.-Buackw, Herb. t. 322.-Gren. et Godr. Fl. de Fr. iii. 112,-C. indica Lamk.

 Dict i. 695, n. 2.-C. chinensis Del. Cat. Hort. Monsp. (1849).-Polygonun viridiflorum Poir. Dict. vi. 140 (ex Meissno).-Kalengi Rueed. Hort. Malab. х. t. 60.

[^197]: ${ }^{1}$ Humulus L. Gen. 304.-J. Gen. 404.-Lamk. 1891.-Lindl. Veg. Fingd. 265, fig. 179.Dict. iii. 138; Ill. t. 815.-Schкuhr.-Ifandb. t. 326.-Nees, Ic. Fl. Germ, ii, 31,-Schleid. Wiegm. Ach. $\mathbf{V} .229$, t. 7 ; Beitr. t. 2, fig. 20. Payer, Fam. Nat. 169.-A. DC. Prodr. xvi. p. j. 29.-Lupulus. T. Inst. 535, t. 309.-G.ertn. Fruct. $\mathrm{t}_{\mathrm{o}} 75$.
 Spach, Suit.' a Buffon, xi, 33.-Enpl, Gen. n,

[^198]: ${ }^{1}$ Exterior to the putamen they have a small fleshy bed (fig. 145) which soon decays.
 ${ }^{2}$ L. Spec. 1457.-Sm. Eingl. Bot. t. 427.Butid. Howb. t. 234.-Reichis. Ic. Fl. Germ, t. 656.-Scor. Fl. Carniol. ii. 263 (Cannabis).Sieis. et Zuccio Fl. Ap. Fam. Nat. ii. 89.-Seem. Voy, Herald Bot. 512, t. 98.-Miq. Aun. Mirs, Lugd.-Bat. ii. 133.-Ascuers. Fl. Brandeb. 611. -Giren. et Godr. Flo de Fr. iii. 112.
 ${ }^{3}$ The species described as American have doubtless been introduced, and II. Anericanus

[^199]: ${ }^{1}$ xvi. sect. i. 28 (Cannabinea) ; xvii. 151 (Ulimacec), 211 (Mогасек), 280 (Artocarpacece).
 ${ }^{2}$ Fam, Nat. 169, Fam. 76. He retained the Ulinacece as a distinct family.
 ${ }^{3} \mathrm{Fl}$. Vit. 145. He separated from this group the Cuniabinee which Payer made only a section of the family Artocarpece.
 ${ }^{+}$Fl. Austral. vi. 154.
 ${ }^{5}$ Aun. Sc. Nat. sér. 3, viii. 38, t. 1-G.
 ${ }^{6}$ In addition Trophis, rightly classed with the Morece, Ficus, now referred to the same group, and Gynocephalum, syn, of Phytocrene, and inseparable from the Muppice.
 7 Ann. Sc. N"at. sér. 3, x. 257.
 ${ }^{8}$ DC. Prodr. xvii. 151, Ord. 183.
 ${ }^{9}$ Not to speak of the genus Hemiptelea, by us rounited as a sub-genus to Abelicea.
 ${ }^{10}$ xvii. 211, Ord. 183 bis.
 11 Loc, cit. 280, Ord. 184.

[^200]: ${ }^{11}$ Of which one doubtful, Calius (Blanco. Fl. d. Filip, 698), has monocious flowers, the two sexes being united, it is said, in axillary or pedunculate fascicles or glomerules. The male flowers have four sepals and four stamens with inflexed filament inserted round a rudimentary gynæcium. The female flowers are those of the Morece in general, and the fruit is drupaceous. C. lactescens Blanco is a tree common to the Philippines, which we have been unable, from the characters ascribed to it, to refer to any of the known genera of this group. (See p. 151, n. 1). Another doubtful genus is Aspidanda (Hassk. Cat. Hort. Bogor. ed. nov. 47 ; Bot. Zeit. (1856), 803; Flora (1857), 532, syn. of Ryparia cesia BL., and which, according to Muelebr d'Argovie (DC. Prodr. xv. p. ii. 1258), is perhaps an Avtocarpia,

[^201]: ${ }^{1}$ Adarsonia, iii. 335, t. 10 ; viii. 72.
 ${ }^{2}$ Adaismia, xi (1875), 293-299.
 ${ }^{3}$ And Mrachera, doabtfully M. 8 excelsa Bur.

 Prodr. 231, n. 4), a species of tropical western Asia, belonging probably to another genus, a neighbour (?) of Ampalis.

[^202]: ${ }^{1}$ Spontancously in Italy, according to Gasparrini (Ric. s. Caprif. e Fico, Napoli (1845), 65), who divides it into several species, adopted by Miquel (Hook. Lond. Jourr. (1848), 222). But M. A. De Candolle (Géogr. Bot. Ruis. 919) believes these Figs to be natives of western Asia. Caprificus, or the wild Fig, the inflorescences of which are fixed on the branches of the cultivated Fig, either to fecundate the latter or to give the Cynips, which, by pricking the fig, would hasten, it is supposed, its divelopment, would be also of western origin.
 ${ }^{2}$ Celtis japonica is said to have borne in

[^203]: Bot. 509.
 ${ }^{3}$ Fatoua only such.

 * But not constantly.
 ${ }^{5}$ R. Br. Congo (1818),-Lindz. Veg. Kingd. 269, Ord. 88.-Endl. Gen. 277, Ord. 92.Tréc. Ann. Sc. Nat. sér. 3, viii, 38.-Artocarpaceer Bur. Prodr. xvii, 280, Ord, 184.
 ${ }^{6}$ Bl. Bijdr. 515 (1825).-Dumort. Anal. 17. -Endl. Gen. 286, Ord. 95.-A. DC. Prodr. xvi. sect. i. 28.-Humulinece Dumort. loc. cit.Lupulacea Rasp. Phys. ii. 495.-Cannabinacea Lindl. Veg. Kingd. 265, Ord. 86. -Cannabisacea Sbr. Deser, Mî̀r. 188.-Camnabaceo Ad. Br. Aschers Fl. Brardeb, 611; Enl, 58.

[^204]: ${ }^{1}$ Endl. Enchirid. 168.-Lindl. Feg. Fingd. ii. 320. - Rusenth. Syn. Pl. Diaphor. 196, 270 ; Fl. d. 301.-Guib. Drog. Simpl. éd. 6. 110s.

[^205]: ${ }^{2}$ Leschen. Amn. Mus. xvi. 476, t. 22.-BL. Rumphia, ii. 56, t. 22, 23.-Lindl. Fl. Med. 301. -H. Bn. Dict. Encycl. Sc. Méd. v. 306.Arbor toxicaria Rumph. Herb. Amboin. ii. 263, t. 87 (Antiar, Antsjar, Upas-Antiar, PohorUpas, Ipo, Hypo).
 ${ }^{3}$ On the effect of Antiur, see Rai, Hist. Pl. App. iii. 87.-C. Ejmel (præsid. Thunb.), A)bor toxicaria Macassariensis. Upsal (1788). -Försch. Mél. Litt. étr. i. 63.-R.-Del. Sur. Les Eff. d'un Poison de Java. Paris (1809).Magend. Exam. de l'Action. de qq. T'egét. Paris (1809).-Orfila, Toxicolog. ii. 1.-Mart. Ueb. den Macassar Giftbaum. Erlang. (1792).-Mér. et Del. Diet. Mrat. Méd. i. 333.-Guir. Drog. Simpl. éd. 6, ii. 327. Antiar has been analysed by l'elletier and Caventou (Ann. Chim. et Phys. xxvi, 44). They found, among others, a bitter substance including the venomous principle which contains perhaps, according to them, an alcaloid. M. Mulder hasnamed it antiarine $\left(\mathrm{C}^{28} \mathrm{H}^{20} \mathrm{O}^{10}\right)$.

[^206]: ${ }^{1}$ BL. Rumphia i. 172, t. 54.-A. toxicaria Hook. Comp. to Bot. Mrag. t. 17 (not Lesch.). -1. Dubia Span. Limea, xv. 34e.-Arbor toxicaria femina Remph. Herb. Amboin. ii. 264.
 ${ }^{2}$ Seem. Bonplandia, ix. (1861), 259 ; x. 3. t. 7 ; Fl. Tit. 253, t. 72 (Nfuve ni Toga, Mami).
 ${ }^{3}$ Dalzo Hoo. Jowm, iii. 232,-Wight, Icon。 t. 195s.-A. Zeylanica Seem. Bonplandia, x. 4. - Lepurandra saccidora Nimmo, Ill. Bomb. 193. M. Thwaites (Enum. Pl. Zeyl. 427) believes this species identical with A. innoxia BL.
 ${ }^{4}$ Brossimum spurium Sw. Fl. Ind. Occ. 20.-Milk-wood, P. Bи Jam. 369, п. 8.
 ${ }^{5}$ Gnlactodendion utile H. B. K. Nov. Gen. et Spec. vii. 163.-Endl. Enchivid. 168-Mír., et Del. Dict. Mat, Méd. iii. 321.-Rosentif. Syn. Pl. Diaph. 196. - Hoos. Bot. Mag. t. 2723, 2724. - Brosimum utile Endl. - Lindl. Teg. Kingd. 270 (Palo de Vaca, Sandi).
 ${ }^{6}$ It contains 3.73 per cent. of fibrin and vegetable albumen (Aun. de Chim. ct Phys. vii. 182). M. Boussivgault has collected this vegetable milk and stated its alimentary qualities. Solly found that it contained 30.07 per cent. of galactine. It is said also

[^207]: ${ }^{1}$ R. Br. Congo, 453.
 ${ }^{2}$ L. F. Suppl. 61.-Wight. Icon. t. 6, 8.Hook. Bot. Mag. t. 2833, 6834.-Tréc. Am. Sc. Nat. sér. 3, viii. 115.-Mér. et Del. Dict. Mat. Méd. i. 454.-Rosentu. op. cit. 198.-H. Bn. Dict. Encycl. Sc. Méd. vi. 410. - Soccus major Rumph. Herb. Amboin. i. 104, t. 30.-S. minor Romph. op. cit. t. 31.-Tsaja marum Ryeed, Hort. Malab. iii. 17, t. 26-28.-Rademachia Integra Thunb.-Polyphema Jaca Lour. -Sitodium caulifforum Gertn. Fruct. i. 345, t. 71, 72 (Jaquier Jak, Jaca).

[^208]: ${ }^{3}$ L. F. loc. vit.-Hook. Bot. Mag. t. 2869, 2871.-Tréc. loc. cit. 110.-Mér. et Del. loc. cit. 455.-H. Bn. Dict. Encycl. Sc. Méd. vi. 410. - A. Communis Forst.-Soccusgranosus Rumph. Herb. Ambair. i. 112, t. 33.-Rudemachia incisa 'Thunr. Aet. Holm. xxxvi. 252.-Rima Sonner. Voyag. 99, t. 57-60.-Iridaps Rima Commers. (Arbre à Pain, Rima).
 ${ }^{4}$ Lame. Dict. iii. 209.-Tríc. loc. cit. 117.Iridaps Commens, herb. !-A. philippinensis Lamk. loc. cit. 210.-(Jaquicr etcrophylle).

[^209]: ${ }^{1}$ Roxb. Fl. Ind. iii. 524.- Wight, Icon. t. 681 (Dhea-phul-Burhthl Bengal).
 ${ }^{2}$ W. Spec. iv. 189.-Tréc. loc. cit. 122.-A. hirsuta Roxb.-Ansjeli Rheed. Hort. Malab. iii. 25, t. 32.
 ${ }^{3}$ Tréc. loc. cit. 111.-A. pubescens Bl. Bijdr. 481 (nec W.)-Zoll. Verw. 76 (Bendaah).
 ${ }^{4}$ Zoll. ex Rosenth. op. cit. 1108. The same author also cites as very dangerous the juice of A. verenosa Zoll.
 ${ }^{5}$ Pers. Syp. ii. 531.-Tuéc. loc. cut. 115 .Polyphema Champeden Lour. Fl. Cochiuch. (ed. 1790), 547 (Tjampeda, Cay Mitnai of the Annamites).
 ${ }^{6}$ The fruit of A. brasiliensis Gomez, which is probably only a species introduced from India, is cited as edible.
 i Mart. Syst. Mint. Med. Bras. 34.-Miq. in Mart. Fl. Bras. Urtic. 130, t. 40 (Ambauba do Vinho, Mansa). Its fruit and that of the following species are mucilaginous, sweetish aci-

[^210]: dulate, of an agreeable taste; and these species are said to deserve cultivation as fruit trees. (Maits, Reis, iii. 1130).
 ${ }^{8}$ Mart. Syst. Mat. Med. Bras. 34.-Mıq. loc. cit. 130, t. 39.
 ${ }^{9}$ Mart. Reis. iii. 1130; Mat. Med. 34.-Miq. loc. cit. 123, t. 36.-P. multifida Tréc.
 ${ }^{10}$ Notably C. concolor W. Humboldtiana KL. (C. peltata W. not L.). See Rosenth. op. cit. 197.
 ${ }^{11}$ L. Pug. Pl. Jam. Amoin. Acad. v. 410.$J_{\text {ACQ. Obs, ii. t. } 46 \text {, fig. } 4 \text {; Aner. t. 262.--MART. }}$ Reis. iii. 1130; Fl. Bras. Urtic. 210.-Mra. loc. cit. 149. - Lindl. Veg. Kingd. 275.-Endl. Enchirid. 169.-Mér. et Del. Dict. Mat. Méd. ii. 166. - Bosenth. op. cit. 197. - Faruma Ovied. Sumar. (ed, 1547), fol. 82, b.-Sloan. Hist. i. 137, t. 88, fig. 2, t. 89 (Bois-trompette, Boiscanon, Figuier de Surinam, Shake-uood of the English.

[^211]: ${ }^{1}$ Pison (Bras. ed. 1748, 72) and Marcgrafr (ibid., 91) have designated under the name of Ambaiba and Ambaura several species - of Cecropia. The ashes are used to clarify molasses in the manufacture of sugar. The fruit is edible. The savages of "Brazil hold with the foot the piece of Ambaiba root in which they make the pointed stick of hard wood rotate rapidly, and provide themselves with dried leaves or bits of cotton as tinder.
 ${ }^{2}$ Cervantes, Suppl. à la Gazet. de Literat. Mexico, 2 jul. 1794 (Castilla).-Tréc. Ann. Sc. Nat. sér. 3, viii. 136, t. 5, fig. 142-148.-ColLins, Rep. on Caoutch, (1872), 11, t. 2 (Ulé, Hulé, Ulé-ulé, Uli. Jebe, Tassa). Castilloa, a little different from the type in the form of its

[^212]: leaves, which M. Lévy has reported from Nicaragua, and of which M. Collins speaks, cannot be distinguished specifically from C. elastica (loc. cit. 12, t. 3). Does the new species established by the same author under the name of C. Markhamiana, and which should also give caoutchouc, belong really to the same genus?
 ${ }^{3}$ In April the yield is 60 per cent. better than in October, the rainy season. A tree 18 inches in diameter may give in April, a maximum of 20 gallons of milk, from which is extracted 50 lbs . of caoutchouc. The single district of S.-Juan, in Nicaragua, has produced in one year $10,000 \mathrm{cwts}$. of caoutchouc (CoLldns, loc. cit. 15, 16), collected by 600 haleros.

[^213]: ${ }^{1}$ It is the Coasso and Achete (Ipomaea bonanox) that are previously macerated in the water. Treated with water only, the juice also coagulates, but much more slowly.
 ${ }^{2}$ It bears the name of tortilla, torta, meros, and weighs dry about a kilogr. When it has been dried by contact with the iron, it is rolled into balls called cabezza. The bola or burucha, is the caoutchouc dried on the tree itself at the surface of the incisions: it is the most esteemed in the United States, but is little abundant. The loss due to dessiccation, estimated at about 15 per cent., is called merma (Coll.).
 ${ }^{3}$ Or less worked than the others, as F. Tarla Reinw. (Urostigma Fä"ot MaQ.), nymphaifolia L. ($($. nymphaifolium Mra.), popuhnea W. indica L. elliptica H. B. K. prinoides H. B. K. (which give the caoutchouc de Guaduas in Colombia), gummifera Mı. Radula W. (Pharmascosyce Radula Miq.), anthelminthica Mart. etc.
 ${ }^{4}$ Roxb, Fl. Ind. iii. 541.-Guib. Drog. Simpl. éd. 6, ỉ. 319.-Lindl. Fl. Med. 298.-Endl. Enchirid. 166.-Bosenth. op. cit. 195.-Coll. Rep. on Caoutch. 18.-Urostigma elasticrm Mro. (Kiusnir, Kasmeer in India, Pohan Karet, VOL. VI.

[^214]: ${ }^{1}$ See H. Bn. Adansonia ix. 318. Fructus Carice Off, - Zukî Theorir,
 ${ }^{3}$ Rosenth. op. cit. 192, 1107.-Lindi. Fl. Med. 297.

[^215]: ${ }^{1}$ Mart. Syst. Mat. Med. Bras. 88 ; Pl. Med., Ecor. Bras. t. 77.-Pharmacosycea anthelminthica Miq. Mart. Fl. Bras. Urtic. 85, t. 25 fig. 2 (Coajingiria).

[^216]: ${ }^{3}$ Mart. Herb.-Urostigma (?) atrox Miq. loc. eit, 10 á.
 ${ }^{2}$ Mart. Mat. Med. Bras. 88.-F. Gamehleira K. Ind. Sem. Ifort. Berol. (1846), 18.-Urostigna doliarium Mre. luc. cit. 82 ; Hook. Lond. Jown. vi. 527 (Gamelleira, Figucira Branca).
 ${ }^{3}$ F. anthelminthica Rici. (not Mart.).I'harmacosycea Radula Miq. Zoc. cit. 84, t. 25, fig. 1 ; Hook. Journ. vii. 64, t. 2, fig B.

 * Mart. Herb. - Phamacosycea vermifuga Mie. loc. cit. 87, n. 6.
 ${ }^{5}$ L. Spec. 1514.-W. Spec. iv. 1134.-Roxb. Fl. Ind. iii. 547.-Lindl. Fl. Med. 298.-Urostigma religiosum Gasp. Ric. 82, t. 7, fig. 15.-

[^217]: ${ }^{1}$ D. Contrajcrua L. Spec. ed. 3, i. 176.-JacQ. Tc. Rar. iii. 18, t. 614 ; Coll. iii. 200.-Bur. Prods. xvii, 259.-D. Contrayerva Mill. Dict. loc. eit. n. 1.-Descovrt. Fl. Med, Ant. iii, 256, t. 207.-Lindl. Fl. MLed. 300.-D. Houstoni Lodd. Bot. Cab. t. 1005 (not L.). -D. Sphondylii folio, Dentariee radice Plum, Nov. Gen. Amer. 29, t. 8 ; Pl. Amer. (ed. Burm.), t. 1i9. The D. Drakena L. (Spec. ed. 4, 176;-D. mexicana Benth. Pl. Hartweg. n. 386) is also employed like Contrayerva.
 ${ }^{2}$ Bras. ed. 1, 52, 90, c. ic.; ed. 2, 232, 311, c. ic.
 ${ }^{3}$ Velloz. Fl. Flum. i. t. 137.-Bur. Prod?: n. 5.-D. Bryoniefolia Mart. Mat. Med. Bras, 106.-Mrq. Mart. Fl. Bras. Urtic. 167.-D. palmata Pohl.-D. vitifulia Field. et Gardn. -D. morifolia Fiscr, (Carapia).
 ${ }^{+}$Mie. Mart. Fl. Bras. Urtec. 165, t. 57-59. -D. arifolia Lamk. Dict. ii. 317; Ill. t. 83 , fig. 2.-D. Cyperus Velloz. Fl. Flum. t. 140.D. Mandioccana. Fisch.-D. pinnatifida MreD. fluminensis Walp.-D. Ceratosanthes Lodd. Bot. Cab. t. 1216.-Hook. Bot. Mrag. t. 2760.Sychinium ramosum Desvx. Am. Soc. Limn. Par. iv. 217, t. 12.
 ${ }^{5}$ R. et Pav. $F l$. Per. i. 65, t. 102, fig. b.Hook. Bot. Mag. t. 2804.-D. infundibuliformis

[^218]: Faadsi Kansi, Sjo, Fami noki of the Japanese).
 ${ }^{5}$ Nutt. Geis. ii. 234 ; N.-Aner. Sylw. i. 126, t. 37, 38.-Lindu. Loud. Encyel. 784, fig. 13256.Loud. Arboret. iii. fig. 1826-1828. - SER. Mûr. 232, t. 27.-Guib. op. cit. ii. 324 (Bow wood, Bois d'arc). Good prickly hedges may be made of this tree, and it is also said to be a good substitute for the mulberry in feeding silk worms.
 ${ }^{6}$ D. Don, ex Bur. Prodr. xvii. 228. - M. Plumiera Don.- MI. Xanthoxylon Endl. Gen. Suppl. iv. p. ii. 34. - M. velutina BL. D/us. Lugd.-Bat. ii. 82.-M. chlorocarpa Liebm.Morus tinctoria L. Spec. ed. 2, 1399.-Velloz. Fl. Flum. x. t. 22.-3f. Xanthoxylon L.-Broussonetia tinetoria Spreng. Syst.ii. 901,-H. B. K. Nov. Gen. et Spec. ii. 32.-B. Plumierii Spreng. - B. Tanthoxylon Miale, Herb. Fl. Bras. 250.Chlorophora tinctoria Gaudich. (Fustic, Fustete, Gellholz, yellow wood of the Antilles, Lechero, Dinde in Colombia, Moreira, Amoreira, Amora de arrore in Brazil.

[^219]: ${ }^{1}$ Guib. op cit. ii. 324.
 : Mart. Fl. Bras. Uitic. 210.
 ${ }^{3}$ Aubl. Guian. ii. Suppl. 15, t. 376 (Bagassier). It is especially useful for making light canoes.

 + Ulmus campestris L. (part.).-Sm. Engl. Fl. ii. 20.-Pl. Prodr. xvii, 156.-Gren. et Godr. Fl. de Fr. iii. 105.-Gure. Drog. Simpl. éd. 6, ii. 314.-Lindl. Fl. Mfed. 303.-Mér, et Del. Dict. Mat. Méd. vi. 799.-Ennu, Enchirid. 163. -Caz. Pl. Méd. Ind. éd. iii. 716.- Rosenth. op. cit. 189.-Flueck. et Hank. Pharmac. 500 (Ormeau, Ormille, Umearu. Arbre à pauvre homme).
 ${ }^{5}$ Michx. Fl. Bor.-Amer. i. 173.-Michx. F. N.-Amer. Sylv, iii. t. 127 (IVahoo).
 ${ }^{6}$ W. Entm. Hort. Beral. 295.-U. Floridana Chapm. Fl. S. United St. 416 (white Elm).

[^220]: - Miche op, cit. i. 172.-U. rubra Mickx. F. (slippery Elm).
 ${ }^{3}$ Jaca. Hort. Schwenbr.. iii. t. 261.-Pı. Prodr. xvii. 161, n. 13.-U. chinensis Pers. Euchirid. i. 67.-Turr. Dict. Sc. Nat. Atl. t. 281, 282.-Loud. Arboret. iii. 1377.-Mieroptelea parvifolia Spaci, Ann. Sc. Nat. sér 2, xv. 358.
 ${ }^{9}$ U. major Sm, Glabra Sm. tiliafolia Host. have nearly the same uses as U. campestris. U. pumilla is used in Siberia to make a tea-like infusion. In Japan, U. Kejaki Siebr, has a useful wood.
 ${ }^{10}$ Sée p. 188, note 6.
 11 Zelkova Cretica Spach, Suit. à Buffon, xi. 121.-Pl. Prodi. xvii. 166.-Pseudo-Santalum Creticum Baur. Pinax, 393.-Quercus Abelicea Lamk,-ABCdaria L. Herb.!

[^221]: ${ }^{1}$ Zellowa ererata SpACH , lac, cit. $118 .-\mathrm{Pl}$. loc. eit. 165.-Rhannus carginifulius l'all.Ulmus polygana L. C. Ricn-Planera crenata Desp.

 2 Celtis Asstralis L. Speec. 1478.-I'L. Prortr. xii. 169, n. 1.-Lotus Arbor Loisel. Adt'. 439.
 -L. fruetw Cerasi Bach. Pinax, 447 (Fabrecoulier, Fabrcguier, Fenabregne, Bois de Pergignan).
 ${ }^{3}$ Shafts, forks, whips, hoops, etc.
 ${ }^{1}$ L. Spec. 1478.-PL. I'rodr. 174, n. 10.Lotus arbor virginiana fructu rubro Rai, Hist. 1917 (M. des Antillcs, M. Ramon).
 5 Lamk. Dict. iv. 138.
 ${ }^{6}$ Lamk. loc. cit. 132,-Michx, f. Arbr. iii.

[^222]: 1 Camabine $\left(\mathrm{C}^{3} 6 \mathrm{H}^{20}\right)$ and a kydrate of camabine ($\mathrm{C}^{12} \mathrm{H}^{14}$), distributed through the whole plant (Personne). It contains besides a resinous matter canabine or haschischine (Smith).
 ${ }^{2}$ C. Indica Lamk. Diet. i. 695.-6. chinensis Del. (var. of C. sariva).
 ${ }^{3}$ Mér et Del. Dict. Mat. Méd. iv. 68.-Guib. Drog. Simpl. éd. 6, ii. 331.-Rosenth. op, cit. 201.-Personne, Journ. Pharm. (18577).-Villard, Thes. Fac. Méd. Par. (1872). - Muell. Journ. Pharm, et Chim. sér. 3, xxvii. 296 (Bang. Banghie, Guaza).
 ${ }^{4}$ See Dict. Encycl. Se. Méd. xv. 398.-Berg et Schm, Darst. Off. Gew. t. 19 b.
 ${ }^{5}$ Pulverised, it is used to counterfeit pepper.
 ${ }^{6}$ IIumulus Lupulus L. Spec. 1457.-Sm. Engl. Bot. t. 427.-Reichb. Ic. Fl. Germ. xii, t. 656. A. DC. Prodr. xvi. 29.-Guib. op. eit. ii. 332, fig. 441-443.-Lindl. Fl. Méd. 296-Berg et Schm. Off. Gew. t. 27 b. $-H_{\text {. amevicamus }}$

[^223]: ${ }^{1}$ Ann. Sc. Nat., sér. 3, x. (1848). 259; DC. Prodr. xvii. 163.

[^224]: ${ }^{1}$ Spec. 1. H. integrifolia PL. - Ulmus integrifolia Roxv. W. Spec. i. 1326 ; Pl. Corom. i. 66, t. 18.-Edgew. Journ. As. Soc. Bengal. ex Bot. Zeit. (1852), 840.-Thw. Enum. Pl. Zeyl. 267.

 2 Syst. 305. Spach, Am. Sc. Nat. sér. 2, xv. 355 ; Suit. à Buffon, xi. 115.-Endl. Gen. n. 1849^{1} - Pl. Ann. Sc. Nat. sér. 3, x. 261 ; Prodr. xvii. 167.
 ${ }^{3}$ Appearance of Carpinus.
 4 Bare at time of flowering.
 ${ }^{5}$ Small, dark yellow.
 ${ }^{6}$ Spec. 1. P aquatica Gmel.-W. Spec. iv.

[^225]: 567.-A. Giray, Man. ed. 5, 443.-Сhapm, Fl. S. Unit. St. 417. - P. ulmifolia Mrchx. F. Arbr. iii. 283.-P. Gmelini L. C. Rich. Michx. Fl. Bor.-Amer. ii. 248. - Desf. Arbr. ii. 446.Roem. et Sch. Syst. vi. 305.-Ahomymos aquatica Walt. Fl. Carol. 230.
 7 Ex Clus. Hist. p. ii. 302.-Zelkora Spach, Ann. Sc. Nat. sér. 2, xv. 356 ; Suit. à Buffon, xi. 117.-Endl. Ger. Suppl. ii. n. 1849.-Pl. Prodr. xvii. 165.
 ${ }^{8}$ Pr. Compt. Rend. Ac. Sc. (Jan. 1872); Prodr. xvii, 164.

[^226]: ${ }^{1}$ Nearly of Carpinus, caducous or deciduous.
 2 Small, inconspicuous.
 ${ }^{3}$ A genus hence between Ulmus and Plancra, thence between C_{e} ltis.
 ${ }^{4}$ Spec. 4. Badk. Pinax. 373 (Pseudo-San-tatum.-Lame. Dict. i. 725, (Quercus).-Smiti, Trans. Linn. Soc. (1808), 126.-Rem. et Sch. Syst. vi. 304 (Planera).-Sibth. et Sm. Prodr. Fl. Grac. i. 172 (Ulmıs).- Мichx. f. Mém. sur le Zelkova (1831). - Lindi. Gardir. Chron. (1861), 428 (Planera).-Miq. Ann. Mus. Lugd.Bat. iii. 66 (Planera).-Hance, Seem. Journ. vi. 333 (Planera).
 ${ }^{5}$ Inst. 612, t. 383.-L. Gen. n. 1143 (part.)J. Gen. 408 (part.)-Gдritn. Fruct. i. 374, t. 77.

[^227]: ${ }^{1}$ Subgenera in genus 4, ex. Pl. Prodr. scil. 1. Euceltis (incl.: Lotopsis Spach, Leiopyrcna Spach, Proteophyllum Spack), stigmas entire linear, male flowers at base of leafless branches, cymoso-racemose; female flowers in axils of new leaves, solitary; -2. Sponioceltis (Pl.) stigmas as in preced. Howers cymose; cymes infer male super. hermaphrod.-3. Solenostigma (Envl.) : stigmas at apex 2-lobed or emarsinate ; Howers cymose.-4. Momisia (Dumont.) stigmas 2-fid or twice 2-fid; Hlowers cymose.
 ${ }_{2}$ Spec. 73-75. L. Spec. iv. 1478.-Cay. Icon. t. 294 (Rhamnus).-Lamk. Dict. iii. 388 (Zivyphus). - W. Spec.-991. - Pers. Enchirid. 229.-Ten. Ind. Sem. Hort. Neap. (1833), 10.-Punsh, Fi. Am. Sept. i. 200.-Rafin. Fl. Ludov. 25.-Roxb. Fl. Ind. ii, 63.-Torr. Amn. Lyc. N. Hist. (1827), 24.-Dcne. Jacquem. Voy. Bot. 150, t. 152.-Blanco. Fl. d. Filip. ed. 1, 197; ed. 2, 139.-Sw. Prodr. 53 ; Fl. Ind. $=$ Occ. 545.-H. B. K. Nov. Gen. et Spec. ii. 32.-Kıl. Linusca, xx. 537.-Wedd. Ahin. Sc. Nat. sér. 3,

[^228]: xviii. 193 (AFomisia). - Bernh, Fuint. Fl. (1815), 871,-Carr Rev. Hort. (1808), 300.-A. Gray, Mano ed. 5, 443.-Chapm. Fl, So Unit. St. 417.-Benth. Fl. Hongkong. 323; Fl. Austral. vi. 150.-Thw. Enum. Pl. Zeyl. 267.-Gren. et Godr. $F l$. de $F r$. iii. 104.
 ${ }^{3}$ Voy. Bonite, Bot. t. 85.-PL. Am. Sc. Nat. sér. 3, x. 338; Prodr. xvii. 205.-Nenatostigma PL. loc. cit. 265 (Nenostigma). -Helminthospermum Trw. Hook. Journ. (1854), 302, t. 9, C.
 ${ }^{4}$ Spec. 5, 6. Wall. Cat. n. 7289 (Antidesma). -Bi. Mus, Lugdr.-Bat. ii. 72,-Mıq. Pl. Ind.Bat. i. p. ii. 222.-Tнw. Enum. Pl. Zeyl. 267.Teysm. et Benn. Aat. Tijldschr. N. Indo xi. 363 (Sponia).-Benti. Fl. Honglong. 324.-Seem. Fl. Vit. 236.
 ${ }^{3}$ Fl. Cochinch. (ed. 1790), 562.-Br. Mus. lugd,-bat. ii. 58.-Benth. Fl. Austral. vi. 157. -Sponia Commers. ex Lamk. Dict. iv. 138.Dcne. Herbo timor. 170.-Endl. Gen. n. 1852 (part.) - Pl. Anu. Sc. Nãt. sér. 3, x. 264 ; Prodr. xvii. 195.

[^229]: 4 "A genus very near Aphananthe, differing chiefly in its induplicate valvate calyx at æstivation" (Pr.), otherwise in habit, leaves and spines resembling the Celastrinse, and also some Bixacece and Cratagus.
 ${ }^{5}$ Spec. 1. C. atistata Pl. loc. cit.-Harv. Thes. Cap. 16, t. 25.-Celtis aristata E. Mey.C. appendiculata E. Mex.-C. subdentata E. Mey. Herb.
 ${ }^{6}$ Linnea, xx .541.

[^230]: ${ }^{1}$ A genus hitherto generally excluded from Ulimea on account of the number of stamens (Pu, Prodr. xvii. 152). But 10 stamens are oftener observed in Holoptelea. Ampelocera, in our opinion, is certainly Celtidea.

[^231]: 2 Spec. 2. Griseb, Cat. Pl. Cub, 57.-Walp. A 2 in . i. (40 .
 ${ }^{3}$ Hort. Mfars. 291.-Endl. Gen. 1375.-Bur. Prodr. xvii. 250.
 ${ }^{4}$ Bur.loc. eit. 234.

[^232]: ${ }^{1}$ Sect. 2, viz.: 1. Pachytrophe, placenta thicker ; cotyledons broader plicate ; radicle incumbent or more or less accumbent;-2. Euampalis, placenta thinner; cotyledons thicker straight; radiclo accumbent. A genus apparently very near to Morus.
 ${ }^{2}$ Spec. 3. Poir. Dict. iv. 380 (Morus).Jaca. Ic. Rar. iii. 617 (Mlorus).--Willem. Herb. Maur. 56 (Morus).-Hassk. Pl. Jav. Rar. 198 (Morus).-BL. Mus. Lugd.-Bat. ii. 80 (Streblus). -Miq. Fl. Ind.-Bat. i. p. ii. 278.
 ${ }^{3}$ Uus, Lugd.-Bat, ii. 81.-Bur. Prodr, xvii,

[^233]: 235.-Taxotrophis F. Muell. Fragm. Phytogr. Austral. vi. 193.
 ${ }^{4}$ Bur. loc. cit. 236.
 ${ }^{5}$ A genus much better reduced to a section of Ampalis, notwithstanding the nature of its female calyx and embryo.
 ${ }^{6}$ Spec. 4. Forst. Ex. Hook. f. et Raoul. Choix de Pl. 15 (Trophis); Ann. Sc. Nat. sér. 3, ii. 117; Choix de Pl. 14, t. 9 (E'picarpurus).Seem. Fl. Tit. 258, t. 63 (Trophis).-Nad. Entw. Pl. Tahit. 43 (Pseudomorus).
 7 Prodr. xvii, 249.

[^234]: ${ }^{1}$ A genus of doubtful autonomy and very probably hereafter to be reduced to a section of Ampalis.
 ${ }^{2}$ Spec. 1. very various in form, as P. Brunoniana Bur. Ann. Sc. Nat. sér. 5, xi. 372.Benth. Fl. Austral. vi. 181.-Monus Brenoniana Endl. Atakta, t. 32.-M. pendulina F. Baver, Ic. ined. Pl. Norfolk. t. 186, Endu. Prodr. Fb. Norfolk. 40.-Streblus Brunoniana F. Muell. Frag. vi. 192.-S. pendulina F. Muell. loc. cit.
 ${ }_{3}$ Hist. Jam. 357. -L. Syst. n. 1103 (part.).J. Gen. 442 (part.).-Porr. Dict. viii. 122 (part.). -Endl. Gell. n. 1871 (part.). - Tréc. Ann. Sc. Nut. sér. 3, viiii. 146.-Ber. Piodr. xvii. 252. Bucephalon Plum. Pl. Amer. (ed. Burm.), 55.--L. Spec. ed. 3, 1661.

 + Spec. 2, 3. Sw. Obs. 372.-W. Sive. ii. 733. - Mita. Mart. Fl. Bras. Urtic. 10̆9.-Griseb. Pl.

[^235]: ${ }^{1}$ Sumetimes more rarely in B. papyrifera opposite.
 ${ }^{2}$ Spec. 3, 4. Kxmpr. Amcen. Exot. 421, tab. (Papyrus legitima).-Seba, Thes. i. 44, t. 28 (Morzes)-L. Spec. 1399 (Morus).-Thunb. $\mathrm{H} l$. Jap. 71 (Morus) —Duнam. Arbr, ed nov. ii. 25. --Bl. Mus, Lugd.-Bat. ii. 85.-Sék. Deser, et Cull. les Mûr. 228, t. 23 (Movus).-Sieb. Terh. Bat. Gen. xii. 28.-Sier. et Zucc. in Abhand. d. Kœn. AKad. d. Wiss, iv. p. iii. 221.-Mıq. Fl. Ind.-Bat. Suppl. 417 ; Ann. Mus. Lugd.-Bat. ii. 198. -Seem. Fl. Tit. 246.
 ${ }^{3}$ Gen. Amer. ii. 233 ; N.-Amer. Sylv, i. 126, t. 37, 38.-SPact, Suit. à Buffon, xi. 52.-ENDl. Gen. n. 1857.-Payer, Fam. Nat. 122.-Bur. Prodi. xrii. 226.-Toxylon Rafin. Lond. Gard. Mrag. viii. 247.-Chlorophora Gaudich. Freycin. Voy, Bot. 509.
 ${ }^{4}$ Orule often oblique descending peritropous.
 ${ }^{5}$ Sect. 2. 1° Chlorophora, male flowers glomerulate sessile; 2° Eumachurn, mate flowers cy

[^236]: ${ }^{1}$ A genus very near to Broussonetia, Allaantheus intervening, and also to Maclura, notwithstanding the calyx of the latter is formed of free folioles. Allcanthus is (not without right) a section of Maclura, according to Mie. Fl. Ind.Bat. i. p. ii. 280.
 ${ }^{2}$ Spec. 2. 3. Hook, and Arn. Beceh. Voy. Bot. 214 (Trophis).-BL. Bijdr. 488 (Morus); Mus. Lugd.-Bat. ii. 75 (Malasia).-Miq. loc. cit. 281 (Cephalotrophis).-M. Arg. DC. Prodr. xv. sect. 'ii. 906 (Alchornia)-Bbnth. Fl. Austral. vi. 180 (Malaisia).
 ${ }^{3}$ Prodr. xvii. 232.

[^237]: ${ }^{4}$ The female sepals very often enclose in the very thick substance of the parenchyma 2 cells (of a sterile anther ${ }^{\text {f }}$)filled with a yellow powder. The same is more rarely the case in the malc calyx of some very near genera of Plecospermum. The sepals thus call to mind those of the Oxalidere, though thicker.
 ${ }^{5}$ A genus to be reduced perhaps to a section of Cudrania.

 - Spec. 1. C. africana Bur, loc. cit.

 7 Am. Sc. Nat. sér. 3, viii. 124, t. 4, fig. 121-126.-Bur: Prodr. xvii. 233.

[^238]: ${ }^{1}$ A genus perhaps with Maclura to be united with the preceding, of which it is a section according to Bl. (Leptosu'a) and Miq. Fl. Ind.Bat. i. p. ii. 280.

 2 Spec. 1. P. spinosum Tréc.-Wight, Icon. t. 1963.-Tww. Enum. Pl. Zeyl. 263.-Batis spinosa Roxe. Fl. Ind, iii. 763.
 ${ }^{3}$ Fl. Cuchinch. (ed. 1790), 614.-Bur. Prodi: xvii. 218.-Trophis Retz。Obs. v. 30 (not L.).Épicarpurus Bl. Bijdr. 488.—Endl. Gen, n. 1855.
 ${ }^{4}$ Sometimes polygamous (BL.).
 ${ }^{5}$ Spec. 1. S. asper Lour.-Bl. Mus.Lugd. $=$ Bat. ii. 79, t. 30.-TнW. E゙uum. Pl. Zeyl. 264.-S.

[^239]: aspera Miq. Fl. Ind.-Bat. i. p. ii. 278.- ${ }^{\text {rirophes }}$ aspera Retz. Obs, v. 30 (part.),-Roxb, Fl. Ind. iii. 761.-T. cochinchinensis Pork. Dict. viii. 123.-T. aculeata, Roth. Nov. Pl. Spec. 868.Epicarpuras orientalis BL.-Wight, Icon. t . 1961.-E. a.per Steud.-Achynus pallens Sul. -Tindqparua Rheed. Hort. Malab. i. 87, t. 48. ${ }^{6}$ Prodr. xvii. 219.
 i A genus scarcely distinguishable from Streblus by its compound spuriously racemiform inflorescence.
 ${ }^{8}$ Spec. 1. P. indica Bur. loc. cit. 220.
 ${ }^{9}$ MLus, Lugd-Bat, ii. 77, t. 26.-Bur. Prodr. xvii, 216.

[^240]: ${ }^{1}$ Better a section of Streblus?
 ${ }^{2}$ Spec. 1. T. javanica Bl. -Mrq. Fl. Ind.Bat. i. p. ii. 278.-Urtica? spinosa BL. Bijdr. 507.-Evicarpurts javanica BL.
 ${ }^{3}$ Prodr. xvii. 217.
 ${ }^{1}$ The adult stamens are said to be furnished with elongate incurved filaments (and are so represented in Wight's figure), in the younger state they appear to us shorter and erect (after the manner of the Artocarpea), a genus hence apparently very near to Cudiania.
 ${ }_{5}$ With the habit and branches of Cardiogyne.
 ${ }^{6}$ Better a section of Streblus, notwithstanding the involucre of the male flower.
 7 Spec. 1. P. spinosa Bur. - Epicarparus sp:nostes Wight, Ic. t. 1962 (part.).-E. tims-

[^241]: rensis. DCNe, Herb. Timor. t. 21.-Trophis spinosa Roxb. Fl. Ind. 762.-T, taxiformis Spreng. Syst. iii. 902,-Hook. and Arn. ap. Beech. 215.-T. taxoides Heyn. Roth. Nov. Pl. Ind. 368.-T. ? Heyneana Wall. Cat. n. 4642,Taxotrophis Roxburghii BL. Mus. Lugd.-Bat. ii. 78.-Tww, Emum. Pl. Zeyl. 264.-MIq. Fl. Ind.-Bat. i. p. ii. 279.
 ${ }^{8}$ Prodr. xvii. 215.
 ${ }^{9}$ Green.
 10 Spec. 1. D. zeylanica Bur.-Epicarpurus zeylanica Thw, Hook, Lund. Jow\%. (185\%), 1, 3, t. 2.-E. zeylanicus Wıaнt, Icon. t. 196 (part.).-Taxotrophis zeylanica THw. Enum. Pl. Zeyl. 264 (if D. macrophylla is of this genus? ?).
 ${ }_{11}$ Nov. Pl. Amer. Gen, 29, t. 8.-II。Gen. n.

[^242]: ${ }^{1}$ Habit quite of Urtica.
 ${ }^{2}$ Pubescence 2 -morphous; hairs at base coarse.
 ${ }^{3}$ Spec. 1. F. japonicr Bl. Mus. Luyd-Bat. ii. t. 38.-F. pilosa Gaudich.-F. aspera Gaumich. - F. subcordata Gaudich,--F. lenceolata Done. Herb. Timor. 492.-Urtica japonica Thuna. Fl. Jap. 70.-U. manillensis Walp.Parietaria aspera. Leschen.-Fleurya glechoma-

[^243]: folia Miq. Zoll. Verz. 103, 106.-F. globulifera Miq. loc, cit.
 ${ }^{4}$ Mus. Lugd.-Bat. ii. 87. t. 28.-Bur. Prodr. xvii. 254.
 ${ }^{5}$ Spec. 2. Bl. loc. cit.
 6 Tydschr. Nat. Ver. (1863),-Kvrz. in Journ. Linn. Soc. viii. (1864), 168. t. 13.-Bur. Prodr xvii. 257.

[^244]: ${ }^{1}$ After the manner of nearly all Artocarpece.
 ${ }^{2}$ Spec. 1. Miq. Fl. Ind.-Bat. Suppl. i. 172, 419 (Artocarpus).
 ${ }^{3}$ Nor. Gen. ef Spec. ii. 30, t. 142.-Eindl. Gen. n. 1863^{1}.-Tréc. Ann. Sc. Nat. sér. 3, viii. 142.-Bur. Prodr. xvii. 278.

 + "Not milky."

[^245]: ${ }^{1}$ Reviste Brasil. i. 368, c. ic. (1858).-Bur. Prodr. xvii. 281.
 2 "Berries of a bright reddish golden colour, slightly puberulous, united in a syncarp embryo milky greenish azure." (Allem).
 ${ }^{3}$ A genus, hence, it appears, allied to Avto-
 carpus, also, notwithstanding the form of the female receptacle, to Pserdosorocea and Sahagunia. The place in the order of this race, unknown to us hitherto, doubtful.

 4 Spec. 1. A, strepitans Allen. loc. cit. (vulg. Bainha de Espada).

[^246]: 7 H. Bn. Adansonia, xi. 292.
 ${ }^{8}$ In T. acuminata H. Bn. (loc. cit.), laterally or oftener extrorsely, and above subintrorsely rimose; in the male capitules of T. africana introrse, in the (sterile) anthers of the female syncarp extrorse and much shorter.

 9 "Cotyledons incumbent." (Dcse). We have seen the radicle not at all incumbent.
 ${ }^{10}$ Spec. 2 (imperfectly known). Hook. F. Bot. Mag. t. 5986 -H. Bn. Adansonia, loc. cit. n. 136 .
 ${ }_{11}$ Guian, ii, Suppl. 15, ta 376.-Mur. Prodr. xvii. 285.

 12 "Aurantii forma." (Avar.).

[^247]: ${ }^{1}$ A genus of somewhat uncertain place from the male flowers and stamens being unknown, but much resembling Maclura.
 2 Spec. 1. v. 2 (Bur.).
 ${ }^{3}$ Ann. Se. Nat. sér. 3, viii. 122, t. 3, fig. 76-85.-Bur. Prodr. xvii. 285.-Cudranus Remph. IIr.b. Ambair. v. 22, t. 15, 16.
 ${ }^{4}$ Spee. 5, 6. W. Spec. iv. 735 (Trophis).-Roxb. Cat. Wall. (Batis).-Mir. Pl. Jungh. 44 ; l. Verz. ii. 90 ; Fl. Ind.-Bat. i. p. ii. 280
 (Maclura), 290 (Cudranus). - Tнw. Enum. Plant. Zeyl. 262 (Cudranus),-BL. Mus. Lirgd.But. ii. 83 (Maclura).-Bur. Ann. Sc. Nat. sér. 5, xi, 377 (Cudranus).-Benth. Fl. Austral. vi. 178.
 ${ }^{5}$ Adansonia, xi. 299.
 ${ }^{6}$ Dark coloured.
 7 Scars transverse, not confluent.
 ${ }^{3}$ Spec. 1. H. Sprucei H. Bn. loc. cit.
 ${ }^{9}$ Prodr. 129, t. 2 S ; Fl. Per. 257.-Endl. Gen.

[^248]: (ed. Benn.), i. 78.-Benn. Horsf. Il. Jav. Rar. j2, t. 13.-Spach, Suit. à Buffon, xi. 64.-BL. Rumphia, i. 56, 172, t. 22, 23, 54.-Endl. Gen. n. 1862.-Tréc. Anu. Sc. Nat. sér. 3, viii. 142, t. 6, fig. 158-168.-Payer, Fan. Nat. 173.Bur. Prodr. xvii. 286.-Lepurandra Nimm. Giah. Cat. Bomb. Pl. 193.
 ${ }^{3}$ Male Hower sometimes rarely 3 -merous.

[^249]: ${ }^{1}$ Spec. 5, 6. Rumph. Herb. Amboin. ii. 87 (Tpo).-Hook. Comp, to Bot. Mag. i. 310, t. 17. -Wigirt, Icon. t. 1958.-311. Zoll. Verz. p. ii. 90, n. 3 ; Fl. Ind.-Bat. i. p. ii. 291 ; Suppl. i. 173, 423.-Tнw. Enum. Pl. Zeyl. 263, 427.Seem. Bonplandia, ix. 259 ; x. 3; Fl. I'it. 252, t. 72.-Benth. Fl. Austral. vi. 179.
 ${ }^{2}$ Ann. Sc. Nat. sér. 3, viii. 128, t. 5, fig. 149157. - Payer, Fam. Nat. 173. - Bur Prodr. xvii, 286.

[^250]: ${ }^{3}$ In P. hirsuta H. Bn. the umbilicus of the ovule and seed is observed to be vertically very linear-elongate after the manner of Pourouma.
 ${ }^{4}$ Spec. 5, 6. Pexpr. et Endl. Nov. Gen. et Spec. ii. 31 (Olmedia)-Miq. Mart. Fl. Bras. U'tic. 11G.-Griseb. Fl. Brit. W.-Ind. 152.H. Bn. Adansonia, si. 295.
 ${ }^{3}$ Supplem. à la Gaz. de Literat. Mexico, 2 jul. 1794-Trec. Ann. Se. Nat. sér. 3, viii. 136, t. 5, fig. 139-148.-Bur. Prodr. xvii. 286.

[^251]: ${ }^{1}$ Spec. 1 (v. 2 \%). Coll. Rep. on Caoutch. 11, 12, t. 2. 3 (vid. p. 176 , note 2).
 ${ }^{2}$ Ann. Sc. Nat. sér. 3, viii. 134, t. 6, fig. 132 -135.-Bur, Prodr, xvii. 287.
 ${ }^{3}$ A genus certainly very near Castilloa; the spiral twisting of the style being much more decided.

 - Spec. 1. H. Peppigiana Tréc. loc. cit.Miq. in Mart. Fl. Bras. Urtic. 118, t. 35, iii. iv. -Olmedia Poppigiana Mart. Herb, Fl. Bras. n. 629.-O. tomentosa 1expp. et Endl. Nov. Gen. et

[^252]: Spec. ii. 32, t. 145.-O. affimis Steud, Nomencl.
 з Amr. Sc. Nat. sér. 3, viii. 135.-Bur. Prodi. xvii. 286.
 ${ }^{6}$ A genus somewhat uncertain from the male flower not being known, but certainly very near Castilloa.
 ¿ Spec. 1. N. Guianensis Trúc. loc. cit.-Mı. Mart, Kl. Bras. Wric. 119.
 ${ }^{3}$ Mart. Fl. Bras. Urtic. 120, t. 35, Bg. 1.liur. Prodr. xvii. 282.

[^253]: 1"Dense, subcoherent at base, very rigidly subligneously bracteate." (Mro.).
 ${ }^{2}$ Is Ocgodeia Bur. (Prodr. 2S2), Nauclenpsis glabra Spruce (Herb.), n. 2793, a north Brazilian race described as: female flowers naked, germen inferior, style thick; stigmata 2, linear rather thick, the terminal half rough with unequal tubercles (whence the generic name), and numerous abortive flowers reduced to ovoid-pyramidal perianth, fertile flowers being interposed and covering the receptacle ; a section of this genus.

[^254]: ${ }^{1}$ Adansonia, xi. 298 ; Bull. Soc. Lim. Pur. ${ }^{4}$ Nigrescent. 49.
 a spec. 1. L. turbinata H. Br. luc, cit.-Brosimum turbinatum Spruce, Herb.
 ${ }^{3}$ Adansoniz, xi. 293.
 ${ }^{5}$ Gynæcium bracteate at base ?
 ${ }^{6}$ Spec. 1. S. Manniana H. BN. loc. cit.
 ${ }_{7}$ Kx. H. Bx. Adansonia, iii. 335, t. 10 ; viii. 72, t. 4.-luur. Prodr. xvii. 288.

[^255]: ${ }^{1}$ Bracts interior to stamens, sometimes represent epigynous female calyx.
 ${ }^{2}$ Spec. known 3, of which 2 are Madagascarene.
 ${ }^{3}$ Guian. ii. 888, t. 340 (1775).- ? Ferolia Abul. Guian. Suppl. 8, t. 372.-Lamk. Dict. ii. 452.-DC. Prodr. xvii. 293.-Alicastrum P. Br. Jam. (1756), 372. (Aublet's names have priority, but generically are not to be adhered to).Brosimum Sw. Fl. Ind. Occ. i. (1799), 17, t. 1, fig. 1 (on no ground to be preferred to Aublet's name),-Spach, Suit. à Butfon, xi. 62.-ENdl.

[^256]: ${ }^{1}$ Gasp. Nov. Gen. 7; Ric. 81, t. 7.-Mı. Honk. Journ, vi. 225 ; Mart. Kl. Bras. Uric. 00, t. 27-31,-l'ystogyne Gasp. Nov. Gen。 9 ; Ric. S4, t. 8.-İisiania Gasp. Nov. Gen. 9 (not DC.).-Macrophthatma Gasp. Ric. 83t. 8.-Miq. Hook. Jourh. vi. 225.-Galoglychia Gasi. Nov. Gen. 10 ; Ric. 84 (Sycocarpa MiQ.).

 2 Mre, Hook. Lomd. Journ. vii. 64; Mart. Fl. Bras. Uiric. 83, t. 25, 26.
 ${ }^{3}$ Sometimes very rarely 2, 3-locular.
 4 Spec. about 600 (Burr). Thunn. Fiens Gerı. Upsal (1786)، - K. Enum. Fic. Hort. Berol. (1846), Ann. Sc. Nat. sér. 3, vii. 231.-Miq. Prodr. Mon. Fic. Hook. London Joum. (1847, 1848) ; Journ. Bot. Neerl. i. 230 ; 7ull. Terz. ii. @0; Plaut. Jungh. 46 ; Fl. Ind.-That. i. p. ii. 293 ; Suppl. i. 173, 424; Am. Mus. Lugd.-Bat. iii. 261, 285, 297.-Tuw, Entm. Pl. Zeyl. 266.A. Rich. R. S. Cuba, xi, 220.-Ghisezs. Fl. Brit. W.-Ind. 150.-Seem, Fl. Jit, 247.-Bentir, It. Hongk. 326 ; Fl . Austral. vi. 160.-Gren, et Godr. 1\%, de Fr. iii. 103.-Walp, Ann, i. 706 ; iii. 417.

[^257]: ${ }^{1}$ Ann. Sc. Nat. sér. 5, xi. 379, t. 6 ; Prodr. xvii. 282.
 ${ }^{3}$ Spec. 2 of which one is unpublished (Bur.)
 ${ }^{3}$ A. S. H. Mém. Mus. vii. 473 (1821).-Endl. Gen. n. 1864.-Tréc. Ann. Sc. Nat. sér. 3. viii. 14, t. 6, fig. 183-188.-Bur. Prodr. xvii. 288. -Surcodiscus Mlalet. Herb. (Mia.)
 ${ }^{4}$ Receptacle unequally ramose or rathe

[^258]: ${ }^{1}$ Of which perhaps better a section? A genus hitherto admitted as a mean between Sorocea and Soaresia (whose male amenta bear naked stamens and the female pedicellate fiowers.)
 ${ }^{2}$ Spec. 4, 5, H. Bn. loc. cit. n. 141-144.
 ${ }^{3}$ Vidensk. Selskskr. Kiob. sér. 5. ii. (1851), 316.-Bur. Prodr. xvii. 288.
 ${ }^{4}$ Of this genus seems to be Soaresia nitida (Aleem. Hook. Journ. (1853), 270 ; Revista brazileira, i. 210(Oct. 1857), c. ic.), a Brazilian tree with flowers and fruit nearly of Soracea; male Howers pedicillate as in Sorocea; male arnenta; 2 opposite surfaces floriferous, i.e. bearing numerous starmens without perianth. In other respects all these genera allied to Sorocce should be carefully revised from better specimens than hitherto supplied (as demanded by Bureau in his monograph of the Order). Here perhaps (?) is also to bo referred Clarisia R. et Pav. (see p. 218, note 2).
 ${ }^{3}$ Spec. 1 (S. mexicana Liebm.), v. 2. (?)
 ${ }^{6}$ Guian. ii. S91, t. 341.-J. Gen. 406.-Porr. Dret. v. 606.-Endl. Gen. n. 1864.-Tréc. Am. Sc. Nat. sér. 3, viii, 100 t. 2, fig. 52-60. -Bur. Prodr. xvii. 284.

[^259]: ${ }^{1}$ Spec. about 20. Perp. et Endl. Nov. Gen. et Spic. ii. 29, t. 141.-Kı. Linncea, xx. 526.Miq. Mrart. Fl. Bras. Urtic. 121, t. 36-41.Walp. Ann. i. 656.
 ${ }^{2}$ Bijdr. 483.-Endl. Gen. n. 1869.-Tréc. Ann. Sec. Nat. sér. 3, viii. 87, t. 2, fig. 41-5゙1. —Buk. Prodr. xvii. 284.
 ${ }^{3}$ Spec. 7, 8 (about 10, Bur.). Benn. Horsf. Pl. Jav. Rur. 47, t. 12.-Lindi. Bot. Reg. t.

[^260]: - Spec, about 20. Pexpr, et Ennu. Nov. Gerr. et Sper.|ii. 33, t. 147.-Kı. Linnca, xx. 527.Miq. Mart. Fl. Bras. Urtic. 131, t. 42-45.Walp. Ann. i. 655.
 ${ }^{2}$ It. 272.-L. Syst, n. 1099.-J. Gen. 402.
 -Lamk. Dict. ii. 143; Suppl. ii. 374; Ill.
 t. 800.-Spach, Suit, à Buffon, xi. 108.-Endl. Gen. n. 1865.-Tréc. Ann. Sc. Nat. sér. 3, viii. 78, t. 1, fig. 9-22.-Bur. Prodz. xvii. 283.F. Darwin, on the glandular bodies of Cecropia peltata (J. Lin. Suc. xv. 398).
 ${ }^{3}$ Spec. 30-40. Sloane, Hist. i. 138, t. 88

[^261]: ${ }^{1}$ A genus differing from Myrianthus only in the nature of its female inflorescence, in other respects closely allied.
 ${ }^{2}$ Spec. 1, 2 (3, ex Bur.). Watip. Ann. is 653. Of the types imperfectly known, and, doubtfully, to be referred to this series (or to the preceding !), a few words may be permitted respecting the 2 fullowing:-

 1. Stenochasma (Mia. Fl. Ind.-Bat. i. p. ii 202), enumerated among the Artocarpece, has dicecious flowers. Males. . . .? Females said to be dense on axillary 2 -nate pedunculate globose receptacle, subpedicillate. Perigonium utriculose, perforated at incrassate fleshy axile apex, membranous at base. Germen 1-ovulate; ovule inserted above the middle (whence agreeing peither with the Urticece nor with the Conocephalç). Style enclosed very short; stigma semiglobose depressed puberulous, subcxscrted. Achene (dark coloured) somewhat ovoidly compressed, enclosed in subbaccate 4, 5angled obpyramidal perigonium; seed inserted near apex; cotyledons of (immature) embryo equal elliptical plano-conves; radicle very short. (Miq.).
[^262]: 1 Betula T. Inst. 5S8, t. 360.-L. Gen. n. 1070.-J. Gen. 409,-GAERTN. Fruct. ii. 54, t. 90, fig. 2.-LAMk. Dict. i. 452 ; Suppl. i. 686; Ill. t. 760.-Ture. Dict. Sc. Nut. Atl. t. 301.-Spach. Revis. Betulac. Aun. Sc. Nat. sér. 2, xv. 182; Suit. à Buffon, xi. 145.-Nees, Gen. fasc. 4, t. 18.-Endl. Gen. n. 1840; Suppl. iv. p. ii. 19.-PAXER, Bull. Soc. Bot. de Fr. v. 151 ; F'am. Nat. 161.-Regel, Monogr. Betul. 9 ; $D C$.

[^263]: Plodr. xvi. sect. ii. 161.-H. Bn. Recherches Organogéniques sur les Amentacées (Compt. Rend. Assoc. Fianç. (1875), 756, t. 11; 12 ; Adans. xii. 1).
 ${ }^{2}$ L. Mantiss. 124.-Req. Prodr. 173.
 ${ }^{3}$ The pollen is flat, ellipsoid, somewhat triangular, with three small pores and large halos. (II. Monl, Am. Sc. Nat. sér. 2, iii. 312).

[^264]: ${ }^{1}$ Admitting four stamens they have, in consequence, been described as diadelphous.
 ${ }^{2}$ In reality unilocular and possessing primarily two parietal placentæ which unite near the centre of the cavity, one of them generally becoming more or less completely abortive.
 ${ }^{3}$ Very rarely two ovules correspond to one cell, only one of which is perfectly developed.
 ${ }^{4}$ It has a simple coat.
 ${ }^{5}$ At the centre, the ovary is traversed by a

[^265]: vertical fascicle, itself surrounded by a disunited rellular tissue, forming part of the partition, very thick below, of the pericarp.
 ${ }^{6}$ Frequently there are tivo, but in that case one or the other is often sterile.
 ; As are the Betulce in general, except ons species of Alnus which inhabits southern Africa. (Reg.) Those which, in much smaller number, are observed in tropical Asia and America, grow on high mountains.

[^266]: ${ }^{1}$ Often, as in I. fruticosa, the axis of a female catkin thickens and its lower portion persists and ultimately developes into a branch which, the following year, bears leaves and flowers, the female catkins of which will likewise have a persistent base.
 ${ }^{2}$ Spact, Amm. Sc. Nat. sér. 2, xv. 182, 198.Endr. Gen. Suppl. iv. p. ii. 20.
 ${ }^{3}$ They have often been considered as sti-

[^267]: ${ }^{1}$ Sect. Eubetula Reg. Prodr. 162, sect. 1.
 ${ }_{2}$ Rea. Prodr. 179 (sect. 2).
 ${ }^{3}$ L. Spec. ed. 2, ii. 1193; Mantiss. 124.W. Spec. iv. 462. - Pall. Fl. Ross. i. 60, t. 39, 40.-Leieb. Fl. Ross. iii. 649.-Michx. Fl. Bor.-Amer. ii. 180.-Koch, Syn. Fl. Germ. ed. 2,760.-Trauty. et Mey. Middend. Reis. Fl. Och. 81.-Schrank, Fl. Baical. i. 421,-Fr. Summ. T'eg. Scand. i. 212.-Bge. Fl. Alt. Suppl. Mém. Acad. Pétersb. (1835), 506.-Снам. Linnaa, จ. 537 , t. 6.-Wall. Pl. As. Rav. ii. 7, t. 109.

[^268]: ${ }^{1}$ In A. nitida Endla and nepalensis Don, of which has been mado the genus Clethopsis (Spach, Ann. Sc. Nat. sér. 2, xv. 183, 201).
 ${ }^{2}$ Spach, Am". Sc. Nat. sér. 2, xv. 200 ; Suit. à Butfon, xi. 244.
 ${ }^{3}$ Un these grounds Regel divides the genus into 4 sections: 1. Clethropsis (Spach). Flowers developed at same time as leaves. Male scales uniflorous. Female flower 10-12-merous.-2. Alnaster (Endl.). Flowers precocious. Male catkins coming from 1-3-phyllous buds. Scales 3 -florous. Fruit with membranous wing.-3. Phyllothyrsus (SPach). Flowers developed at same time as leaves. Scales 3-Horous. Floral buds aphyllous. Fruit

[^269]: with membranous wing.-4. Gymnathyrsus (Spach). Flowers precocious. Scales 3-florous. Floral buds leafless. Fruit wingless or with coriaceous wing.

 + L. Spec. 1314 (Betukt).-Gartn. Fruet. ii. 54, t. 90 (Betula).-Lamm. Dict. i, 454 (Betula). -Ait. Hort. Lew. iii. 139 (Betula).-Eurr. Beitr. 72 (Betula).-Mirb. Mém. Mus. xiv. 464, t. 22.-W. Spec. iv. 334.-II, B. K. Now. Gen. et Spec. ii. 16.-DC. Fl. Franc. iii. 30t.Don, Piodr. Fl. Nepal." 58.-Bong. Mém. Pétersb. sér 6, ii. 162.-Nutt. Sylv. Amer. Suppl. i. 34, t. 10.-Ten. Fb. Nap. Prodr. 54 ; Icon. ii. 340, t. 99.-Dcne. Amn. Sc. Nat. sér. 2, iv. 348. -Siers. et Zucc. Abh. Akad. Miunch. iv. Abth.

[^270]: 2 They are notably wanting in Ostryopsis They have been considered as lateral stipules of the principal bracts; with others they take the place of leaves (Dexle, Rhein. Fl. 273; Zur Erkl. Laubin. Ament. 19, fig. 6).
 ${ }^{3}$ There are rarely more, often less, especially in the flowers near the top of the catkin. These may even be only 2 -androus. DEcaisne inadvertently describes Ostryopsis as 4 -androus; they often have as many stamens as other species of Corylus.

 4 "Rather (theoretically) 4 stamens, the anthers and filaments being sometimes divided."
 ${ }^{3}$ They are extrorse, not with respect to the axis of the inflorescence (for relatively to that the lower and interior are introrse), but with respect to the centre of the flower.

[^271]: ${ }^{1}$ According to H. Mohe the pollen is similar to that of the Betulece. Its spherical granules open by three pores (Hass. Am. and Mag. Not. Mist. ix. 556).
 ${ }^{3}$ It is the only portion of the female flower which exists at tho period of floration.
 ${ }^{3}$ Not formed till much later, near the middle of spring.
 ${ }^{4}$ Strictly there may be four ovules, two on each placenta, two of which are sooner or later arrested in their development. The two ovules which remain may belong to the same placenta; but more frequently they are inserted on separate placentre, and correspond each to a different

[^272]: cell. Very rarely the two persistent ovules are found inserted on different placente and yet correspond to one and the same cell.
 ${ }^{5}$ They have only one envelope.
 ${ }^{6}$ It is often dispermous; but one of the seeds is sometimes reduced to small dimensions.
 ${ }^{7}$ This tissue, originally white and firm, but which becomes thin and brown in the ripe fruit, traversed by a central vertical fascicle, is not developed in the cavity of the cell of which it occupies the upper part, it is a hypertrophiate layer of the pericarp itself, i.e. of the floral receptacle.

[^273]: ${ }^{1}$ Spach, Ann. Sc. Nat. sét. 2, xvi. 106, sect. 2.-A. DC. Prodr. 133, \& 2.
 ${ }^{2}$ Sfach, loc. cit. 108.-A. DC. Prodr. 129.
 ${ }^{3}$ Dcne. Bull. Soc. Bot. de Fr. Xx. 155.
 Cokrlus
 sect. 4. $\left\{\begin{array}{l}1 \\ 2 \\ 3 \\ 3 \\ \text { Aubo-Avellana (Bauh (Spach). } \\ \text { - Acththochlamys (Spach). }\end{array}\right.$
 5 J. Baur. Hist. i. 270 (Avellana).-Clus. Hist. 11 (Avellana).-L. Hort. Cliff. 448; Spec. 1417.-Ait. Hort. Kew. iii. 364.-Duham. Arbr. éd Nouv. iv. 20.-WAlt. Fl. Carol. 236.Michx. Fl. Bor.-Amer. ii. 201.-Trautv. Ic. Ross. i. 10, t. 4.-Fisch. Flora (1834), Beibl. 24. -Reichb, Ic, 636-638.-Wall. Pl. Ass. Rar. i. 77, t. 87.-Reg. Veg. Amur. 489.-Benth. Pl. Hartweg. n. 1960.-A. Gray, Man. ed. 5, 456. -Chapm. Fl. S. Unit. St. 425.-Hart. Foust.

[^274]: Cult. Ffl. Deutschl. 217, t. 15-17.-Dochmahl, D. Obsthizade, iv. 29.-Gren, et Godr. Fl. de Fr. iij. 119 .
 ${ }^{6}$ In the bud they are folded longitudinally, following the principal nervure, and consequently look sidewise to the branch bearing them.
 7 Carpinus T. Inst. 582, t. 348.-L. Gen. n. 1073.-J. Gen. 409.-Gertn. Fruct. ii. 52, t. 89.-Lamk. Dict. i. 707 ; Suppl. ii. 202 ; Ill.t. 780.-Schkumr, IIandb. t. 30t.-Spach, Suit. à Buffon, xi, 219; Ann. Sc. Nat. sér. 2, xvi. 248. -Nees, Gen. ii. 20.-Endl. Gen. n. 1843.Dell, Zur EJ-klaer. Laubkn. Ament. 15, fig. 13, 14.-Schacht, Lehrb. ii. 440 ; Der Baum, t. 4, fig. 1-9. - Payer, Fan. Nat. 164. - A. DC, Prody. xvi. sect. ii. 125.

[^275]: ${ }^{1}$ The summit is ordinarily surmounted by a tuft of hairs. The pollen is similar to that of Corylus, (H. Moнд).
 ${ }^{2}$ The same is the case in C. japonica Br. cordata BL. laxifora BL. (Mus. Lugd. Bat. i, 308), of which has been made the genus Distegocarpus

[^276]: (Sieb. et Zucc. Fl. Jap. Fam. Nat. ii. 102. t. 3 ; -A. DC. Prom: 127), and which appears to us ought to form only a section (with sublobate fruit) of the genus Carpinus. A kind of small roundish ligule is seen within the secondary bracts.

[^277]: 1 L. Spec. 1417 (as regards European plants).
 ${ }^{2}$ Lamk. Dict. i. 700, n. 4.
 3 Micheli, Gen. 223, t. 104.-Nees Gen. i. t. 13.-SPACH, Suit. à Buffon, xi. 210゙; Ann. Sc. Wat. sér. 2, xvi. 243.-Endl. Gen. n. 1842 ; Suppl. iv. p. ii. 22.-A. DC. Pradr. xvi. p. 2, 124.

 4 L. Spec. 1416.-Leder, $F l$. Ross. iii. 586. -Walt. Fl. Carol. 236.-Lindl. IVill. Pl. As. Rar. ii. 4, t. 106.-Reichb. Ie. t. 633-63j.Scop. Fl. Carmiol. (ed. 1772), n. 1190, t. 60.Wars. Dendr. t. 143 (Ostrya), 157.-DIre. Ann.

[^278]: ${ }^{1}$ Quercus 'T. Inst. 582, t. 319.-L. Gen. (ed. 1), 726.-J. Gen. 410, 452.-Gertn. Fruct. i. t. 37.-Lamik. Dict. i. 715 ; Suppl, ii. 209 ; Ill. t. 779.-SchkUHR, Mandb.t. 301,302.-Nees, Gen. ii. 23.-Spact, Suit. à Buffon, xi. 145.-Endl. Gen. п. 1845 ; Suppl. iv. p. ii. 24.-Schacht, Beitr. i. 36, t. 3 ; Der Baum, t. 3.-Payer, Fam.

[^279]: Nat.164.-A. DC. Secm.Journ. Bot. (1863), 182
 Ann. Sc. Nat. sér. 4, xviii. 49 ; Prodr. xvi. sect. ii. 2.-Ilex 'T. Inst. 583, t. 350.-Suber 'I. Inst. 584.-Syncedris Lindl. Introd. (ed. 2), 441.Lithocarpus BL. Bijdr. 526 ; Fl. Jav. fasc. 13, 34, t. 20.-Evdl. Gen. n. 1846.
 ${ }^{2}$ To a dozen.

[^280]: ${ }^{1}$ The poller is "round ; threefold; in water three linear bands" (H. Moнl, Ann. Sc. Nat. sér. 2, iii. 312).
 ${ }^{2}$ Not unfrequently two or even a single one.
 ${ }^{3}$ From four to nine.
 ${ }^{4}$ Here and there are abnormal flowers with

[^281]: ${ }^{1}$ II. A. Candolle divides it into six sections: 1. Lepidobalanus (Endl. Gen. Suppl. iv. p. ii. 24;-Robur, Cerroides, Erythrobalanos, Gallifera, Suber, Coceifera Space, Suit. à Buffon, xi. 148; Esculus, Ilex J. Gay). Cupule open, superior, covered with imbricate scales. Male flowers without rudimentary gynsecium, with hairs internally. Catkins slender. Male calyx often ir-regular.-2. Androgyne (A. DC. Not. Nouv. Car. 9 ; Prodr. 81 ;-Lepidobalanus Endl. (part.). Cupule and male fl. as in preced. sect. Gynæcium rud. 0. Divisions of style (3-6) linear, divergent.-Female flower spikes axillary basilar, with caducous male flowers at top. Maturation biennial (Q. densifora Hook. and ARn.).3. Pasınia (M1q. Fl. Ind.-Bat. i. 480 ; Ann. Mrus. Lugd.-Bat. i. 108 ; A. DC. Not. Nouv. Car. 4 ; -Lepidobalanus Endl. (part.) ; - Benth. Fl. Homgz. 320). Cupule as in preced. sect. Gynæcium rud. globular in male flower. Male calyx regular. Androecium diplostemonous. Catkins erect; three bracts under flower or glomerules. -4. Cyclobalamus (Endl. loc. cit.;-Gyrolecana Bl. Mus. Lugd.-Bat. i. 299. Cupule open super., covered externally with circular wrinkles, concentric or subspiral, or with folds entire or dentilate. Gynæcium rud. in male fl. -5. Chlamydobalanus (Endl. Gen. Suppl. iv. p. ii. 28 ;Castancopsis BL Mus, Lugd.-Bat. i. 228 (not Dos); - Encleisocarpon Mia.). Cupule enveloping all the glands, often unequally divided, covered with salient verticillate and concentric folds. Gynæcium rud. in diplostemonous male f. Spikes unisexual or androgynous with female flower inferior.-6. Lithocarrzes (Bu. Bijdr. 526 ; Fl. Jov. Cupul. 34, t. 23 ;-Miq. Am2. Mus. Lugd.-Bat. i. 106, 108 ;-A. DU. Prodr. 104, sect. 6. Cupule thick coriaceous with extermal oblique not numerous wrinkles or folds, inferiorly united within to the gland, which, to a smaller extent, is free above. Fruit osscous. Male flower and inflorescence, as in sects. 4 and $\overline{0}$.
 $=$ L. Spor. 1412.-Thexb. Fl. Jip. 175.-

[^282]: ${ }^{1}$ These bracts are ordinarily larger and thicker than those of the male flowers.

[^283]: ${ }^{1}$ The bracts are those of the inflorescence in a biparous cyrae and are displaced at adult age. The prickles are of the same nature as the scales on the upper portion of the cupule of the Oaks; and it is absolutely necessary to distinguish these two kinds of organs one from the other.

 2 In C. vulgaris (vesca), there are at first seven flowers belonging to three successive generations; but those of the third generation early become abortive. They are sometimes developed just at the end and may then be males.
 ${ }^{3}$ They may equal the sepals in number and in that case belong to two scries; there are, for

[^284]: 1 The lower division, longer than the others, has been considered as representing a modified leaf (A. DC. Prodr. 114) in the axil of which should be placed the others shorter and variable in number.
 ${ }^{2}$ Accompanied near the summit by from two to twelve other seeds sterile and rudimentary, of which one or two here and there may become fertile.
 3 L. Spec. 1416 (Fagus),-Tuunb, Fl. Jap. 195 (Fagus).-Duham. Aibro éd. 2, iii. 66, t. 19.-Loud. Arbr. 912, f. 1707, 1708.-Rafin. N. Sylr. 8\%.-Michx. Arbr. Amer. i. 166, t. 7.-

[^285]: Wangenif. Nordam. Molz. t. 47.-Catesb. Carol. 1, t. 9.--Ell. A Sketch, ii. 614.-Nutr. Gen。ii. 217.-A. Gray, Man. éd. 5, 405.-Chapm, Fl. S. Unit. St. 424. -BGe Ernum. n. 347, 349.Bl. Mrus. Lugd.-Bat. i. 285.-Sieb, et Zucc. Fl. Jap. Fam. n. 189, 710--13enth, Fl. Mongh. 319.-Miq. Ann. Alus. Lngd.-Bat. i. 121.Gren, et Godr. Fl. de Fr. iii. 115.
 ${ }^{4}$ Disposed according to the fraction $\frac{2}{5}$, or sometimes distichous (Veill, Fl. Bad. ii. 542).
 ${ }^{3}$ Heviry, N. Act. Nat. C'ur. xxii. p. i. t. 28. -Deell, Zur Eurklaer. do. Laublin. Ament. 25, fig. 21.

[^286]: ${ }^{1}$ Hook. Joum. of Bot. (1843), 496 ; Bot. Mag. t. 4953.
 a Forming the sect. Eucastanopsis A: DC. (Prodr: xvi. sect. ii. 109).
 ${ }^{3}$ Don, Prodr. Fl. Nepal. 56 (Quercus sect. not Bl.).-Spach, Suit. à Buffon, xi. 185.-A. DC. Secm. Journ. of Bot. (1863), 128 ; Prodr. loc. cit.

 + Mra. Pl. Jungh. i. 13 ; Fl. Ind.-Bat. i. 868. (part.) ; Ann. Mus. Lugd.-Bat. i. 118.-A. DC. Prodr. 112.

 Castanea $\left\{\begin{array}{l}1 \text { Eucastaner. } \\ \text { a Castanopsis (Dov). }\end{array}\right.$
 suct. 3. (3 Callerocarpus (Miq.).
 ${ }^{6}$ See p. 233, note 3. Roxb. Fl. Ind. iii. 643. -Bl. Bijdr. 52 n ; Fl. Jav. 42, t. 22.
 ${ }^{-}$Fagus 'T. Inst. 584, t. 351.-Ls. Gen. (ed. 1), ก. 728 (part.).-LAMk. Diet. iii. 125 ; Suppl. iii.

[^287]: ${ }^{1}$ Transformed even into small lenves on cerdain ahnormal involucres of the common Beech.

 2 Their transverse section has the form of an isosceles triangle with apex interior.
 ${ }^{3}$ When this thickered angle separates, at a certain age, from the rest of the partitions, the placenta appears almost centrally frec.

[^288]: ${ }^{1}$ Accompanied by abortive seeds.
 ${ }^{2}$ Epigeous, foliaceous, in germination.
 ${ }^{3}$ They are probably flat in many small-leaved species of the northern hemisphere. (J. Ноок. Fl. Antarct. ii. 123).

 + Except in Africa.
 ${ }^{5}$ In sect. Eufagus (page 238, note 5).
 ${ }^{6}$ In sect. Nothofagus (A. DC. Prodr. 121).
 © Heney, Nov. Act. Nat. Cur. xxii. p. i. t. 29. The lateral nervures terminate in the hollows between the teeth of the limb or even at the teeth themselves. (A. DC. Mém. Genève (1864), lce. cit.).
 ${ }^{8}$ Forst. Comm. Gcetting. ix. 45 (Betula).-

[^289]: Duham. Arbr. ed. 2, ii. 80, t. 24.-Mrchi. Arb. Amér. ii. 74, t. 9.-Schкuнr, \#andb. t. 303.-Loud. Encycl. 907.-Ноок. Journ. But. ii. 147 ; Ieor. t. 630, 631.-Wangenh. Nordicmer. Holz, 80, fig. 65.-Reichb. Ic. Fl. Germ. t. 639.-Sier. Bat. Fer h. xii. 25.-Piepp. et Endl. Nov. Gen. et Spec. ii. 68, t. 195-198.-Hook. F. Fl . Antarct. ii. 346, t. 123, 124 ; Fl. Tasm. i. 348 ; F\%. N.-Zel. i. 229; Man. N.-Zeal. Fl. 249. -Benth. Fl. Austral. v. 209.-C. Gay, Fl. Chil. จ. 387.- Phil. Limuca, xxix. t. 45.-A. Gray, Man. ed. 5, $45{ }^{2} .-$ Chapm. Fl. S. Unit. St. 424. -Gren, et Gonr. Fl. de Fr. iii. 114.-Walp. Aun. i. 636; vii. 639 Lophozonia).

[^290]: ${ }^{1}$ In the same cell there are ordinarily one shorter, straight, and another much longer, often a little sinuous.
 2 Which gives it an external resemblance to an acorn, though here the fruit is superior. It is crowned with the remains of the style; its colour is ordinarily that of a dried jujube.

[^291]: ${ }^{3}$ II. Bn. Adansonia, x. 117, 337.
 ${ }^{4}$ Chapm. Fl. S. Unit. St. 426.-C. DC. Prodr. xvi. sect. ii. 1ह̄4.-Houk. F. Icon. n. sér. i. 33, t. 1044.
 ${ }^{5}$ Very often there are half a dozen. It is ordinarily in the flowers at the summit that the number may be reduced to two or thuee.

[^292]: ${ }^{1}$ Here and there are female flowers with one or more fertile stamens within this false calyx.
 2 It is traversed by a vertical furrow, the
 thick margins of which are reflexed and papillous.
 ${ }^{3}$ "Amphitropous." (Chapm.)

[^293]: ${ }^{1}$ Here perhaps will be placed the genus Didymeles Dup.-Tн. doubtfully referred by us to the Zanthoxylece (Hist. des Plout. iv. 392, note 1), and which with C. De Candolle (Prodr. xvii. 292), as with Mersener (Gen. Comm. 256) is perhaps a Myrica. Its carpels,

[^294]: with large haloes." (If. Monk, Ann. Se. Nat. sér. 2, iii. 312.).
 2 They may be transformed to stamens or bear a stamen in their axil.
 ${ }^{3}$ Later they become lateral.

 + There is only one oyular envelope.
 ${ }^{5}$ GaleJ. Bayn. Hist.ii. 223.-Spach, loc.cil. 258 .
 ${ }^{6}$ Banis, Geartiz。Fiuct. ii. 58 , t. 90.-Spaci, loc. c:t. 264.

[^295]: ${ }^{1}$ Type of the g. Nageia (Gerkin. Fruct. i. 191, t. 39, fig. 8).
 ${ }^{2}$ Faya Webr, Phyt. Canar. iii. 372.
 ${ }^{3}$ L. Spec. 1418 (Liquidambar), 1453 ; Mantiss. 298.-Tuunb. Fl. Jap. 76; Fl. Cup. (ed. Sch.), 153, 158.-W. Spec. 746.-JACQ. Ic. Rar. t. 625; Fragm. ii. t. 1, fig. 4.-Duilam. Arbr. ed. 2, t. 55, 56 .-II. B. K. Nov. Gen. ct Spec. ii. 17, t. 98. -Mirb, Mém. Mus. xiv. t. 27, 28.-Michix. Fl. Bor.-Amer. ii. 620.-BL. Bijdr. 517 ; Fl. Jav. Myric.-Ait. Hort. Theto, iii. 396.-Roxb. Fl. Ind. (ed. 1832), iii. 765.-WAll. Tent. Fl. Ncpal. 59, t. 45.-Wight, Icon. t. $61 .-$ Wits. Dendrol.

[^296]: ii. 16G, t. 1056 (Comptonia).- Λ. Rich. Tent. Fl. Abyss, ii. 277.-Cham. et Schltl. Limea, vi. 336.-Reichb. Ic. Fl. Germ. xi. t. 620.-Tausch, in Flora (1831), 671.-Sieb. et Zvec. Abh. d. Baier. Akad. d. Fissenseh. iv. 3, 230.-Bucu. in Fhara (1845), 89.-bentii. 1l. Hartweg. 251, 266; Fl. IIongk. 322.-Griseb. I'l. Wright. 177; Fl. Brit. W.-Ind. 177.-Mia. Ft. Ind.-Bat. i. 872 ; Mus. Ludg.-But. iii. 129.-A. Gray, Man. ed. 5 , 457,458 (Complonia).-Chapm. Fl. S. Unit. St. 426, 427 (Comptonia),-Gren. et Godr. Fl. de Fr. iii. 151. - Walp. Ann. i. 73S.
 ${ }^{4}$ Fan. des Pl. ii. 366 (Castancer).

[^297]: ${ }^{1}$ Gen. (1789), 407, Ord. 4.
 ${ }^{2}$ Anal. du Fruit, 193.
 ${ }^{3}$ Myricea. A. Rich.-Bartl. Ord. Nat. 98. -Endi. Gen. 271, Ord. 37.-Mryricacea Lindu. Jeg. न̈ingd. (1846), 256, Ord. 71.-C. DC. I'rodr. xvi, sect, ii. 147.

 * Betulincer L. C. Rich. ex A. Rich. Elém. (d. 4), 562.-betulacee BartL. Ord. Nat. 99.Lindl. Intiod. ed. 2, 171.-Endl. Gen. 272, Ord. 88.-Reg. DC. Prodr. xvi. sect. ii. 161, Ord. 195.
 ${ }^{5}$ Rich. Alal. du Fiuit, 32, 92 (1808).-Bartl. Ore. Nät. 99. - Livid. Introd. ed. 2, 170.Ende. Gen. 273, Ord. 89.

[^298]: ${ }^{6}$ Elém. de Phys. I'ég. et de Bot. ii. 900.
 ${ }^{7}$ Gen. Nov. Madag. 89.
 ${ }^{3}$ Fl. S. Unit. St. 427.
 ${ }^{9}$ Aldansonia, x. 117.
 ${ }^{10}$ Rarely two are observed in each cell, ono generally imperfect.
 ${ }^{11}$ Payer, Fam. Nat. 163, Fam. 73.
 ${ }_{12}$ J. Dict. Sc. Nat. Suppl. ii. 12 (1816),-Payer, loc. cit. 164, Fam. 74.-Crирulifcre Rich. (part.).-A. DC. Frodr. xvi. sect. ii. 1, Ord. 194.
 ${ }^{13}$ The most ordinary numbers being 3 in Quercus and 6 in Crstanea.

[^299]: ${ }^{1}$ As it is still, with scrics so different one from another in their organization, this family remains, in our view, a collection of degenerate, diminished types which are to the Malvoidece and Urticoidece, by the Ulmacec, Artocarpece, and Betulincer, and to the Combretacece, IIamamelidese, I'latanere, by the Quercinere and Corylec, what the Antidesmece are to the Euphorbiatece,

[^300]: the Juglandece (perhaps) to the Terebinthacec, the Garryacce to the Cornecc and Hamamelidee, the Lacistemice to the Bixacece, the Myosurandra, and the Datiscere to tho C'unonice, the Silicinece (perhaps) to the Tumariscince, \&c. J. (t. Agarinh (Theor. Syst. 159, 162, 174) considers the Corylece as representing perhaps a reducel form of the Diptcrocarpece, the Myrobaluncece as

[^301]: collateral to the superior Cupuliferce and to the Aquilarinere, pointing out also, in the same work, their affinity with the Betulece.

 1 See Ahrnsonia, x. 137.
 2 M. Clakke (Ann. Nut. Hist. (18j̄8), 100)

[^302]: considers Myrien as intermediate between \mathbf{A} mentacere and Uiticce.
 ${ }^{3}$ Leitneria scems to unite the Amentacce to the Willows. Balanops has a fruit and habit resembling the Sapotacece; it represents perhaps an apetalous and amentaceous form of it.

[^303]: ${ }^{1}$ A. DC. Géngr. Bot. Rris. 279, 305, 311, 328, 473, 530, 616, 807, 1064.

 2 Among the fossil genera, abundant in recent sirata, are especially cited those established by Unger (Chlor. Protog.), under the names of

[^304]: Carpinites, Fagites, Figonium, Quercinium, Qucrcites. (See Endl, Gen. Suppl. iv. p. ii. 30).
 s Generally it is that which has been most studied histologically, and it is that which has often served as type for the general descriptions

[^305]: d. Entw. d. Baumrinde. Berlin (1853).-C. DC. Do la Iroduction Nat. єt Aut. du Liêge (Mém. Soc. Gon. xvi.).-Ducyrre, E'lém. 157.
 ${ }^{1}$ L. Spec. 1413.-Webre, It. Mispan. 15.A. DC. Prodr. n. 10t.-Guib, Drog. Simpl. ed. 6, ii. 2S9.-Hayne, Ar~̈. Geue. t. 44.-Q. pseudococcifera Desf. Fl. Atl. ii. 349.-Borss. Toy. Espp. 578, t. 165.-Q. Mesto Boiss, op. cit. t. 166.Q. Auzandri (iren. et Godr. Frl. de Fir iii. 119.
 ${ }^{2}$ Lamk. Dict. i. 719 (1783).--Webr, Ot. Hisp. 11.-A. DC. I'rodr. n. 19.-Q. Infectoria Oliv. Voy. i. 252, t. 14, 15.-Guibs, Drag. Sinpl. ell. G, ii. 282, fig. 418.--Mér, et Del. Dict. Mat.

[^306]: Méd. v. 581.-Berg. et Scimm. Darst. Off: Gew. t. xxix. b.-Q. Canarionsis1V. Enum. Hert. Beerol. 975.-Q. rigidd C. Косн, Linnea, xix. 15.-Q. Mirbeckii Duk. Rev. Bot. ii. 426.-Q. brachycarpa Kотsch- - Q. Cypri hotscu.-Q. Pfaffingevi Kotsch.-Q. lialla turcica off.
 ${ }^{3}$ (2. Toza Bosc, Journ. d'Hist. Nat. ii. 155, t. 32, fig. 3.-A. DC. Prodr. n. 4.-Gren. ot Gudr. Fl. de Fr, iii. 117.-Q. Iyrchacien W. Spuc. iv. 451.-Lamik. 1ll. t. 779-Q. Nigra Thore, Land. 381 (not L.).-Q. Talzin Pers. L'rchivid. ii. 571.- (2, stalonifera Lar. Abr. 582. - Q. brossa Busc. Mén. 1 ós.

[^307]: ${ }^{9}$ For example Q. montana W. (Prinos monticola Michx.), oliviformis Michx. lyrata Walt. Prinus L. Esculus L. Castanea W. falcata Michx. virens Air. macrocarpa Michx. lobata Nee, fulcata Michx. Catesbai Micex. palustris Du Ror, aquatica Wart. and other interesting species from North America, the greater part introduced to European culture, where they excite to a high degree the interest of botanists ; in the old world, Q. Farnetto Ten. humilis Lamk. alnifolia Poech, macrolepis Korsch. Q. pseudosuber Sant. (Q. castaneafolia Coss.), which is also said to yield cark, Q. Libani Oliv. castaneafolia C. A. Mey. incana Royb. \&c. (See Kotsch. Eich. Eiur. and Or. 185̄8-62.-Rosentir. op. cit. 184-188.)
 ${ }^{10}$ C. vulgaris Lamk. Dict. i. 708 (1783).- . DC. Prodr*, 114.-C. sativa Mill. Dict.-C. vesca (\#ertn. Fruct. t. 3.-Reichb. Ic. Fl. Gejm. t. 640.-Ture. Dict. Sc. Nat. Atl. t. 304, 305.Mér. et Del. Dict. Mat. Méd. ii. 133.-Guib. op. cit. ii. 284. - Rosenti. op. cit. 188 - . japonica BL.-C. Bungeana BL.-C' vesca americana Mroix. Arbr. ii. 56, t. 6.-C. americana Rafin. N. Sylv. 82.-Fagus Castanca L. Spec. 416.-Tпu*b. Fl. Jap. 195.
 ${ }^{11}$ Mill. Dict. n. 2.-Wangenif. Nordam. Holz. t. 47.-Mıchx, Avbr. ii. 166, t. 7.-C. alnifolia Nuts.-C. nana Muehlb. Cat. 86.Eld. Sketch, ii 614.-Fagus pumila L. Spec. 1410 (Chincapiu).

[^308]: ${ }^{1}$ Corives, Gagnazdes, Marrons de Lyon.
 ${ }^{2}$ In Jara, India, and other countries, many species (referred to the genus Castanopsis) have edible seeds, notably C. jaranica Bu. Tungurrut Bl. argentea Bu. indica Roxb. In California the small fruit of C. chrysophylla Hoor. (Bot. Mag , t. 4953) is said to be eaten.
 ${ }^{3}$ Fagus sylvatica L. Spec. 1416 (part). Scimenr, Handb. t. 303,-Dumam. Avbr. ed. 2, 80, t. 24.-Relchb. Ic. Fl. Germ. t. G39.-Hart. Forstl. t. 20, 25, fig. 56, 103.-Mér. et Det.. Dict. Mat. Méd. iii. 210.-Guib. Drog. Simpl. ed. 6, ii. 283.-A. DC. Prodr. xvi. scet. ii. 118. Gren. et Godr. Fl. de Fr. iii. 115.-Rosenth. op. cit. 188 (Fayurd, Fayau, Fau, Fan, Faou, Fonteru, Favinier).
 ${ }^{4}$ Ait. Ilort. Kew. iii. 362.-A. DC. Prodr. 118, п. 1.-F. sylvestris Miснх. Arbr. An. ii. 170, t. 8. -F. syleatica americana Loud. Encyd. fig. 1695.-F. Alba Rafin.-F. nigra Rame.
 ${ }^{5}$ Mird. Mém. Mres, xiv. 465, t. 23.-C. Gat, Fl. Chil. v. 388 (Roble, Pellin, Coyan, Iruallé). In the same country the wood of F. Dombeyi

[^309]: Mirb. (Coyhue, Coigne), is said to be used, of the bark of which boats are made, and in Australia the wood of F. Cuminghami Hoor. (Myrtle Tree).
 ${ }^{6}$ Almus glutinosa W. Spec. iv. 334.-Gerta Fruct. ii. t. 90.-Gren. et Godr. Fl. de Fr. iii. 149.-Reg. Prodr. xvi. sect. ii. 1S6.-Guib. op. cit. ii. 282.-Rosenth. op. cit. 182, 1105.-H. Bn. Dict. Encycl. Sc. Mréd. vii. 254.-A. barbata C. A. Mex. Emem. Pl. Caucas. 43.-A. oblongata W.-A. clliptica Reg. - A. niters C. Koch- - A. Morisiana Bert. - A. suaveolens Bert. - A. denticulata C. A. Mey.-Betula Alnus glutinosa I. Spcc. 1394 (Bergue, Tergne, Terne).

 7 W. Spec. iv. 336.-Michx. Arbr. iii. 321, t. 4, fig. 1.-A. DC. Prodr. n. 13.
 ${ }^{3} A$. incar a W. is astringent, tinctorial,-A. cordifolia Ten. (fig. 15S-164), rubra Bong. incana W. jorullensis K. have the same properties as our common Elder.
 ${ }^{9}$ Betula alba T. Spec. ii. 1393.-Gren. et Gonk. Fl. de Fr. iii. 147.--Teg. Prodr. 162, n. 1.-H. Bn, Dict. Encycl. Sc, Méd. х. 314.

[^310]: filberts, the striated Corford nut, \&c.
 8 W. Spec. iv. 470.-Docis. Obstl. iv. 38.A. DC. Prodr. 132, n. 5.
 ${ }^{9}$ L. Spec. 1417 (part),-Dochar. op. cit. iv. 52 - A. DC. Prodr. n. 4.-C. bizantina Clus. Hist. 11.-Avellana byzantina J. Baum. (N. of Constantinople).
 ${ }^{10}$ Walt. Fl. Carol. 236.-C. humilis W. Barmz. 10S.-C. americana humilis Wangenh. Arb. 88, t. 29, fig. 63.
 ${ }^{11}$ Att. Hort. Fiew, iii. 364.-A. DC. Prodr. 133, n. 7.
 ${ }^{12}$ C. mandschurica Maxin. exs.
 ${ }^{13}$ Carpinus Betulus L. Spec. 1416.-Duham. Arbr. (ed. 2), ii. t. 58.-Reichb; Ic. Fl. Germ. t. 632.-Hart. Forst. t. 21.-Gren. et Godr. Fl. de Fr. iii. 120.-A. DC. Prodi. 126, n. 1 (Charme blane, Charpre, Charpenhe). C. caroliniana Walt, has the same uses in America.

[^311]: ${ }^{8}$ L. Ifrntiss. 298.-Thunb. Fl. Cap. 153.C. DC. Prodi, n. 31,-M. serrata Lamk. M. arguta H. B. 下. of Columbia is used for dyeing.
 ${ }^{9}$ Wall. Tent. Fl. Nepal. 59, t. 45.
 10 L. Spec. 1453. - Duiam. Arbr. ed. 2, t. 57.-Reicub, Ic. Fl. Gcrm. t. 620.-Mér. et Del. Dict. Mrut, Méd. iv. 531.-Guir. op. cit. ii. 281.-Gren. et Godr. Flo de Fr. iii. 151.-C. DC. Prodr. 147.
 ${ }^{11}$ They are said to be used, with the bark of several Alders and Birches, in the preparation of IRussia leather (p.235).

 12 MF. Frtya Ait. (Faya fragifora Webr) has large fleshy fruit, caten in the Canary and Madeira isles.

[^312]: ${ }^{1}$ Combretun Leerl. Ic. 308.-L. Gen. n. 475. -Gertn. Fruct. i. 176, t. 36.-Lamk. Dict. i. 734 ; Suppl. ii. 229 ; Ill. t. 282.-DC. Prodr. iii. 18; Mém. Combret. t. 5.-Turp. Dict. Sc. Nat. Atl. t. 221.-Spach, Suit. à Buffon, iv. 30S.Endl. Gen. n. 60S7.-PATEr, Fam. Nat. 96.Hook. Fl. Ind. ii. 452.-Aetia AnAns. Fam. des Tl. ii. 84.-Forsgardia Velloz. Fl. Flum. 152; iv. t. 13.-Chrysostachys PoHL, Pl. Bras. ii. 65, t. 143.-Einbryogonia BL. Mrus. Lugd.-Bat. i.. 122.-Sheadendron Beutol. Ill. Piant. Mozamb. Mén. Acad. Bulogn. (1850) 12, t. 4.-K上. Pet. Moss. Bot. 74, t. 14.-CAR. Journ. Lim. Soc. iv. 167.-Calopyxis 'Iul. Ann. Sc. Nat. sér. 4, vi. S6.-Bureava H. BN. Adansomia, i. 71 (ex II. Alg. DC. Prodr. xv. p. ii. 1258.-Argyrodendion

[^313]: Kı. (Pet. Moss. Bot, 101) is, according to Moelleer n'Argovie (DC. Prodro xv. p. ii. 700), by one of its species (A. Petersii, Kl.) syn. with C'ombretum.
 a Commers. ex Dup.-Th. Obs. Plant. Aff. Austr. 28.-DC. Mém. t. 4; Prodr. iii. 17.Pevrca Commers, ex J. Gen. 230.-Gonocarpus Ham, Prodr. Fl. Ind. Occ. 39.
 ${ }^{3}$ Aurl. Guinn. i. 450 - J. Gen. 300.-Lamk. Ill. t. 359.-DC. Prodr. iii. 22 (part).-Spach, loc. cit. 3i5.-Endl. Gen. n. 6088.-13. H. Gen. 6S8.-Humbergera Scor. Introd. n. 276.-Hambergia Neck. Elcm. n. 830.-Schousbrea W. Spec. 578 (not Schum, et Thönv.).
 ${ }^{4}$ Often with 4-6 salient angles.

[^314]: 1 Often at first slightly iubricate.
 ${ }^{2}$ Especially in Calopyxis and Thilua.
 ${ }^{3}$ In the Combretece the pollen is generally ovoid with three or six folds, and in water spherical with three or six bands, each bearing one or several papillæ((H. Muhl. Ann. Sc. Nut. sér. 2, iiii. 332).

 + Their point of attachmont to tho partition

[^315]: appears, in adult age, to be quite apicular, but this is only an illusion.
 ${ }^{5}$ Their coat is double.
 ${ }^{6}$ It opens tardily in four pannels in Sheadenfion Bertol., in five in some other African species.

 7 They have been distinguished as a genus chicfly on account of their fruit, which is

[^316]: ${ }^{1}$ Eichl. Regensb. Flora (1866), n. 10 ; Mrart. Fl. Dras. Combret. 103, t. 27.
 ${ }^{2}$ H. B. Pl. Equin. t. 132 ; Adans, xi. 379.H. B. K. Nov. Gen. et Spec. vii. 138.-A. S. II.

[^317]: (Combretum).-Laws. Fl. Trop. Afr. ii. 419, 433 (Cacoucia)--Eichl. Mart. Fl. Bras. Combret. 106, 120 (C'acoucir), t. 27-32, 34.-But. Irg. t. 429, 1165, 1631.-Wale. Rep. ii. 65, 68 (Cacortcia) ; v. 662 ; Ann. i. 290 ; ii. 525 ; iv. 673.

 1 Those of Ciacoucua are very long.

[^318]: ${ }^{1}$ Nyssa Gronov. Virg. 162.-L. Gen. n. 1163. -J. Gen. 75.-Lamk. Ill. t. 851.-Poir. Dict. iv. 508 ; Suppl.iv. 115 .-Gertn, F. Fruet. iii. 201, t. 216.-Spach, Suit, à Buffor, x, 463.Endl. Gen. n, 2086.-Lindl. Ireg. Kiningd. 720.-

[^319]: A. DC. Frodr. xiv. 622.-H. Bn. Adansmia, v. 196.-B. H. Gen. 952, n. 11.-Tupelo Cate\&b. (ex Adans. Fam. des Pl. ii. 80),-Cymoxylon Pluk. (ex Adans. loc. cit.)

[^320]: 1 Now and then flowers occur with two carpels and an ovary with two cells complete or incomplete and uniovulate.
 ${ }^{2}$ With double envclope.

[^321]: ${ }^{3}$ Michx. Arbr. For. t. 18-22.-A. Gray, Man. ed. 5, 201.-Chapm. Fl. S. Unit. St. 168. For the real number of species to be retained see p. 279, n. 6 .

[^322]: 1 They are sometimes nearly marginal.
 2 It has a double envelope.

[^323]: ${ }^{1}$ Adansonia, v. 195.
 2 It is often the same in Rhytidandra (A. Grar, Unit. St. Expl. Exp. Bot. i. '303, t. 28 ;Pseudalangium F. Muell. Fragm. ii. 84).
 ${ }^{3}$ Rosb. Pl. Coromand. iii. 79, t. 283.-DC. Prodr. iv. 267 (note).-Exdl. Gen. n. 6097.H. Bn. Payer Fam. Nat. 341.-B. H. Gen. 149, n. 2.-Stylidium Lour. Pl. Cuchinch. (ed. 1790), 220 (not Sw.).-Stylis Porr. Dict. Suppl. v. 260. -I'rutsauvia J. Dict. Se. Nat. li. 158.

[^324]: (Marlea) ; Suppl. i. 341,-Benth. Fl. HongZ.
 138 ; Fl. Austral. iii., 386 (Marlea).-Tul. Ann. Sc. Nat. sér. 4, vi. 105.-H. Bn. Adansonia, x. 183 (Marlea).-Walp. Ann。 i. 974 (Marlea); iv. 819 (Rhytidandra).
 ${ }^{1}$ Gencrally whitish.
 ${ }^{2}$ Prodr. Fl. N.-Hol. i. 351 ; Flind. Voy. ii. 548 ; Misc. Works (ed. Benn.), i. 19.
 ${ }^{3}$ Gen. (1789) 74, Ord. 1.

[^325]: * Op. cit. 320.
 ${ }^{5}$ Prodr. iii. 203, Ord. 77.
 ${ }^{6}$ Veg. Kingd. (1846) 719, Ord. 275 (Almagiacce).

 7 Dict. Sc. Nat. xxxv. 267.-Endl. Ger. 328 (Gen. Santalaceis Afin.).
 ${ }^{8}$ Gen. 949, 952.
 ${ }^{9} \mathrm{H}, \mathrm{Bn}$, Ldansonio. V. 19 G.
 ${ }^{10}$ Adansonia, loc. cit. 198.

[^326]: ${ }^{1}$ Combretacece R. Br.-Terminaliaccee J. S. H. Exp. Fam. Nat. i. 178.-Myrobulanece J. Dict. Sc. Nat. xxxi. (1824) 458.-Terminaliece DC. Prodr. iii. 9. Lindley, and later Bentham and Hooker (Gen. 689) have joined to the family, as a sub-
 order, the Gyrocarpece and the Illigerece, described by us with the Lauraccee (Hist. of $P l$. ii. 484, 485.
 ${ }^{2}$ Except always in the g. Laguncularia, where the funicle is very short.

[^327]: ${ }^{1}$ See rage 210 .

[^328]: ${ }^{1}$ Or Myrobolans, Myrabilans, by corruption. Mér. and Del. Dict. Mat. Méd. iv. 539.-Guib. Drog. Simpl. ed. 6, iii. 2S2.-Rosenth. Synops. Plant. Diaphor. 901.

 2 See vol, v. p. 164, note 5.
 ${ }^{3}$ Divided into yellow oroid and angular, greenish and piriform, and brownish and roundovoid (Geib.).
 ${ }^{4}$ Roxb, Cat. Hort. Calc. 33.-DC. Prodr. iii. 12. n. 15. -M. citrina G.rints. Fruct. ii. 90, t. 97 .
 ${ }_{5}$ Retz. Obs. v. 31.-Ronb. Pl. Coromand. ii. 52, t. 197.-Livdl. Fl. Med. 67.-DC. Prodr. n. 14.-M. Chebusa Gertin. loc. cit. (Olivier des Nègres, at Martinique).
 ${ }^{6}$ Roxr. loc. cit. 54, t. 198.-DC. Irodr. n. 13. -M. Bellevica Breyn. Icon, 18, t. 4.-G.ertn. loc. cit.-Tani Rheed. Hort. Malab. iv. t. 10. The sources of the principal Myrobalans are indicated in this manner in standard works: but on this point there is much uncertainty. According to Mérat and Del. (luc. cit.) ci-

[^329]: trine, chebulic, as well as indian and black M. are the fruits of the same species, brought to different degrees of maturity. "Colebrook has traced the changes of M. chebula, and has seen that its fruit undergoes six, each of which has received a distinct name among the Indians." (Journ. de Bot. vi. 212.) Kquig has given to T. chebula the name of T. Mryrobalanus citrina. Gumourt, according to the authors cited, considers Indian M. as a green state of chebulic M.
 ${ }^{7}$ Guib. loc. cit. 287, fig. 652.
 ${ }^{3}$ Sw. Fl. Ird. Occ. ii. 747.-DC, Prodr. n. 11.
 ${ }^{9}$ L. Mantiss. 519.-Lamk. Ill. t. 848, fig. 1. -Jaca. Ic. Rar. i. t. 197.-DC. Prodr. n. 5.Rosentr. op. cit. 900.-Juglans Catappa Lour. Fl. coclinch. (ed. 1790), 573 (Bois canot, B. à huile).

 10 Roth Nov. Spec. 379.-Pentapterca alata Banks.-liosenth. op. cit. 902.
 ${ }^{11}$ Guill. and Perk. Fl. Sen. Tent. i. 276 , t. 63.-Laws, Fl. Trop. Afr. ii. 416 (Rebreb).

[^330]: ${ }^{1}$ Lamk. Dict. i. 349 ; Ill. t. 848, fig. 2.Catappe manritiana GaEnts. F.
 ${ }^{2}$ Jacr. ITurt. Findob. iii. t. 100.-T. Thenzmin L. F. Suppl.-C. Berzoin Gertn. F. (FarexBenjoin, Bien-joint).
 ${ }^{3}$ Bucida Buceras L. Spec. 556.-DC. Prodr. iii. 10.-Erchl. Mart. Fl. Bras. Combret. 91, t. 35 , fig. 1. This species, pierced by insects, also produces galls rich in tannin (Chêne français of the Antilles).
 ${ }^{4}$ Conacarpus erecta L. Syst. 217.-Descourt. Fl. Méd. Aut. vi. t. 399.-Eicirl. loc. cit. 101, t. 35, fig. 2 (Mnnglier flibustier, M. droit, M. noir).
 ${ }^{5}$ T. glabrata Forst. trorancorensis Wight, Pamcea DO. crenulata IRotir, (Rosentif, loc. cit. 900-902), etc.
 ${ }^{6}$ Sce P. 2s? , note 2.
 iii. 23.-Bot. Mag. t. 2033.-BMot. Recg. t. 492.Rosentil, op. cil. 003.

[^331]: ${ }^{3}$ Leamk. Dict. i. 731 ; Ill. t. 282, fig. 2.-C. purpureum Vail.-Bot. Reg. t. 429.-Loivrea cuccinea DC. Irodr. iii. 18, д. .
 ${ }^{9}$ Don. Edinb. Niw I'hil. Journ. (1824) 346.DC. Prodr. n. 24.-Latws. Fl. Trop. Afr. ii, 423. -C. Afaclii Don.-Puivrea grandiflora 1Benth. Niyer, 337.

 10 Pelr. Fl. Sin. Tent. i, 288, t. 6S.
 ${ }^{11}$ Cacoucia caccinera Aubl. Guian. t. 179.Eichl. Mart. Fl. Bras. Cumbet. 122, t. 32.Schousbara coccinea W.

 12 Mart. and Zucc. Nov. Gen. ct Spec. i. 43.Eichl. Mart. Fl. Bras. Combret. 86, 126, t. 23.
 ${ }^{13}$ Car. Journ.Linn. Suc. iv. 167.-Shcadendron butyrosum Bewtol. Mém. Acad. Bologn. (1850) 12, t. 4.
 ${ }^{4}$ Lamk. Dicl. i. 174.-A. acuminatum Wighr and Arn.- Iosentie, op. cit. 903.-Grevin salcifolia L. r. Sumpl. 409 (cx Vanc, ふymb. i. G1). -Angolam lineed. Uurt. Malab.iv. t. 17.

[^332]: ${ }^{1}$ Lamk. loc. cit.-DC. Prodr. iii, 203 (Namidou, Kara-Angolam).
 ${ }^{2}$ Walt. Fl. Carol. 253, n. 4.
 ${ }^{3}$ Micirx. Fll. Bor.-Amer. ii. 259.-N. aquatica L. ? (ex Michix.).
 ${ }^{4}$ L. Syst. (ed. 1780), iv. 358.
 5 Michix. op. cit. 258.
 6 Michx. ex Rosenth. op. cit. 239. According to A. Gray, there are in the northern United States only two species of $N_{y / s s a ;} N$. uniftora, comprising N. tomentosa, angulisans and grandidentata Michx. N. multiflora Wavg. and

[^333]: 357.-Porr. Dict. vi. 43 ; Suppl. iv. 640.-DC. Prodr: iii. 22.-Spacti, Suit, ì Buffon, iv. 316.-
 10.5 ; Fans. Nut. 96.-13. 11. Gch. 689, n. 12.Hook. Fi. Ind. ii. 459. - Sphatanthus Jack, Mal. Misc. ex Hook. Comp, to Bot. Mag. i. 155. Ende. Gch. n. 60s9.-1'Aver, Grgangy. 447, t.

[^334]: ${ }^{1}$ White or red, changeable.
 ${ }^{2}$ Spec. 3, 4, Rumpr. Iferb. Amboin. v. 71, t. 38.-Burm. Fl. Ind. t. 28, fig. 2.-P.-Beauv. Fl. Ow. et Ben. i. อ̄5, t. 34.-BL. Bijdr. 641.Roxb. Fl. Ind. ii. 426.-Presl. Epim. 216.Wight and Arn. Prodr. i. 318.-Wight, Ill. t. 92.-Hary, and Sond, Fl. Cap. ii. 5l2.-Laws. Oliv. Fl. Trop. Afr. ii. 435.-Hook. Bot. Mrag. t. 2033.-Bot. Reg. t. 492.-Walp. Rep. ii. 68 ; v. 663 ; \boldsymbol{A} nn. iii. 860.
 ${ }^{3}$ N. Schz. Ges. Nat. Fr. Berl. iv. 186.-DC. Predr. iii. 22.-Endl. Gen. n. 6084.-B. H. Gen. 687, n. 7.-Hook. Fl. Ind. ii. 451.-P Pyrranthues Jack, Mal. Misc. ex Hoô, Comp, i. 156.-Peta= lome Roxp. Fl. Ind. ii. 372 (not Sw.),-Funtia Dennst. Hort. Malab. vi. 37 (ex Lindl.).

[^335]: ${ }^{4}$ Anthers in younger bud and at anthesis introrse. Filaments in bud incurvo-conduplicate.
 ${ }^{5}$ Dissepimerts in earliest stage distinet moro or less prominent.
 ${ }^{6}$ Often sterile; fruit hence vacant.
 7 White coccineus or (?) yellow.
 s Spec. 4,5, Wight and Arn. Prodr.ji. 316.Presl. Rel. Hent. ii. 25.-Gaudich. Freycin. Foy. Bot.t. 104, 103 (Laguncularia).-Bestif. Fl. Austral. ii. 503.-Laws. Fl. Trop. Afr. ii. 418.-Walp. Rep. 63 ; Anu. i. 289 ; iv. 672.
 ${ }^{9}$ Fruct. iii. 209, t. 217.-DC. Prodi. iii. 17.-Spacr, Suit. à Buffon, iv, 304.-Endl. Gen. r. 6083.-B. H. Gen. 688, n. 9.-Sphenocarpers I. C. Iitch. Anal. Fruit. 92--Horaz Adans. Fam. des Inl. ii. 80.

[^336]: 1 small.
 ${ }^{1}$ Spec. 1, L. racemosa Gertn. f.-DC. Prodr. ii. 17.-Eichl. Mart. Fl. Bras. Combret. 102, t. 35, fig. 3.-Laws. Fl. Trop, Afr. ii. 419.Walp. Rep. ii, 63.-H, B. Adans. xi. 378.-L. glabrifolia PresL. Rel. Henk. ii. 22,-Conocropus raccmosa L. Spec. 251.-JACQ. Amer. 80, t. $53 .-$ Sw. Obs. 79.-Schousboea commutata Spheng. Syst. ii. 332.-Bucida Buceras Velloz. Fl. Flum. 172 ; iv. t. 87 (not L.).
 ${ }^{3}$ F'ragm. iii. 91, 151.-1B. H. Gen. 687, n. 8.
 *Spec. 3, F. Muell. Fragm. ii. 149 (Lemnit. zera).-Benth. Fl. Austral. ii. 504.
 ${ }^{5}$ Ex J. Gen. 320.-Lamk. Ill. t. 360.-Poir. Dict. Suppl. ii. 861.-DC. Prodr. iii. 17.Spach, Suit. à Buffur, iv. 305.-Endl. Gen. n. 6085.-B. Н. Gen. 687, п. 6.
 ${ }^{6}$ Long siliquiform.
 7 Minute, black-spotted.
 ${ }^{8}$ Spec. $1, G$. senegalensis Lamk.-Guillem. et I'err. Fl. Sen. Tent. i. 282, t. 66, fig. 2.Laws. Fl. Trop. Afr. ii. 418 (nat. Guierr).

[^337]: ${ }^{1}$ Ill.t. 357.-Porr. Dict. SuppI, ii. 41.-B. E. Gen. 686, n. 2.-Getonia Roxb. Pl. Coromand. i. 61, t. 87 ; Fl. Ind. ii. 428.-Gжertn. F. Fruct. iii. 210, t. 217.-DC. Prodr. iii. 15.-Endl. Gen. n. 6078 .
 ${ }^{2}$ On account of its opposite leaves, inflorence and accrescent calyx very like some $T e r$ benacea and Malpighiacere; but the flower is quite that of Guiera and allied genera.
 ${ }^{3}$ Spec. 1, 2. Wight and Arn. Frodr. i. 315 (Getonia).

 4 Mantiss. n. 1283.-J. Gien. 76.-Lank. Dict. i. 348 ; Suppl. i. 5507 ; Ill. t. 848.-DC. Prodr. iii. 10.--Spach, Suit. à Buffon, iv. 298.-Endl. Gen. n. 6076.-Parer, Fam. Nat, 97.-Hook. Fll. Ind. ii. 443.-BAKER, Fl. Maurit. 111.-B.H. Gen. 685, 1006, n. 1 (incl.: Anogeissus Wall. Badamia (${ }^{\text {dertn. Buchenaria Eichl. Bucida L. }}$ C'atappa Gerten, Chicarronia A. Iitcr. (\%) Chuncoa P'av. Cunscarpus Geertn. Myrobalanus Gevrtn.

[^338]: ${ }^{1}$ (i,mits. Fuct. ii. 206; t. 12: ; iii. 207, t. 217.-Adamaram Rheede, ex Apans. Fam. des Pl. ii. 445.-Tanibouca Aubl. Guian. 448, t. 178.
 ${ }^{2}$ Fruit in Conocarpus and others imbricate in a dense cone.
 ${ }^{3}$ Gertn. Fruct. ii. 470, t. 177 ; iii. 205, t. 216.-Lamk. Dict. ii. 96 ; Iil. t. 126.-DC. Proutr. iii. 16 (part).-Spach, Suit. à Bueffon, iv. 303.-Endl. Gen. n. 6081.-B. H. Gen. 686, n. 3. -Rudbeckia Adans. Fam. des Pl.ii. S 0 (not Lo).

 + Pav, ex J. Gen. 76.-I'oir. Dict. Suppl. ii. 258.-Evid. Ger. n. 6079.-Gimbernatia R. et Par. Irodr. 138, t. 36...? Chicarronit A. Ricu. Fl. Cub. 529, t. 43.- T'icentia Allem. Diss. de Vicentia acuminata Rio Janciro (1844), Walp. Aun. iii. 934.-Eichl. Mart. Fl. Bras. Combret. 92, t. 33, fig. 15 (fl. 4-merous).
 ${ }^{\circ}$ Roxr. Fl. Iıd. ii. 437.-Ende. Gen. n. 6077.
 ${ }^{6}$ Small or moderate-sized, grecnish, whitish

[^339]: or man ravely ral, pale violet or purplish, sometimes scented.

 7 Spec. 100. Jaca. St. Am. t. 52 (Conocarmus). - Wighir and Arn. Prodj. i. 312.-Wight, Ill. t. 91 ; Icon, t. 172.-A. S. IH. Fl. Bras, Mer. ii. 239, t. 128.-Guillem, et Pertr. F\%. Ser. Tent. i. 276, t. 63, 64; 278 (Conocarpus), 279, t. 65 (Anogeissus).-Tui. Anr. Sc. Nate. sér. 4, vi. 90. -Grisebs. Fl. Brit. W.-Ind. 276.-Harv. and Sond. Fl. Cap. ii. 50S.-Benth. Fl. Austral. ii. 496.-Thw, Enum. I', Zenl. 103.-Eichl. Mrart. Fl. Bras. Combret. 81, t. 23, 24, 33, 34; 94, t. 35, i. (Bucida) ; 95, t. 25 (Buchcnaria) ; 99, t. 35 ii. (Ramatuella) ; 100, t. 35, ii. (Conocarpus).Latws. Fl. Trop. Afr. ii. 415, 417 (Conocarpus, Anogeissuss).-Bot. Mag. t. 3004.-Walp. Rep. ii. G0, 63 (Anogisssus) ; Ann. j. 289 ; ii. 524 ; iv. 672.-Croton Benzoc L. Mantiss. 297 (DC. Prodr: iii. 11).

[^340]: ${ }^{1}$ Bull. Suc. Bot. de Fr. xx. 157.
 ${ }^{3}$ Spec. 1. C. acuminata Dcre. loc. cit.
 " PPollen 3-gonal like that of Onagrarice." \ddagger Adansonia, x. 114.

[^341]: ${ }^{1}$ The younger sericcous beneath or on both ${ }^{2}$ Spuc. 1. D. involucrata M. Bn. luc. cit. sides.

[^342]: ${ }^{1}$ L. Gen. n. 592 (part).-J. Gen. 213, 453.Lami. Dict. vi. 160; Ill. t. 306.-Dup.-Tit. Desvx. Journ. Bot. ii. 31, t. 4.-DC. Prodr., iii. 32 (part).-Spach, Suit. à Buffon, iv. 332.-

 Endl. Gen. n. 6098.-H. Bn. Payer Fam. Nat. 360.-B. H. Gen. 678, n. 1.-Ноок. Fl . Ind. ii. 435.-Mangle Plukn. ex Adans. Fam. des $P l$. ii. 445.

[^343]: 1 It not unfrequently happens that at adult age no stamen is seen in front of the sepals, but that within each petal are two, one of which is smaller than the other and may remain sterile. This arises, as we have shown (Bull. Soc. Liun. Par. 58), from the stamen primarily superposed to the sepal having, by a later displacement, located itself with the oppositipetalous stamen, which it has slightly displaced, within the petal to which this latter corresponded. 'There are sometimes, it is said, 12-androus flowers in this genus.
 ${ }^{2}$ Griprith, who made a study of these plants (On the Fitm. of Rhizophorece, ex Tians. of Med. and Phys. Soc. Galc.; Ahu. Sc. Nat. sér. 2, x. 117 ; Ico.2. iv. t. 640), has confirmed and ex-

[^344]: tonded the rescarches of JACQuin (St. Amer, 142) and of R . Blown, who, in his mem. on the Raflesia (Trens. Linn. Suc, xiii. p. i. 214 ; Misc. Works [ed. Benn.], i. 369), bas established that the membrane of the anther cells is detached at a certain moment to set the pollen at liberty. The lines of dehiscence are but faintly marked on the sides of the anthers and may extend to only a portion of their height. Below the partition extend numerous large cavities, nearly spherical, containing the grains of pollen which are exposed when the superficial membrane is detached, which is sometimes effected in a tolerably regular manner. These anthers have often lieen described as "multilocellate."
 ${ }^{3}$ Their thick coat is double.

[^345]: ${ }^{1}$ White, coriaceous.
 ${ }_{2}$ Wigite and Ara. Prudi. i. 310.-Ains. Ann. Nat. Ifist. i. 361.-W1GHT, Icon. t. 238.- Harrv. and Sond, Fl. Cup, i. 513,-Oliv, Fl. Trop. Afr. ii. 407.-'Uu, Amı. Se. Nitt. Sér. 4, vi. 108.-

[^346]: ${ }^{1}$ But this is only in appearance, these two stamens belonging to two different verticils and being rarely nearly equal. Oftener one is smaller than the other which primarily corresponded to a sepal but has become displaced as in certain Rhizophora (see p. 289 , note 1) and especially in Bruguiera.

 2 Dup.-TH. Gen. Tov. Mradag. (1806) 24.-DC. Pradr. i. 732.-Diatoma Louk. Fl. Cochinch. (ed. 1790) 295 (nec alior.) - Demidofia Dennst. Hort.

[^347]: 1 The latter is generally a littlo smaller than the oppositipetalons stamen.
 ${ }_{2}$ They have a double coat.
 ${ }^{3}$ As also of the stamens and style.

[^348]: ${ }^{1}$ Wraht, Ill. i.t. 90 ; Teun。 t. 604, 605 (Ca- —Walp. Rep. ii. 71; An!. vii. 951 (Carallia). rallia).-Akv. Ann. Nat. Hist. i. 370 (Carallia). -Tıw. Euum. Pl. Zeyl. 120 (Carallia) -Tuc. Aun. S'c. Jat. Sér. 4, vi. 116 (Carallia)-Dentu. Fl. Mongl. 110 ; Fl. Austral. ii. 495 (Carallia). -Miq. Fl. Ind.-Bal. i. p. i. 593 ; Suppl. 126,

 - Small, greenish or whitish, accompaniod by two lateral bracteoles.
 ${ }^{3}$ Irist. T'ég. Ist. $1 f$ fi. 49, t. 14.-Endl. Gul. n. 6590 (Macharisin).-II. Bs. Adansonia, iii. 15,19, t. 2.-D. II. Gi». 216, 682, n. I2.

[^349]: 1 Imbricate between them.
 ${ }^{2}$ Somewhat incomplete above the ovules.

[^350]: ${ }^{3}$ II. Br. loc. cit. 20, - Walp. Aun. vii. 9.52.

[^351]: ${ }^{1}$ The Hamamelidca, Cunoniec, etc. -H. Bn. Payer Fam. Nat. 361.-Oliv. Tians.
 2 Anisophyllea R. Br. Trans. Hort. Soc. v. 446 . Linn. Soc. xxiii, 460.-B. H. Gen. 683, n. 16.-

[^352]: Avisophyilum Don, ex Hook. Niger Fl. 342, 575 (not Haw.),-Bexty. Jouriz. Limu. Suc. iii. 72.

 Gardn. et Chams. Mook. Hew Journ. i. 314.Huok. F\%. Ind. ii. 411.

[^353]: ${ }^{1}$ In Combretocarpus Motleyi Hook. F. (Gen. 683, n. 17), a small tree of Borneo, these ribs are more prominent and developed into three or four rertical wings, at the same time the staminal filaments are narrower than in Ausophyblea from which Combretocarpus is not perhaps generically distinct.
 ${ }^{2}$ Jaik, Mal. Mi.c. ; Calc. Journ. iv. 336 (Haloragis)-Mrя. Fl. Ind.-Bat. i. p. i. 896 (Anisoplhyllum).-'Hw, Hook. Journ.v. 378, t. 5

[^354]: (Tetracrypta) ; Einum. Fl. Zeyl. 119.-Oliv. Fl. Trop. Afr. ii. 412.-II. Bn. Adansonia, xi. 310. -Walp. Amr. ii. 530 (Anisophyllum).
 ${ }^{3}$ Flind. Voy. ii. 549 ; Congo, 437.
 ${ }^{4}$ Already in 1796 , Savigny (Lamk. Dict. iv. 696) had formed a distinct family under the name of Palétuviers.

 5 Feg. Iirugl. 604.
 ${ }^{6}$ Gen. 1186 (Legnotidea).

[^355]: ${ }^{1}$ Op, cit. 1184 , Ord. 263.-DC. Prodr. iii. 31. -Rhizophoracice Lindl. op. cit. 726, Ord. 279.
 : Synopsis of Legnotiduce, a trive of Rhizuplooracice (Juur, Limn. Soc. iii. 65).
 ${ }^{3}$ Anm. Nat. Ilist. i. 359.
 4. Adansonia, iii. 15.
 ${ }^{5}$ 1’L. ex B. H1. Gen. 246.
 ${ }^{6}$ Notably C. mailtiflora, Ad. Br. et Gre. a new Caledonian species.

 - Legnotiduce Ibartl. Ord. Nat.-Endl. Gen. 1186.-C'assipourect Meisss. Gen. 119.-Lindl. F゙cg. Kïngd. (1846) 604. -J. G. Ag. Thcor. S'yst. Plant. 246.

[^356]: ${ }^{1}$ Linnley places, I know not why, the Cassipourece beside the Loganiacect.

 E Ennl. Euchurid. 634.-Lindl. I'eg. Ïingd. (1816) 727.-Rusenta. Syn. Pl. Diaphor. 904, 1157.

[^357]: ${ }^{3}$ L. Spec. 634.-JAcQ. Amer. 141, t. 89.Catesm. Carol. ii. t. 53.-DC. P'odr. iii. 32, n. 1 (Manglier noir, Ialetuvier noir). Its fruit is vulgarly called Mange or Mangle.

[^358]: ${ }^{1}$ Gutb, Drog. Simpl. éd. 6, iii. 431.
 2 Vulg. Horse-flesh.
 ${ }^{2}$ Lamk. Dict. vi. 169 ; Ill. t. 396, fig. 2.-Il. calidelaria Wight and Arn. Prodr. i. 310 (not DC.). - Mlangium candelarium Rumpe, Herb. Amboin. iii. 108. t. 71, 72 (ex Br.). The seeds of this species and of some others are not unfrequently used as a masticatory instead of catechu powder, and for this purpose are mixed with betel. In India and the Moluccas cords are rubbed with Mangrove leaves to render them more durable.
 ${ }^{4}$ Layk. Ill.t. 397.-R. gymnorhi=a L. Spec. 634.-DC. Prodr. n, 10 (Palétuvier des Indes).

[^359]: ${ }^{5}$ See p. 303, note 8. Its bark is febrifuge. Fishermen apply it as a remedy for the bite of certain fishes and other venomous animals. Its fruit is edible, and its wood is used for boatmaking.
 ${ }^{6}$ Carallia integerrima DC. Prodr. iii. 33.-C. zeylanica Arn. Am, Nat, Hist. i. 371.-C. corymbosa Arv. loc. cit.-C. sinensis Arn. loc. cit. -C. timorensis Bl.-C. actopetala E. Muell.Pootia coreopsifolia Miq.
 $\overline{\mathrm{K}}$. Br. Trans. Hort. Soc. ₹. 446.—Oliv, Fl. Trop. Afr. ii. 413.- Anisophyllum laurinum Dos.-Berth. Niger, 342 (Monkey Apple).

[^360]: ${ }^{1}$ Ann. Nat. Hist. i. 363.- Endt. Gen. n. 6099. -H. Bn. Adansonia iii. 33.-B. H. Gen. 679, n. 2.-HIook. Fl. Ind. ii. 436.
 : Generally much smaller.

[^361]: ${ }^{3}$ Emarginate; lobes setulose clavate appendiculate.
 ${ }^{4}$ Petals finally 2 -nately opposite (for the reason of which see Bull. Soc. Linn. P'ar. 58).

[^362]: ${ }^{1}$ Spec．1，2．Tight，Icon．t．240．－Mre．F\％． Ind．－Bat．i．p．i． 590 ；Suppl．126，324．－Benth． Fl．Hongk．120；Fl．Austral．ii．493．－Тuw． Enum．PV．Zeyl．120．－Tcu．Ann．Sc．Nat．sér． 4，si．111．－OErv．Fl．Trop．Afr．ii．408．－WALP． Rep．ii． 70 ：Ann．ii． 527 ；vii． 950.
 ＝Diet．iv． 696 ；Ill．t．397．－Exdl．Gen．n． 6101．－H．Bn．Payer Fam．Nat．3（0．－B．H． Gch．679，n．4．－Hook．Fl．Ind．ii．437．－Kanzilia Br．Mus．Lugd．－Bat．i．140，－Pulêtuveria Dur．－ Th．（ex Exnl ）．
 ${ }^{3}$ The alternipetalous stamen generally shorter and in adult flowers only interior to petal．
 ＋Rather large or small，articulate．
 ${ }^{5}$ Spec．5，6．Gexrix．Fruct．i．213，t． 45 ，fig 22 （13hizophora）．－DC．Prodr．iii．32，n．9， 10 （Rhisophora）．－Gmff．Ic．ir．t．641．－Hook．Ic．

[^363]: Nat．Hist．i．36̄̄．－Mrıa．Fl．Ind．－Bat．i．p．i． j̄sā ；Suppl．126，324．－TuL．Aun．Se．Nat．sér． 4，wi．113．－Benth．Fl．Austral．ii．494．－Hanv． and Sosm．Fl．Cap．ii．514．－Thw，Enum，1\％． Zeyl．120．－Oliv．Fl．Trop．Afr：ii．409．－Walp． Rep．ii． 70 ；Ann．ii． 528 ；vii． 951.
 ${ }^{6}$ Irodr．i．310－－Arv．Ann．Nat．Hist．i．365． －Endl．Gon．n．6100．－H．Bs．Payer Fum．Nat． 361．－B．H．Gen．679，n．3．－Hook．Fl．Ind．ii． 237.

 7 Petals multifid－lacerate，white，rather large．
 ${ }^{3}$ Spec．1．İ．Rheedio Wight and Are，op，cit． 311．－Wigat，Ill．i．t．89．－Benth．Fl．HongF． 110．－Mie．Fl．Ind．－Bat．i．p．i． $58{ }^{2} .-$ Ноок． Icon．t．362．－Rhizophora Fandel L．Spec．634．－ DC．Prodr．jii．32．－Tyjerou Kandel Rheed． Hort．IValab．vi．t． 35.

[^364]: ${ }^{1}$ Char. Gch. 87, t. 44.-J. Gen. 432.-I AMm. Dict. ii. 193.-DC. Prodr. iii. 296.-Endu. Gen. n. 6336.-Benth. Journ. Liun. Soc. iii. 77.-H. Bn. Allansonia, iii. 31, 40 ; Payer Fam, Arat. 361. -B. H. Gen. 681, n. 10.-Tumostyles Montnous. Mém. Acad. Lyon. x. 201.
 ${ }^{2}$ A. Gray, Urit. St. Expl. Exp. Bot. i. 608, t. 76; Selu. Bompl. (1862) 36.-Веттн. Jоини. Lim. Soc. iii. 76.-H. BN. Adansonia, iii. 29.

 3 Of which 4, 5, larger, oppositipetalous; the rest from the midule of the petal to the margin smaller ; the smallest often oppositipetalous.

 + Often regarded as staminodes.
 - Bearing rudiments of septa generally little

[^365]: ${ }^{1}$ The upper younger.
 ${ }^{2}$ Small, "greenish yellow," articulate.
 ${ }^{3}$ Spec. 2. Wall. Cat. n. 433 S (Microtropis).

 - Mie. Fl. Ind.-Bat. i. p. i. 592 ; Suppl. 1-6, $326 ; 1 \mathrm{mn}$. Mus. Lugd.-Bat. ii. 67.-Walp. Ann. vii. 951.
 ${ }^{4}$ Ned. Tijdschr. iii. 20, t. 2.-Grerf. Notul. iv. 429, t. 486.-Bexth. Journ. Linn. Soc. iii.

 VOL. VI.

[^366]: 75.-H. Bv. Adansonia, iii. 31.-B. H. Gen. 680, n. 6,-Ноок. Fl. Ind. ii. 440.
 ${ }^{5}$ Sect. Eupellacalyx.
 ${ }^{6}$ Hook. f. Gen. 681, n. 8.
 7 Embryo elongate, greenish.
 ${ }^{8}$ Spec. 2. Mia. Fl. Ind.-Bat. Suppl. 126, 325; Am, Mus. Lugd.-Bat. ii. 67.-Walp. Ann. vii. 251.

[^367]: ${ }^{1}$ Guian. i. 529, t. 211.-J. Gen. 432.-Lamk. Dict. i. 653.-DC. Prodr. iii. 33.-Endl. Gen- I. G104.-BENTH. Jourh. Limr. Soc. iii. 79.-H. Bn. Adansonia, iii. 25, 38 ; Payer Fam. Nat. 362.B. H. Gen. 682, n. I5.-Tita Scop. Jntrod. n. 967.-Legnotis Sw. Prodr. 84 ; Fl. Ind. Occ. 968, t. 17 .
 ${ }^{2}$ Exterior to cupular disk.
 ${ }^{3}$ Obturator rather thick above micropyle.

 - Lobes laterally produced to aril.
 ${ }^{5}$ Sometimes coloured.
 ${ }^{6}$ Small or rather large, white.
 7 Spec. 2, 3. Porr. Dict. Suppl. ii. 131.Hook. Icon. t. 280.-Griseb, Fl. Brit. W.-Ind. 274.

[^368]: ${ }^{3}$ Journ. Limn. Soc. iii. 79.-H. Bn. Adansonia, iii. 21, 35.-B. H. Gen. 682, п. 14 .
 ${ }^{9}$ Lobes of disk oftenor in pairs interior to smaller stamens ; or filaments sometimes at basc continuous with margins of disk.
 ${ }^{11}$ Style sometimes tubular, thicker at apex.
 ${ }^{11}$ Whitish.
 ${ }^{12}$ Spec. about 3. Tul. Ann. Sc. Nat. sér. 4, vi. 123, n. 6 (Cassipourea).-Oliv. Fl. Trop. Afr. ii. 411.-H. Bn. Aulans. xi. 374.
 ${ }^{13}$ Cat. n. 6320.-Bentir. Journ. Linn. Soc. iii. 78.-B. H. Gen. 684, n. 13.-Hook. Fl. Ind. ï. 441.
 ${ }^{14}$ Spec. 1. B. corymbosum, Wail.-Dryptopetalum membranaccum, Mıq. exs. Hohen. n. 713.

[^369]: ${ }^{1}$ Syst. ii. [1825] 559.-H. BN. Adansonia, iii. 27, 38.-B. H. Gen. 681, n. 11.-Ноок. Fl. Ind. ii. 440.-Richreic Dup.-Th. Gen. Nov. Mad. 25. -Anstrutheria Gardn. Calc. Journ. Nat. Hist. vi. 344, t. 4.-Benti. Journ. Linn. Soc. iii. 70, 78.
 ${ }^{2}$ Micropyle densely closed.
 Fleshy; valves thick 3, 4.
 ${ }^{4}$ Arillate; radicle of often coloured (green-
 ish) embryo superior, subcapitate at apex.

[^370]: ${ }^{5}$ Flowers (where known) white.
 ${ }^{6}$ A genus very likely, together with Dactylostcmon, better referred to a section of Cassipourea (?).

 7 Spec. about 9. DC, Prodr. iii. 34 (Cussipoz-rea).-Benth. Niger, 341 (Cassipourea).-Tul. Aun. Sc. Nat. sér. 4, vi. 119, n. 1-5, 7 (Cassipu-reat.-T'ırw, Eunon. Pl, Zeyl. 121 (Anstrutheria). -Olit. Fl. Trop, Afr, ii, 410.-Walp, Amm, ii. 173 (Anstrutheria) ; vii. 952 (Cassipourea).

[^371]: 1 Mryrtus T. Inst. 640, t. 409.-L. Gien. n. 617 (part),-Adans. Fam. des Pl. ii. 88.-J. Gen. 324.-Lamk. Ill. t. 419.-Poir. Diet. iv. 404 ; Suppl. iv. 49.-LC. Prodr. iii, 238 (past). -

 Spach, Suit. à Buffon, ir. 157.-Endl. Gen. n. 6316 (part).-Payer, Organog. 459, t. 98.-H. Bn. Payer Fam. Nat. 363.-Berg, Linnaa xxvii. 397 ; xxix. 253 ; xxx. 710.-B. H. Gcn. 714, п.

[^372]: ${ }^{1}$ Berg, Linnca, xxvii. 378.-B. H. Gen. 713, n. 47.
 ${ }^{2}$ A. Gray, Unit. St. Expl. Exped. Bot. 1. 535, t. 66.- AIyrcergenia Bera, Linncea, xxvii. 131; xxx. 669 .
 ${ }^{3}$ White or pink.
 ${ }^{4}$ As happeas in Pseudocaryophyllus (Bera, Linnca, xxvii. 415 ; xxix. 256).
 ${ }_{5}$ Sect. 4 (B. H.): 1. Ugni (Tuncz.), flowers solitary oftener 4 -merous;-2. Eumyrtus (Myrtus Bera), flowers 1-3-nis, oftener 5 -merous; 3. Leandria (A. Gray);-4. Luma (A. Gray), flowers 1-7-nis, oftener 4-merous; cotyledons flat or sometimes contortuplicate.

[^373]: ${ }^{6}$ Donble have been admitted.
 7 H., B. K. Nov. Gen. et Spec. vi. 129, t. 359. -Sibтh, Fl. Grac. t. 475.-A. S. H. Fl. Bras. Dler. ii. 292, t. 140, 141.-MIQ. Fl. Ind.-Bat. i. p. i. 476.-Berg, Mart. Fl. Bras. Mryrt. 210, t. 25 (Myrceugenia) ; 351, t. 32 (Myrcianthes); 411, t. 13 (Calycolpus) ; 413, t. 44, 45; 420, t. 46 (Blepharocalyx) ; 429, t. 47 A (Pseudocaryophyl-lus).-Tirw. Enum. Pl. Zeyl. 114.-Bentit. Fl. Austral. iii. 273.-Hook. F. Handl. N.-Zeal. Fl. 73.-Br. et Gr. Am. Sc. Nat. sér. 5, iii. 212.Griser. Fl. Brit. W.-Ind. 237.-Gren. et Godr. Fl. de Fr. i. 602.-WALp. Anv. iv. 832.

[^374]: ${ }^{1}$ Here probably ought to be placed two Occanic species which would be to Eugenia what Calyptranthes is to Mrytus, that is its caly x is detached in one piece at its base like a hood. One which has received the name of

[^375]: -Endl. Gen. n. 6309.-H. Bn. Payer Fam. Nat. 367.-B. H. Gen. 703, n. 18.-Pabricia Gerriv. Fruct. i. 175, t. 35.-Endl. Gen. n. 6310.Hook. Fl. Ind. ii. 464.-Pericalyma Endl. Gen. n. 6307.-Schaver, Pl. Preiss, i. 120.-Homalospermum Sciesu. Linnca, xvii, 242.-Glaphyria JAck, Trans. Lim, Soc. xiv. 128.-Macklotlia Korth, Ned. Kruidk. Arch. i, 196.
 ${ }^{2}$ Myrtacer-xerocarpero (Sciauer).

[^376]: ${ }^{1}$ The gynxcium is not unfrequently aborted.
 ${ }^{2}$ A character which soon disappears.
 ${ }^{3}$ Its base is often swollen and articulate as it were to the margin of the disk.

 * With 30 or 35 stamens, for example, there are often 4, 5, before each sepal and 1-3 before each petal. With 15 , there will be frequently 2 facing each petal. The connective often
 bears near its summit a dorsal gland found in many of the neighbouring genera.
 ${ }^{5}$ It may bear glandular processes.
 ${ }^{6}$ Ordinarily 3 in the sect. Pericalymna.
 7 To 10 in Fabricia.
 ${ }^{8}$ On the small value of these variations, see Tull. Soc. Lim. Par. 56.
 ${ }^{9}$ The ovular coat is double.

[^377]: ${ }^{1}$ Cav. Icon. t. 330.-Vent. Malmais. t. 88,89. 3419.
 -Sm, Trans. Limn. Soc. iii. 260.-Hook. Icon.t. ${ }^{2}$ Small white or slightly pink.
 308, $893 .-\mathrm{I}$ оок. F. Fl. Tasm. t. 30.-Benti. F7. Austral. iii. 100.-Bot. Maq. 1810, 2695,

 3 Themselves formed of glomerules, so that the inflorescence is mixed.

[^378]: ${ }^{1}$ Desf. Mrém. Mus. v. 39, t. 3, fig. B.-DC. Prodr. iii. 209.-Spach, Suit. à Buffón, iv. 110. Endl. Ann. Wien. Mus. ii. 192; Gen. n. 6280. -Schaver, Myrt. Xeroc. t. 4 A.-II. Bn. Fayer Fam. Nat. 368.--B. H. Gen. 698, п. 6.-Decalophium Turcz. Bull. Mose. (1847), i. 1 है3.
 ${ }^{2}$ The gynæcium may be sterile.
 3 They have been described in this genus, as in most of those in this group, as inserted on

[^379]: 1 It would, in this case, be the anterior.
 2 Schaud. Pl. Preiss, i. 97.-F. Myell. Fragm. iv. 62.-Turcz. Bull. Mosc. (1849) ii. 17 (Gone-

[^380]: tyllis). - Meissn. Juurn. Linn. Soc. i. 44.Bemte. Fl. Austial. iii. 35.-Walp. Rep. ii. 154; ท. 729.

[^381]: ${ }^{1}$ Forst. Char. Gen. 75, t. 28.-Gertn. Fruct. ii. 96, t. 101.-DC. Pradr. iii. 28s.-Spach, Suit. à Buffon, iv. 185.-Endi. Gcn. n. 6325.-H. Bn. Payer Fam. Nat. 368.-B. H. Gen. 720, 1006, n. 61.-Baiek, Fl. Maurit. 119.-Hook, Fl. Ind. ii. 506.-Butonica J. Gen. 326.-Lamk. Dict. i. 521; Ill. t. 590.-Commersona Sonner. Voy. t. 8, 9.-Metraric Gmel. Syst. 799 (ex Endi.).-

[^382]: Muttam Adans. Fam. des Pl. ii. 88.-Stravadium J. Gcr. 326.-DC. Prodr. iii. 289.-Bl. V. Moutto Fl. Serr. vii. 24.-Meteorus Loun. Fl. Cochinch. (ed. 1790) 410. - Stravadia Pers. Symops. ii. 30.- Merichea Sonver. Joy. 138, t. 92,93 (ex Endl.).-Botiyoropis Presl, Epimel. 220.
 ${ }^{2}$ Sometimes, however, they are sterile.

[^383]: ${ }^{1}$ They have a double envelope, and their exostome gives passage to a long cylindrical process.
 ${ }^{2}$ On the structure of the seeds, see THoms. Jown. Linn. Soc. ii. 47. The embryo, theshy at the centre, is at the periphery cortical ligneous.
 ${ }^{3}$ White, pink or red.
 ${ }^{4}$ Bl. Dijul. 109G-Wirgit and Arn, Prodi. i. 333.-Gaunicir. Fog. Freycin. Bot. 483, t. 107.

[^384]: -Bl. loc. cit. 23, t. 654.-Wiant and Arn. Prodr. i. 333.-Wigut, Icon. t. 152, 547.-A. Gray, Unit. St. Expl. Expp. Bot. i. 508.-Benth. Fl. Austral. iii. 287.-OLiv, Fl. Trop, Afr. ii. 438.-Thw. Enum. Pl. Zeyl. 119.-Harv, and Sowd. Fl. Cap. ii. 523.-Mre, Fl. Ind,-Bat. i. p. i. 48 .-Walp. Rep. ii. 192 ; v. 156 ; Ann. ii. 6t1; iv. 850.-Hook. F\%. Ind. ii. 580 .

[^385]: ${ }^{1}$ With doubt we place here the two genera Fotidia and Someratia, recently referred by Bentham and Hooker (Gen. 724, 784), the one to anomalous Myrtacee, the other to Lithrariece. Fectidia, native of the eastern isles of tropical Africa, has 3-5-merous apetalous flowers, with numerous stamens inserted above an inferior ovary, with alternisepalous cells. In the internal angle of the latter is found a pluxiovulate placenta. The fruit is dry and woody, and the leaves are alternatewithout stipules. Someratia, with opposite entire coriaceous and exstipulate

[^386]: leaves, has the habit of the Rhizophorcce. The tlowers, 3-8-merous, have a convex receptacle, with an ovary adnate only in its lower part. The cells are numerous and multiovulate. There is also a very large number of stamens, and the sepals are valvate coriaccous persistent. The corolla is wanting or reduced to long narrow tongues. The fruit is in great part free, finally coriaceous, indehiscont and polyspermous. These maritime plants are found on nearly all the tropical shores of the old world.

[^387]: ${ }^{1}$ Pal.-Beauy. Fl. Owar. ii. 29, t. 78.-Turp. Dict. Sc. Nat. Atl. t. 66.-Spach, Suit. à Buffon, ix. 427.-A. Juss. Ann. Sc. Nat. sér. 3, ii. 227, t. 4.-Endl. Ger. n. 4263.-B. H. Gen. 723, n. 71.-H. Bx. Yayer Fam. Nat. 370 ; Bull. Soc. Liun. Par. $58 .-$ M. Mast. Journ. Linn. Soc. x. 492.-Miers, Trans. Linn. Soc. ser. 2, 1, t. 1, 2, 3 A.-Belvisic Desvx. Journ. Bot. iv, 130.-R.

[^388]: Benn.) i. 388.
 ${ }_{2}$ They bear, on each margin, a sessile gland resembling that of certain Euphorbiacea.
 ${ }^{3}$ They aro traversed by longitudinal ridges which touch in the bud but afterwards separate without ceasing to be parallel, in consequence of the development of membranous furrows interposed between them.

[^389]: ${ }^{1}$ There is here a sort of hollow in the style to receive the anther in the bud. This is easily transversely.

[^390]: ${ }^{1}$ Or at first slightly ascending, with the raphe superior and interior.

 2 Corticate and coriaceous on the surface.
 ${ }^{3}$ With margins sometimes glanduliferous.

 + Yellow and purplish or (?) bluish.
 ${ }^{5}$ N. imperialis P.-Beauv. loc. cit.-DC. Prodr. vii. 550.-Bot. Mag. t. 4387.-Oliv, Fl. Trop. Afr. ii. 439.-N. Togelii Ноок. Niger, 360; t. 49, 50.-N. Heudaletii A. Juss. loc. cit. It is this species which M. Decaisne (Rev. Hort. [1853] 301, t. 16) distinguishes under the name of N. Whitfeldii. Miers also multiplics the species of this genus.
 ${ }^{6}$ Desf. Ann. $1 / u s$. vi. 9, t. 3.-Ende. Gen. n.

[^391]: 4262.-Benth. Journ. Lini. Soc. iii. 80.-B. H. Gen. 724, n. 72.-Miers, Trans. Limn. Soc. ser. 2, i. 17 , t. 3 B.-WAlp. Rep. ii. 722 Asteranthus). ${ }^{7}$ Punica T. Inst. 636, t. 401.- L. Gen. n. 618.-Adans. Fam. des Pl. ii. 88.-J. Gen. 325. -Gertn. Fruct. i. 183, t. 38.-Lamk. Dict. iii. 30 ; Ill. t. 415.--Schivire, Handb. t. 31.Nees, Nov. Act. Aat. Cur. xi. 410, t. 11.-DC. Prodr. iii. 3.-Spacie, Suit. à Buffon, iv. 288. -Endl. Gen. n. 6340.-Lindl. Veg. Hingd. 735.- Pater, Organeg. 465, t. 99.- H. Bn. Payer Fam. Nat. 371.-Berg. Mart. Fl. Bras. Mryrt. 514, t. 8, 9.-B. H. Gen. 781, n. 27. Hook. Fl. Ind. ii. 580.

[^392]: 1 Red or pale yellow.
 ${ }^{2}$ The pollen is "ovoid, approaching the sphere; threefold with papille" (H. Mohl, Ann. Sc. Nat. sér. 2, iii. 332).
 ${ }^{3}$ Organic investigation has revealed (Payer, luc. cit. 467) that the carpels belonging to the

[^393]: nana L.-Mahum prnicum Lob. Ic. ii, 130.Malus punica Bave.
 ${ }_{5}$ Ex A. L. de Juss. Gen. 1xx.
 ${ }^{6}$ Fam. des Pl. ii. 86, Fam. 14.
 ₹ Op. cit. 322, Ord. viii. Myrti (1789) ; Dict. Sc. Nat. xxxiv. 94 (Myrtea).
 ${ }^{8}$ Flind. Voy. 14; Misc. Works (ed. Benn.), i. 18,311 .
 ${ }^{9}$ Théor. Elém. (Iryrtinces) ; Prodr. iii. 207, Ord. 79 (Myrtacee).
 ${ }^{10}$ Linnea, xvii. 235 : Niv. Act. Nat. Cur. xix. Suppl. ii.

[^394]: ${ }^{1}$ Nov. Act. Nat. Cerr. xxi. p. i.
 $=$ Veg. Kingd. (1846) 734, Ord. 282.
 ${ }^{3}$ Op. cit. 721, Ord. 276.
 ${ }^{4}$ Op. cit. 739, Ord. 283.
 ${ }^{5}$ Gen. 1223, Ord. 269.
 ${ }^{6}$ Gen. 690, 1006, Ord. 67.

 - Especially by A. Brongniart and A. Gris, for the little studied New Caledonian types (Ann. Sc. Nat. sér. 5, ii. 124 ; iii. 210), and previously by I. Monthouzier (Mém. Acad. Lyon, x.), for plants of the same country.
 ${ }^{\circ}$ By A. Gray (Acicalyptus).
 ${ }^{9}$ By F. Mueller (Lysicarpus, Osbornia, Plymatocurpus, Homalocalyx, etc.).

[^395]: ${ }^{10}$ Lim风a, xxvii. xxix. xxx. xxxi.; Mrart. Fl. Bras. fasc. 18 (1857, 1858).
 ${ }^{11}$ Including about 1800 specics. Aphanomyrtus (Miq. Fl. Ind.-Dat. i. p. i. 180) is a doubtful genus (B. H. Gcn. 696).
 ${ }^{12}$ DC. Prodr. iii. 230.-Chimocarpice Schav. loc. cit.
 ${ }^{13}$ Sometimes only one in Fenzlia.
 \& DC. loc. cit. 209.-Xerocarpica, trib. 2, Leptospermece Sciauv.
 ${ }^{16}$ DC. lcc. cit. 208; Dict. Clars, d'IIist. Nnt. xi. (1826).-Xerocarpica, trib. 1, Chamelaucicc Sciau.-Chamolauciacer Lindl. Veg. Kïngd. (1846) 721.

[^396]: ${ }^{1}$ More rarely dispermous.
 2 DC. Dict. Class. xi. ; Prodr. iii. 288.-EndL. Gen. 1233.-Lecythidacta Lindl. Veg. Kíingd. 739, Ord. 283.-Lecythidece B. H. Gen. 695, trib. 4 (part Endu.),-Barringtoniacce Livdl. op. cit. 754.
 ${ }^{3}$ Lecythidere Rice. ex Poir. Mêm. Mrus. xiii. 141.-Endl. Gen. 1234, Subord. 5.-Miers, Truns, Linno Suc, xxx. 1.

 4 They are so, it is said, in Pctersia.

[^397]: ${ }^{1}$ Not to speak of Punica, which has doubtless becn introduced into America, nor of the

[^398]: ${ }^{1}$ Endl. Enchirid. 652.-Lindl. Veg. Kinga. 736 ; Fl. Med. 73.-Guib. Drog. Simpl. ed. 6, iii. 268.-Rosenth. Syn. Pl. Dinplior. 919, 1131.
 ${ }^{3}$ Especially in F. mauritiana Commers. Lavk. Dict. ii. 457 ; Ill. t. 419.-DC. Prodr. iii, 295 (Bois puant). This wood, according to report, has, besides, all the economic qualities of Walnut.

[^399]: ${ }^{3}$ See p. 345, note 8.
 4 Probably formed of one and the same polymorphous species (see p. 316, note 1).
 ${ }^{5}$ R. Br. Ait. Hort. Kew. ed. 2, iv. 417.Benth. Fl. Austral. iii. 262.-T. salicifolia $\mathbf{\Delta}$. Cunn. Bot. Reg. sub n, 1839.-Melalerca neriifolua Sims, Bot. Mrag. t. 1058.-M. salicifolia Andr, Bot. Repos. t. 485.

[^400]: ${ }^{1}$ From New Caledonia we derive a great part of the red woods, hard and close, of T. capitellata (Tristaniopsis capitellata Br. et Gr. ;-Pancr. et Séb. Notice Bois Nouv.-Caléd. 249: Nouepor of the natives) and of T. Guillaini (Tristaniopsis Guillaini Viellel.;-1'anch. op. cit. 250).
 2 A. Cunn.-Hook. f. Man. N.-Zeal. Fl. 70. - M. scandens Banks (ex Hoor. f.).
 ${ }^{3}$ Hoor. F. Fl. Antarct. ii. 75.-Myrtus stipularis Hook. and Arn. Bot. Misc. iii. 316.-Ttpualia stipularis Griseb. Pf. Phil. und Lechl. Abh. K. Ges. Wiss. Gcete. vi.

 + Ercinya rubra Br. et Gr. Ann. Sc. Nat. sér. 5, ii. 131,-PANCH. op. cit. 252.
 ${ }^{5}$ F. pubescens Br, et Gr. loc. cit. 133.
 ${ }^{6}$ Pleurooalyptus. Deplanchet Br. et Gr. Nour. Arch. Mus. iv. t. 8; Ann. Sc. Nat. sér. 5, xiii.

[^401]: ${ }^{1}$ Sce p. 346, note 5.
 ${ }^{2}$ Br. et Gr. Anr. Sc. Nut. sér. 5, iii. 221 ; xiii. 385.

[^402]: ${ }^{3}$ Congener (ई) of Schizocalyx.
 ${ }^{4}$ See Panch. et Séb. Nutice Bois Nur, Caléd. 254-259 (sec p. 340, note 8).

[^403]: ${ }^{1}$ Myrtus communis L. Spec. 673.-Guertn. Fruct. i. 184, t. 38.-Lamk. Ill. t. 410.-Duнam. Arbr. ed. 2, i. t. 43.-DC. Fl. Fr, iv. 426 ; Prodr. uii. 239, n. 5.-Gren. et Godr. Fr. de Fr. i. 602.-Gulb, Drog. Simpl. éd. 6, iii. 271.Lindl. Fl. Med. 75.-Rosenth. Syn. Pl. Diaphor. 934 (Meurthe, IIferbe du lagui).
 ${ }_{2}$ This species with its numerous varieties (DC. loc. cit.), is noted as an ornamental and emblematic plant. The triumphers at Rome and the victors in the Isthmian games, were crowned with Myrtle. The fruit is tinctorial. In the south, hedges, arbours, baskets, etc., are made of Myrtle.
 ${ }^{3}$ Lindl. Coll. Bot. sub n. 19.-Berg, Linnca, xxvii. 422.-ROSENTH. op, cit. 936.-P. vulgaris Wight and Arn.-P. aromatica Kost.-? Myr-

[^404]: ${ }^{1}$ E. caryophyllata Twunb-Myrtus caryophyllus Spreng. Syst. ii. 485.-Caryophyllus aromaticus L. Spec. 735.-Blackw. Merb. t. 338. -Hook. Bot. Ifag. t. 2749.-DC. Prodr. iii. 262, n. 1.-Guir. op. cit. iii. 272, fig. 641.-Rosentr. op. cit. 925.-Berg. et Schm. Off. Gew. t. iii. d (Bois de clous, Bois de Girofte),
 ${ }^{3}$ Clous-matrices, Meres de Girofle.
 ${ }^{3}$ Gomez, Mem. Acad. Lisb. iii. 92.-MI. caryophyllata Velloz.-M. Oleaster Mart.-Eugenia Pseudocaryophyllus DC.-Pseudocaryophyllus sericeus Bekg. Mart. Fl. Byas. Myrtac. 429, t. 6, fig. 135, t. 47 a -Rosente. cp. cit. 935 (Craveiro, Cravo da terra).
 ${ }^{4}$ A. S.-H. Pl. Us. Bras.t. 14 ; Fl. Bras. Mer. ii. 268.-DC. Prod: iii. 258.-Rosenth. op.cit. 923.-Bera. Mart. Fl. Bras. Myrtac. 38 (Cravo

[^405]: da terra).
 ${ }^{5}$ R. et Pav. ex Rosenth. op. cit. 924.
 ${ }^{6}$ DC. Prodr. iii. 2 áj (not Mart.).-Berg. Mart. Fl. Bras. Myrtac. 52, n. 55 (Pitanga de Cachorro).
 1 Berg. ex Rosenth. op. cit. 924.-Myrcia aromatica Schlechil (part).
 ${ }^{8}$ DC. Prodr. iii. 243, n. 2.-Myrtus coriacea $V_{A H L}$, Symb. ii. 59.-MI. acris β SW. (not of others).

 - Myrceugenia camphorata Berg.-Rosenth. op. cit. 929 .
 ${ }^{10}$ Hook. and Arn, Beech. Voy. Bot. iii. 56.C. Gay, Fl. Chil. ii. 390.-Cheken Feuill. Obs. iii. 45, t. 32.
 ${ }^{11}$ Lamk. Dict. iii. 203.-DC. Prodr. iii. 265, n. 18. -Myrtus angustifolia Sprevg.

[^406]: ${ }^{1}$ See Rosenth, op, cit. 937.
 ${ }^{2}$ Britoatriflora Berg.-Rosenth. op. cit. 937 (Ibobivaba).
 ${ }^{3}$ Sy. Trans. Linn. Sic. iii. 262.-Benth. Fl. Austral. iii. 104.-L. polygalifolium Salisus. Prodr. 350.

 4 W. Spec. ii. 949.
 5 Forst. Gen, 36.-Hook, f. Man. N.-Zeal. Fl. 69.-L. squarrosum (Extrn.
 ${ }^{6}$ L. Spec. 514.-Osb. It. 251, t. 1.-Sm. loc. cit. iii. 260.-DC, Prodr. iii. 229, n. 1.-Rosenth. op. cit. 923.-B. chinensis Gertn. Fruct. i. 157, t. 31 .

 7 Smith, Rees Cuc p. v. 23, n. 2.-DC. Prodr. iii. 212, n, 2.-Berg et Schm. Darst. Off. G:w. t. iii. c.-M. Cajuputi Roxr. Cut. Hort. Calc, 59.

[^407]: -Rosenth. op. cit. 920 (Cajuputi, Caju-Iilce Rumph. Herb. Amboin. ii. 7t, t. 17, fig. 1;Ballong of the natives). Probably a variety of the following species.
 ${ }^{8}$ L. Mantiss. 105.-Lamk. Ill. t. 641, fig. 4.DC. Prodr. n. 1.-Hayne, Arzn. Gew. 10, t. 9.Mér. et Del. Dict. Mat. Méd. iv. 283.-Linnl. Fl. Med. 73 ; Teg. Fingd. 737.-Endl. Enchirid. 654.-Guib, Drog, simpl. éd. 6, iii, 278, fig. 644. - F. Muell. Fragm, iv. 50..-Benth. Fl. Austral. iii. 142.-Hanb. et Flueck. Pharmacogr. 247.-M. saligna Bl. Mus. Lugd.-Bat. i. GG.Myrtus Leucadendion L. FIL. Suppl. 342.-MI. saligna Gmel.-Metrosideros albida Steb.-M. coriacea Spreng.-Arbor alba Rumph.

[^408]: n. 395.-Debray, Thès. Ec. Pham. Par. (1872). —Poli, Sull' Eucalypto. Intra (1874). - F. Moele. N. Glorn. Ital. v. 171.-De Hartzen, Compt. Rend. Acad. Sc. Ixxi. 1248. -Pl. Rev. des Deux Mondes, vii. (1875) 149.- Hanb. et Flueck. Pharmacogr. 249.
 ${ }^{5}$ The most remarkable is doubtless E. colosser, the wood of which is excellent, and which attains a height of 400 or 500 feet. M. Ramel cultivates it already with great success in Algeria. E. amygdalina, calophylla, cormuta, coriacca, Leucoxylon, siderophloia, Sideroxylon, etc. etc., are also most useful plants. E. resinifera \mathbf{S}. one of the red gum trees of Australia, yields a sort of kino and a saccharine product named Manaa of New Holland. E. dumosa A. Cunn. and mannifera Mud. give a similar substance. E. obliqua LHér. Gunnii Hook. robusta Sm. gigantia Hook. r. piperita Sm, are mentioned as having either an active essence, or a gummy or saccharine secretion, or a good wood. The wood of some species owes its solidity chiefly to deposits of calcareous and other salts in its tissuc.

[^409]: ${ }^{1}$ Rumpir. Herb. Ambuin. iii. 16, t. 7.-Linde. Collect. t. 18.-DC. Prodr. iii. 224, n. 1.-Nuni Val. AEst. Ind. 229, t. 35 (ex Rumph.).-? Opa Metrosideros Lour. Fl. Cockinch. (ed. 1790) 309. -Nania vera Mie. Fl. Ind.-Bat. i. p. i. 399.Rosentr. op. cit. 922 (Cây Boung Vang des Cochinch.).
 ${ }^{2}$ See p. 335, note 4.-Guib. op. cit. iii. 280, fig. 645.-Hayne, Avzu. Gew. x. 35.-Berg et

[^410]: Schm. Darst. Off. Gew. t. iii. $a, b,-$ Hanb. et Flueck, Pharmacogr. 257.
 ${ }^{3}$ Malicorium off.
 ${ }^{4}$ See p. 333, note 4.-Rosenth. op. cit. 1137.
 ${ }^{5}$ It appears to depend upon the pericarp.
 ${ }^{6}$ Sce Rosenth. op. cit. 926, 927.
 7 Rosentir. 928 (Phyllocalyx).
 ${ }^{8}$ Catinga moschata Aubl. Guian. t. 203.

[^411]: ${ }^{1}$ Myrtus Jaboticaba Velloz. Fl. Flum. v. t. 62.-Rosenti. op. cit. 924 (Myrcia),-Berg, Mart. Fl. Bras. Myrtac. 361.
 ${ }^{2}$ See p. 344, note 10 .
 ${ }^{3}$ Rosenth. op. cit. 931.
 ${ }_{4}$ DC. Prodr. iii. 260, n. 15.-Rosentil. op. cit. 930 - ? S. Belluta DC.-Myrtus zeylanica L. Spec. 675.-Belluta Lianuelli Ryeed. Hort. Mralab. v. t. 20 (p. 344, note 9).
 ${ }^{5}$ DC. Prodi', n. 7.-Rosenth. op. cit. 930.S. caryophyllifolitm DC. Prodr. n. 9 (ex Bero). Eugenia Jambolana TAMK.-Jambolifera pedunculata Houtt. (ex DC.)-Calyptranthes Jambolena W.-Jambolana Rumph. Herb. Amboin. i. t. 42.
 ${ }^{6}$ DC. Prodr. n. 1.-Calyptranthes guincersis W. Spec. ii. 974.

 7 Particularly S. terebinthacerm Coop. of Madagascar and pseuto-Jombolana Mie. of Java.
 ${ }^{8}$ DC. Prodr. iii. 237, n. 2.-Eugenia lucida Lamk. Dict. iii, 203 (Bois de clous).
 ${ }^{9}$ DC. Prodr. n. 1.-Eugenia mespiloides Lamk. - Myr tus mespiloides Spr. (Bois de Péche marron, B. de Nètle à grandes feuilles).
 ${ }^{11}$ L. Spec. 672.-Tuss. Fl. Ant. ii. t. 22.-

[^412]: 1 DC. Prodr. iii. 289.-LINDL. Fl. JIed. 79.Pirigara speciosa H. B. K. Nov. Gen. et Spec. vii. 200 (Chupo, Chupa). Children who eat its fruit are said to acquire a yellow tinge, lasting only one or two days.
 ${ }^{2}$ Berg, ex Rosenty. op. cit. 939.-G. augusta DC. Prodj. n. 1.-Pirigara superba H. B. K. (Membrico, Baco of the Columbians).
 ${ }^{3}$ W. Spec. iii. 847.-DC. Prodr. n. 5.--Berg, Mart. Fl. Bras. Myrt. 473.-G. hexapetala Sis. Rees Cyclop. n. 2.-G. pterocarpa Poit. Mém. Mus. xiii. t. 6, 7.-Hook. Bot. Mag. t. 5239 (ex Bera).-Pirigara hexapetala Aubl. Guian. i. 490 , t. 193.

 4DC. Prodr. n. 6.-Mart. Mat. Med. Bras. 72. - 3 ena, loc. cit. 472 , t. 7, fig. 160.-Janiparandiba Pis. Bras. i. 121; ii. 172 (Japoarandiba, Jandiparana).

 5 L. Spec. $734 .-D C$. Prodr. iii. 291, n. 1 (excl. syn.).-Rosentr. op. cit. 940.-? LeEf. It. 159 (Marmite de singe, Quatelé).
 ${ }^{6}$ Porr. Dict. vi. 37.-Mart. Mat. Med. Bras. 18.-DC. Prodr. n. 3.-Berg, Mart, Fl. Bras. Myrt. 482, n. 2, t. 7, fig. 156: 58.-L. minor

[^413]: Velloz. Fl. Flum. 222 ; v. t. 85 (not Jace.).
 7 Guian. 712, t. 283-285.-DC. Prodr. n. 7 (Canari-Macaque, Marmite de singe).
 ${ }^{s}$ A. S.-H. Fl. Bras. Mir. ii. 272.-Mart. Mat. Med. 17.-Berg, Mart. Fl. Bras. Myrt. 480, t. 62.-L. Ollaria Velloz. Fl. Flum. 222; т. t. 88 (not L.)-Zapucaya Marcar. Bras. 123. -Zabucayo Piso, Bras. (ed. 1) 6 ప.
 ${ }^{9}$ Albl. Givian. 719, t. 284, 285 (part), 288.DC. Prodr. n. 15.-Rosexth. op, cit. 940 (Quateté, Zabucayo).
 ${ }^{10}$ Berg, Mart. Fl. Bras. Myrt. 496, n. 27.Eschweilera parvifolia Mart-DC. Prodr. iii. 293, n. 1 (excl. syn.).
 ${ }^{11}$ Berg, loc. cit. 494, n. 21, t. 73, fig. 1.Eschweilera grandifolia Mart.-DC loc. cit. n. 2.
 ${ }^{12}$ AUBL. Guian. 708, t. 282.-DC. Prodr, iii. 294, n. 1.-Tuss. Fl. Ant.ii. 45, t.10, 11.-Torr. Dict. Sc. Nat. Atl. t. 227-229.-Descourt. Fl. Aut. v. 340.-Poir. Mém. Mus, xiii. 152, t. 7.Rosentir, op. cit. 941.-Lecythis bractcata W.Pekea Couroupita J.
 ${ }^{13}$ Ape's apricot, Calebasse-colin.

[^414]: ${ }^{5}$ Vulg. Bomets carres.
 ${ }^{6}$ BL. ex DC. Prodr. n. 2; V. IHoutt. Fl. des Serr. vii. 23, tab.-Eugenia racemosa L. Spec. 673.-Sanstravadi Rheed. Hort. Mfalab, iv. t. 6.
 ${ }^{7}$ B. acutangula Gertn. Fruct. ij. 97, t. 111. -Rosenth. op. cit. 1158.-Eugenia acutangula L. Spec. 673.-Straradia rubra I'ers.-Stravadium rubrum DC. Prodr. iii. 289, n. 2 (Ilosairo brava).
 ${ }^{8}$ B. excelsa BL. Bijdr. 1097 (ex DC.).-Stravadium excelsum DC. Prodr. n. 5.
 ${ }^{9}$ Stravadium albun DC. Prodr. n. 1.-Stravadiaalba Pers.-Seemann (Fl. Vit. 82) describes B. edulis as a species employed under the name of Vutu Kiana.
 ${ }^{10}$ See But. Mag. t. 473, 4408, 4526, 4558, 4626, 5040, etc.
 ${ }_{11}$ V. Houtt. Fl. des Serres, vii. 21.
 ${ }^{12}$ Bot. Mag. t. 5069, 5239, 6151.

[^415]: ${ }^{1}$ Bot. Mag. t. 250, 4558, 4809, etc.
 = Ibid. t. 260, 4471, 4488, 4515.
 ${ }^{3}$ Ibid. t. 4333, 4637. - V. Houtt. Fl. des

[^416]: 1 Mém. Myrtac. 33 ; Prodr. iii. 240 (a sect. of
 Ind. ii. 469. Myrtus).-Salisb. ex DC. loc. cit.-Ende. Gcn.
 ${ }^{2}$ Hardencd in fruit.

[^417]: ${ }^{1}$ Generally small.
 2 Spec. about 350. DC. Arém. Myrtac. t. 15.II. B. K. Nov. Gen. et Spec, t. 544, 545 (Myrtus). -Field et Gardn. Sert. Pl. t. 75.-Mir. St. Surin.t. 9.-A.S. H. Fl. Bras, Mer. ii. t. 140 (ई), 142-148. - Griseb. Fl. Brit. W.-Ind. 231.Berg, Mart. Fl. Bras. Myrt. 9, t. 10 (Cerquieria); 11, t. 11, 12 (Gomidezia) ; 55, t. 18 (Calyptromyrcia), 59 ; t. 19, 20 (Automyrcia) ; 150, t. 23, 24.-Bot. Mag. t. 5790.-W Walp. Rep. ii. 173, 932 ; v. 751 ; Ann. i. 314 ; ii. 628 ; iv. 833.
 ${ }^{3}$ Mal. Misc. i. (ex Hook. Comp, to Bot. Mag. i. 153).-Endw. Gene.n. 6338.-B. H. Gen. 714, ก. 50.-Ноок. Fl. Ind. ii. 468. - Monoxora

 +Generally small.

[^418]: ${ }^{\text {a }}$ Spec. 5, 6. DC. Prodr. iii. 279, n. 136 (Etc-genia).-Sm. Trans. Limn. Soc. iii. 280 (Myrtus). -Be. Bijdr. 1983 (Myrtus).-F. Muell. Fragm. i. 76 (MIyrtus),-WigHT, Icon. t. 524.-Miq. Fl. Ind.-Bat. i. p. i. 478.-Benth, F\%. Austral. iii. 277 ; Hook. Lond. Journ. ii. 219 (Monoxora).Bot. Mag. t. 3223 (Eugenia).-Walp. Rep. v. 757 ; Ann. ii. 627; iv. 833.
 ${ }^{6}$ Atakta, 19, t. 17, 18; Gen. n. 6274 (Olinica). -B. II. Gen. 715, n. 51.

 7 Moderate, pink.
 ${ }^{8}$ Spec. 2. Benth. Fl. Austral. iii. 278.
 ${ }^{9}$ Kinnea, xxix. 258.-B. H. Gen. 712, n. 42. Orthostemon Berg, Limea, xxvii. 440; Mart. Fl. Bras. Mypt. 467, t. 7, fig. 158, t. 54 (not R. Br.).

[^419]: ${ }^{1}$ Character of seed from Berg, loc. cit.
 ${ }^{2}$ Rather large showy; stamens coloured.
 ${ }^{3}$ Spec. 1. F. Sellowiana Berg.-Orthostemon Scllowianus Berg.-O. obovatus Berg, loc. cit.
 ${ }^{+}$A. S.-II. Fl. Bras, Mer. ii. 373, t. 156.Spaci, Suit. à Buffon, iv. 183.-Endl. Gen. n. 6318.-H. Bs. Payer Fam. Nat. 364.-B. H. Gen. 716, n. 54.
 ${ }^{5}$ Berg, Linnaa xxvii. 11 ; xxix. 209.-Eugeniopsis Berg, Linnca xxvii. 80 ; xxix. 219 ; xxx. 665; xxxi. 249.
 ${ }^{6}$ A genus between Myrcia and Calyptranthes, differing only in the calyx.

 7 Spec. about 35. Griseb. Fl. Brit. W.-Ind. 233.-Berg, MIart. Fl. Bras. Myrt. 28, t. 13 (Rubachia) ; 31, t. 14, 15; 143, t. 21, 22 (Euge-niopsis).-Walp. Rep. ii, 177.
 ${ }^{8}$ Prodr. 80 ; Fl. 'Iud. Occ. 917, t. 15.-DC. Prodr. iii. 265.-Spach, Suit. à Bufon, iv. 168. -Evdl. Gen. n. 6319.--B. H. Gen. 717, n. 55.II. Bn. Payer Fam, Nat. 367.-Chytraculia P.

[^420]: Br. Jam. 239.-Zuzygium P. Br. loc. cit. 240 (ex Endl.),-Chytralia Adans. Fam. des Pl. ii. S0.Calyptranthus J, Dict. S'c. Nat. vi. 274 (not BL.).
 ${ }^{9}$ Berg, Limuca, xxvii. 316 ; xxix. 248 ; xxx. 700.
 ${ }^{10}$ Spec. about 70, A. S.-H. P. Us. Bras. t. 14 ; Fl. Bras. Mfer. ii.t. 155.-Seem. Fl. Fit. S1. -Griseb. Fl. Brit. W.-Ind. 232.-Berg, Mart. Fl. Bras. Myrt. 38, t. 16, 17; 35t, t. 33 (1/i-tranthes).-Walp. Rep. ii. 178; v. 752 ; Aın. ii. 629.
 ${ }^{11}$ Prodr. Fl. Per. 72, t. 13 ; Syst. 128.-DC. Prodr. iii. 232.-Spacir, Suit. à Buffon, iv. 151. -Endz. Ger. n. 6314.-B. H. Gen. 712, n. 43.Briton Berg, Limnced, xxvii. 435 ; xxix. 257.Lacerdaa Berg, Linncea, xxx. 713.-Abbevillea Berg, Linncra, xxvii. 425 ; xxix. 256 ; xxxi. 260 (calyx generally larger and more expanded).
 ${ }^{12}$ Berg, Mart. Fl. Bras. Myrt. 614.-B. H. Gen. 712, n. 44 (spec. 1, according to authors cited gencrically distinct).

[^421]: ${ }^{1}$ Bera, Linnaca, xxvii. 435.
 2 Spec. about 60. H. B. K. Nov. Gen. et Sp. vi.. 150, t. 147.-A. S.-H. Fl. Bras. Mrer. ii. t. 139 (Psidium). - Lindl. Collect. 16.-Griser. Fl. Brit.W.-Ind.242.-Bera, Mart. Fl. Bras. Myrt. 430, t. 48 (Abbevillea) ; 438, t. 49, 50; 459, t. 51, 52 (Acrandra) ; 461, t. 53 (Britoa); 464 (Lacerdaa), -Walp. Rep. ii. 170, 932 ; v. 750.
 ${ }^{3}$ Gen. n. 615.-J. Gen. 324, 453.-Lamk. Dict. iii. 16 ; Suppl. ii. 824 ; Ill. t. 416 .-DC. Prodr. iii. 232.-Spach, Suit, à Buffon, iv. 152.Endl. Gen. ․ 6315.-H. Bn. Payer Fam. Nat. 364.-B. H. Gen. 713, п. 45.-Hook. Fl. Ind. ii. 467.-Guaiava T. Inst. 660, t. 443.-G.ErtN. Fruct. i. 185, t. 38.-Burchardia Neck. Elem. n. 728.-Acca Berg, Iinncea, xxvii. 138.-Calyptropsidium Berg, loc. cit. 349.

[^422]: ${ }^{4}$ Berg, Limat, xxvii. 350,-B. H. Gen. 713, n. 46 .
 ${ }^{5}$ Rather large showy, or small.
 ${ }^{6}$ Lamb. Trans. Lim. Soc. xi. t. 17.-Bentif. Fl. HongK. 120.-Griseb. Fl. Brit. W.-Ind. 241. -Mia. Fl. $I n d l_{0}-B a t_{0}$ i. p. i. 468,-A. S.-H. $F l$. Bras. Mer. ii. t. 136-138.-Berg, Mart. Fl. Bras. Myrt. 381, t. 41, 42.-Bot. Reg. t. 622, 653, 1079. -Bot. Mag. t. 1779, 2501. - Walr. Rep. ii. 170 ; ₹. 750 ; Ann. ii. 624; iv. 831.
 7 Spreng. Syst. Cur. Post. 404.-Endl. Gen. n. 6273.-B. H. Gen. 717, n. 57.-Feliciana Cambess. A. S.-H. Fl. Bras. Mer. ii. 375, t. 157. -Spach, Suit. à Buffon, iv. 184.-Tetrastemon, Hook. et Arn. Bot. Mise. iii. 317.

 8 Dease red, very conspicuous.

[^423]: ${ }^{1}$ Spec. 1. ML. atropurpureum Schott.-Mart. Nov. Gen. et Spec. iii. 173, t. 291 ; Flora, xx. Beibl. ii. 90.-Berg, Limaen, xxvii. 437 ; Mart. Fl. Bras. Myrt. 465. - MI. rubriforum Berg, Mart. Fl. Bras. MIyrt. 466, t. 7, fig. 164. - Tetrastemon loranthoides Ноok. et Arn. loc. cit.
 ${ }^{2}$ Nov. Gen. 226, t. 108.-L. Gen. n. 616.-J. Gen. 324.-Lamk. Dict. iii. 196 ; Suppl. iii. 121; Ill. t. 418.-DC. Prodr. iii. 262.-Spach, Suit, à Buffon, iv. 174.-Endl. Gen. n. 6323.-A. Gray, Unit. St. Expl. Exp. Bot. i. 514, t. 60.-B. H. Gen. 718, 1006, n. 58.-H. Bn. Payer Fam, Nat. 364.-Baker, Fl. Maurit. 112.-Hook. Fl. Ind. ii. 470.-Catinga Aubl. Guian. 511, t. 203.Guapurium J: Gen. 324.—Gregqia Gertn. Fruet. i. 168, t. 38.-Jossinia Commers, ex DC. Prodr. iii. 337.-Syllysium Mer. et Schau. Nov. Act. Nat. Cur. xix. Suppl. 334 (incl.: Acmena DC. Caryophyllus L. Clavimyrtus BL. Cuphwanthus Seem. Jambosa DC. Myrciaria Berg, Opa Lour. Syzygium Gentn.).
 ${ }^{3}$ 'I'. Inst. 432.-L. Gen. n. 669.-J. Gen. 324. -Lame. Dict. ii. 718 ; Ill. t. 417.-Gertn.

[^424]: ${ }^{1}$ In E. Jambosa we have often seen embryos.
 ${ }^{2}$ Sometimes conferruminate or unequal heteromorphous.
 ${ }^{3}$ Or sometimes (?) it is said, alternate.
 ${ }^{4}$ Often rather large, showy, white, pink, or more racely pale yellow.
 ${ }^{5} \mathrm{~B}_{5}$ defect of bractiferous leaves.
 ${ }^{6}$ Rumph. Herb. Amb. i. 121.-DC. Prohr. iii. 286.-Spach, Suit. à B̌ufoor, iv. 179.-Evdl. Gon.n. 6324.—Cerocarpus Hassk. Cat. Hort. Bog. 262.-Gelplica BL. Mus. Lugd.-Bat. i. S8, t. 35. -Strongylocalyx BL. loc. cit. 89, t. 54.-Cleistocalyz Bl. luc. cit. 84, t. 56.

 7 Griser. F\%. Brit. W.-Ind. 236.
 ${ }^{8}$ Spec. about 500 . H. B. K. Nor. Gen. et Spec. t. 546 (Myrtus).-Lindi. Collect. t. 19 (Olinthia), —Wigut, Ill. 13, 14 (Jambosa), 15 (Syzygiamn); Icon. t. 100, 553, 545, 551; 73, 216, 525-530, 546, 548-550, 608-813 (Jambosa); 531-536, 538-544 (Syzygium), -Wall. Pl. As. Rar. t. 161 (Jambosa)-DC. Dict. Hist. Nat. xi. (Acmena) ; Mém. Myrtuc. t. 16-19 (Syzygium), 20-23.Guillem. et l'err. Fl. Sen. Tent. i. t. 72 (Syzy-gium).-KL. Pet. Moss. Bot. t. 11 (Syzygiam).Halv, and Sond. Fl. Cap. ii. 522.-A. Gray, Uhit. Nt. Expl. Exp. Bot. i. 510, t. 58, 59 (Jambosa) ; 514, t. 60; 518, t. 61-65 (Syzygium).Seem. F\%. Jit. 76, 81 (Colyptranthes), t. 15 (Jum-

[^425]: ${ }^{1}$ Spec. 3, 4.
 ${ }^{1}$ Linnaa, xxvii. $345 .-\mathrm{B}$. H. Gen. 720, n. 60 .
 ${ }^{3}$ A doubtful genus, perhaps only a section of Eugenia, with fruit sometimes (?) drupaceous.
 ${ }^{4}$ Spec. about 2. Benth. Sulph. t. 37 (Campo-manesia).-Grrseb. Fl. Brit. W.-Ind. 239 ; Cat. I'l. Cub. 90.-Berg, Mart. Fl. Bras. Mryrt. 380, t. 40 .
 ${ }^{5}$ Linnaa, xxvii. 317; xxix. 249; xxx. 701; Mart. Fl. Bras. Myrt. 35̄6, t. 34.-B. H. Gen. 720 , . 59.
 ${ }^{6}$ Known in one species (Bera).
 7 Perhaps a section of Eugenia (B. H.).

 - Spec. enumerated, 6, 7.
 ${ }^{9}$ Linnca xxvii. 319; Mart. Fl. Bras. Mryrt. 35̄7, t. 35.

[^426]: 10 The Brazilian species S. Pohlianus Berg, by more recent authors referred to Calycorcotes (B. H. Gen. 720), but differs particularly in the oostivation of the calyz. Is the south Caledonian species S. rabiginosa Br , et Gr. (Ann. Sc. Nat. sér. 5, xiii. 378), the Spermolepis rubiginosa of tho same authors ($A \mathrm{~m} . S c$. Nat. sér. 5, ii. 137), whose solitary flowers well agree, and whose fleshy fruit is crowned with the calyx, its seed albuminous, the cotyledons of fleshy embryo plano-conrex, and short radicle slightly prominent, really of this genus? Eugenia ovigeva Br. et Gr. (Ann. Sc. Nat. sér. 5, iii. 216), appears from its fruit to be congeneric with this. Which is assigned to its proper genus (Schizomyrtus)?

[^427]: ${ }^{1}$ Prodr. iii. 220 (sect. of Leptospermi).-B. H. Gen. 703.-Billiottia R. Br. Journ. Geogr. Soc. i. 19 .
 ${ }^{2}$ Query if a sect. of Leptospirmum? In the genus remain, according to Benth, 2 sections (Taxandria, with 10 stamens; Ataxandia, with 20-30 stamens).

[^428]: ${ }^{3}$ Spec. about 10. DC. Mém. Myrtac. t. 12 (Leptospermum).-Labill. $P l . \mathbf{N}_{.}$-Holl. ii. 10, t. 148 (Leptospermuw),-Bertol. Amcen. 29 (Lep-tospermum).-G. Don, Gen. Syst. ii. 827 (Dilli-ottia).-Lodd, Bot. Cab. t. 1219 (Fabricia).Benth. Fl. Austral. iii. 96.-Walf. Rep. ii. 166, 922; v. 739 : Ann. ii. 617.

[^429]: ${ }^{1}$ L. Gen. n. 491.-J. Gen. 321.-Lamk. Dict. vii. 689; Ill. t. 285.-DC. Prod?. iii. 229.Spach, Suit. à Buffon, iv. 146.-Endl. Gen. n. 6311.-H. Bn. Payer Fam. Nat. 366.-B. H. Gen. 701, n. 13 (incl.: Babingtonia Lindw. Jungia Geretn. Harmogia Schau. Hypocalyma Endl. Scholtzia Schaú.).-Hook. Fl. Ind. ii. 463.
 ${ }^{2}$ Schaud. Linncea, xvii. 239 (part).
 ${ }^{3}$ Schaud. loc. cit.
 ${ }^{4}$ Endl. Hueg. Enum. 30.-B. H. Gen. 702, n. 15.
 ${ }^{5}$ Schau, Linncer, xvii. 241.-B. H. Gen. 700, n. 12. - Piptandra Turcz. Bull. Mosc. (1862), ii. 323 (not Olyv.).
 ${ }^{6}$ Small, white or pale pink.
 7 Sect. 8 (ex B. II. 6) : 1. Rinzia, 2. Euryomyrtus, 3. Jungia (Geertn. Fruct. i. 175, t. 35Mollia Gmel. Syst. 420-Imbricaria Sm.-Schidiomyrtus Schau.), 4. Harmogia (Schay. Linnea, xxvii. 238-Camphoromyrtus Schau.), 5. Oxymyrrhine (Scyau. Linnca, xxvii. 240), 6. Babingtonia (Limdl. Bot. Reg. [1842], t. 10-Tetrapora Schau.-Ericomyrtus Turcz.) (add.: 7. Scholtziа, S. Нуросаlymиа).
 s Spec. about 70. Rudge, Trans. Linn. Soc. viii. t. 12-14.-Llabill. Sert. Austro-caled. t. 61,

[^430]: 62 (Leptospermum).-Rudg. Trans. Lim. Soc. viii. 298, t. 18 (Schidiomyrtus).-Andr. Bot. Rcpos. t. 598.-Miq. Fl. Ind.-Bat. i. p. i. 405.Br. et Gb. Ann. Sc. Nat. sér. 5, ii, 140.-Bentur. Fl. Hongk. 118 ; $F l$. Austral. iii. 66 (Scholtzia), 71, 91 (Hypocalymna).-Walp. Rep. ii. 169, 920; v. 734 ; Ann. ii. 617. (To this genus is doubtfully referred (B. H. Gen. 6) Aphanomyr. tus (Miq. Fl. Ind.-Bat. i. p. i. 480 ;-Walp. Ann.iv. 853).
 ${ }^{9}$ Prodr. iii. 210 ; Dict. Cl. d'Hist. Nat. xi. 400.-Endl. Gen. п. 62sり.-B. H. Gen. 702, п. 11.
 ${ }^{10}$ Small, white or pink.
 ${ }^{11}$ A genus differing from Schidiomyrtus, a sect. of Backea, only in its stamens being more or less connate in 5 groups. (B. H.)

 12 Spec. 3. Labill. Pl. N.-Holl. t. 170 (Mela-leuca).-Endl. Hueg. Enum. 51 (Brechea). Spreng, Syst. ii. 492 (Leptospermum).-Schau. Pl. Preiss. i. 113-115.-F. Muell. Fragm. i. 83 ; ii. 32.-Benth. Fl. Austral. iii. 89.-Walp. Rep. ii. 160,$922 ;$ v. 738 .
 ${ }^{13}$ Icon. t. 852.-B. H. Gen. 702, n. 16.Cheynia J. Dromm. Hook. Few Journ. vii. 56.

[^431]: ${ }^{1}$ Habit of Backea.
 2 Rather large (somewhat resembling those of Punica Granatum) ; petals coccineus.
 ${ }^{3}$ Spec. 1. B. pulcherrimum Hook.-Benth. Fl. Austral. iii. 95.-Cheynia pulchra J. Drumm. -Walp. Am. iv. 822.

 + Mantiss. 14.-J. Gen. 323.-Lamk. Dict. iv. 16; Suppl. iii. 617; Ill. t. 641.-Grertn. Fruch. i. 173, t. 35 (part).-DC. Prodr. iii. 211.-SPACH, Suit. à Buffon, iv. 117.-Endl. Gcn. n. 6298.H. Bn. Payer Fam. Nat. 367.-B. H. Gen. 705 , n. 22.-Hoor. Fl. Ind. ii. 464.-Gymnagathis Schau. Linncer, xvii. 243.-Cajuputi Adans. Fam. des Pl. ii. 84.
 ${ }^{5}$ Schau, Linnca, xvii. 242.
 ${ }^{6}$ Gaumeh, Freucin. Voy, Bot, 483, t. 110.Endl. Gen. n. 6293.-B. 11. Gen. 704, n. 21.

[^432]: 7 R. Br. App. Flind. Foy. ii. 547 ; Bot. Reg.t. 393.-DC. Prodr. iii. 223.-Endl. Gen. n. 6302. -B. H. Gen. 704, n. 20. (In 1 species, C. specioso DC. the staminal filaments long united are in 5 groups, as in most legitimate Melaleucce. This species is M. paludosa R. Br. Ait. Hort. Kew. ed. 2, iv. 410.)
 ${ }^{8}$ Lindl. Suan Riv. App. 9,-Enbl. Gen. n. 6297.-B. H. Gen. 705, д. 23.

 9 White, pale yellow, pink, lilac, or purple, often showy:
 ${ }^{10}$ Sect. 3: 1. Eumelaleuca (Melaleuca Auctt.), 2. Conothamnus, 3. Lamarchea, 4. Callistemon.
 ${ }^{11}$ Spec. about 120. Cav. Icon. t. 332 (Mfetrosideros), 334-336.-Vent. Jard. Cels. t. 10, 69 (Metrosideros) ; Malmais. t. 4, 47, 76, 112.Bonpl. Pl. Malmais. t. 4, 41, 34 (Metrosideros),

[^433]: ${ }^{5}$ See, On the Ovules of Beaufortia, H. Bn. Adansomia iii. 265.
 ${ }^{6}$ Habit of Evicacece.
 7 Sect. 3: 1. Eubeaufortia, 2. Regelia, 3. Phymatocarpus.
 ${ }^{8}$ Spec. 16. Reichb. Ic. Exot. t. 102 (Melaler-ca).-Benth. Fl. Austial. iii. 164, 170 (Regelia), 171 (Phymatocarpus). - Turcz. Bull. Mosc. (1847), i. 168 (Rcgelia).-Bot. Reg. t. 18.-Bot. Mag.t. 1733, 3272.-Walp. Rep. ii. 161 ; 7.748 (Regelia), 749 ; Am. ii. 622.

 9 Pl. N.-Holl. ii. 25, t. 164.-DC. Prodr. iii. 211.-Spach, Suit. a Buffon, iv. 115.-Enrl. Gen. n. 6294.-Scuau. Nov. Act. Nat. Cur. xxi. 25, t. 1.-B. H. Ger. 706, n. 27.-Billottia Colla, Hort. Rip. 20, t. 23.
 ${ }^{10}$ Flowers showy, often polygamous; stamens a beautiful red.
 ${ }^{11}$ Spec. 22. R. Br. Ait. Hort. Kew, ij, 417.Lindi. Suan Riv. App. 9,-F. Muell. Fragm. iii. 111.-Benth, Fl, Austral. iii. 172.-Bot. Reg. t. 1099.-Bot. Mag. t. 1506-W Walr. Rep. ii. 161, 930 ; v. 749 ; Am. ii. 622.

[^434]: ${ }^{1}$ Suan Riv. App. 11.-Endl. Gen, n. 6304. B. H. Gen. 707, n. 30.
 ${ }^{2}$ A genus of very doubtful autonomy, "it differs from Calothamus in habit short stamens and anthers, from Phymatocarpus in anthers, from both in inflorescence " (B. H.), characters here apparently of less importance.
 ${ }^{3}$ Spec. 5. Schau. Pl. Preiss. i. 156.-Endl. Hueg. Enum. 50 (Metrosideros).-F. Muell. Fragm. ii. 29.-Bente, Fl. Lustral. iii. 180.Walp. Rep, ii, 166.
 ${ }^{4}$ Consp. 175.-B. H. Gen. 703, n. 19.-Salisia Lindl. Swan Riv. App. 10.-Evdl. Gen. n. 6308.-Pentagonaster Kl. Ott. et Dietr, Allg. Gartenz. iv. 113.
 ${ }^{5}$ A genus scarcely to be retained, being very near Callistmon, a section of Melalcuca, and dif-

[^435]: ${ }^{1}$ White, orange or yellowish.
 ${ }^{2}$ Spec. about 20. Bonpl, Malmais. t. 30.Benn. Pl.Jav. Rar. 127, t. 27.-Mrq. Fl. Iud.Bat. i. p. i. 397.-Benth. Fl. Austral. iii. 261.Br. et $\mathrm{Gr}_{\mathrm{r} .}$ Ann. Sc. Nat. sér. 5, ii. 130 ; iii. 228 ; xiii. 383; Nowv. Arch. Mus. iv. 12, t. 5 (Tristaniopsis).-Bot. Reg. t. 1839.-Bot. Mag. t. 1058 (Melaleuca).-Walp. Rep. ii. 160, 927 : v. 744; Anぇ. ii. 621.
 ${ }^{3}$ Gcertn. Fruct. i. 170, t. 34 (part).-Lame. Ill. t. 421.-Poir. Dict. Suppl. iii. 679.-DC. Prodr. iii. 224.-Spaci, Suit. à Buffon, iv. 138.Endl. Gen. n. 6303 (part).-H. B. Payer Fam. Nat. 366.-B. H. Gen. 710, n. 38,-E. 'Tison, Bull. Soc. Lin. Par. 102.-Nania Mir. Fl. Ind.-

[^436]: ${ }^{1}$ Ten．Mem．Soc．Ital．Moden．xxii．t．1．－ Endl．Ger．n．6291．－B．H．Gen．709，n．33．－ Tiamptzia Nees，Nov．Act．Nat．Cur．xviii． Suppl．pref．8，t．1．
 ${ }^{2}$ Sect．4：1．Tepualia，2．Nania，3．Xantho－ stemon，4．末̄amptzia，5．Syncarpia，6．Sarcynpia （to which perhaps may be added Lysicarpus \mathbf{F} ． Mivell．Trans．Phil．Inst．Vict．ii．68．－．Bexth． Fl．Austral．iii． 266 ；Gen．709，n． 34 ；Hook．Ic． t． 1042 ，differing in exterior anthers being ste－ rile reniform．
 ${ }^{3}$ Labill．Sert．Austro－caled．t．59，60．－Ноok． and Arv．Beech．Voy．Bot．t．12．－Hook．Icon． t．569．－Gaudich．Freyc．Foy．Bot．t．108， 109. －F．Muell．Fragm．i．243．－Miq．Fl．Ind．－Bat． i．p．i．401．－A．Gray，Unit．St．Expl．Exp．Boto i．t．68－70．－Hook．F．Fl．N_{s}－Zeal．t．15－17； Mandb．No－Zeal．Fl．70，－Br，et Gr．Ann。Sc． Nat．sér．5，ii．137．－Benth．Fl．Austral．iii． 265 （Syncarpia），267， 268 （Xanthostcmon）．－Bot． Mag．t．4515，4471，4488．－Rev．Hort．（1865）

[^437]: 310 （Fremya），－Walp．Rep．ii． 165 ；v．741； Ann．ii． 619 ；iv． 823 （Tepualia，Nania）， 824 （Syncarpia）， 826.

 4 Spec．1．C．Gay，Fl．Chil．ii． 378 （Myrtus）． －Ноок．F．Fl．Antaret．ii． 75.

 5 Mén．Acad．Lyon．x．204．－P Ballardia Montrovz．loc．cit． 204 （ex B．H．）．－Cloezia Br． et Gr．Bull．Soc．Bot．Fr．x．576；Ann．Sc．Nat． sér．5，ii．134；Nouv．Arch．AIus，iv．16，t．6．－ B．H．Gen．709．n． 35.
 ${ }^{6}$ Moderate or small．
 7 Of which perhaps only a section，a mean between the true Metrusideros and Tepualia（？）， distinct only by its short stamens and petals．
 ${ }^{8}$ Spec，about 8，polymorphous，Seem．Journ． Bot．ii． 74 （Baclica）．
 ${ }^{9}$ Ex Br．et Gr．Bull．Soc．Bot．Fr．X．574．－ Spermolepis 13 k ．et Gr．loc．cit．；Ann．Sc．Nat． sér．5，ii． 136 （part）；xiii． 374 ；Nouv．Arch．Mus． iv． 22, t． $9 .-$ B．H．Gch． 710, n． 37.

[^438]: ${ }^{1}$ Resembling an aril (whence name of genus).
 ${ }^{2}$ Yellow, showy.
 ${ }^{3}$ A race very near to some Tristanice of the same region, differing in the nature of its fruit and seeds.
 *Spec. 1. A. gummiferum Рancr. loc. cit.; Not. bois N_{0}-Caléd. 251.-Spermolepis gummifera Br. et Gr. loo. cit.
 ${ }^{5}$ Sert. Angl. 18.-Lamk. Ill. t. 422.-Poir. Dict. Suppl. ii. 590.-DC. Prodr. iii. 216.S'pach, Suit, à Buffon, iv, 126.-Endl. Ger. n. 6300.-Payer, Organag. 459, t. 98.-HI. Bn. Payer Fam. Nat. 366.-B. H. Gen. 707, n. 30.
 ${ }^{6}$ R. Br. App. Flind. Foy. ii. 599, t. 3.-DC. Prodr. iii. 216.-Endu. Gen. n. 6299.
 © The inferior (like the ovules) ovoid or sub-

[^439]: ${ }^{1}$ F. Muedx. Limera, xxv. 386.
 ${ }^{2}$ DC. Prodr. iii. 209; Dict. Class. xi. 400 ; Meim. Myrtac. t. 2.-ExDr. Gen. n. 6284.-Heduromza Lindl. Siw. Riv. App. 7, t. 2 B.-Enile. Gen.n.62S5.-Polyzone Evnl. Ann. Jich. Murs. ii. 490 ; N. St. .1Tus. F̈̈ndub. Dcc. S0 ; Gen. n. 6283. Cryplostemon F. Muell. ex Miq. Ned. Líruidl. Auch.iv. 114.-Fancisia Endl. Gon. n. 6286.
 ${ }^{3}$ The adult appear to be 1 -scriate.

 + Staminodes according to some authors.
 ${ }^{5}$ Oppositipetalous.
 ${ }^{6}$ Macropod very thick ; but the radicles very small ; plumule incumbent (?).
 I Sect. 2 (B. H.) : 1. Genetyllis, 2. Schuermamuia.
 ${ }^{8}$ Spec. 22, 23. Turcz. Bull. Mosc. (1847) i. 155 ${ }^{\text {; }}$ (1849), ii. 18 (Genetyllis).-Exdi. Hueg. Enum. 47 (Genctyllis).-Merssn. Jow\%. Limn. Soc. i. 36 (Geretyllis).-Kipr. Journ. Linn. Soc. i. 49 (Genc-tyllis).-F. Muell. Fragm. ii. 169 (Genctyllis);

[^440]: iv. 58, 174 (Gcnetyllis) ; viii. 182.-BENTH. Fl. Austral. iii. 6.-Bot. Mlag. t. 4858, 4860, 5468 (Genetyllis).-WALP. Rep. ii. 153, 920 ; v. 727 ; Amn. ii. 615 (Genetyllis) ; v. 821 (Schuermannia).
 ${ }^{9}$ Limna, x, 311; Myrt. Xeroc. 24, t. 1 B.-B. H. Gen. 696, n. 1.
 ${ }_{10}$ Tho exterior sterile.
 ${ }^{11}$ Of which it is rather a section?
 ${ }_{12}$ Spec. 1. A. Cuaninghamii Schav. Lindl. Introd. ed. 2, 440 ; I'l. Preiss. i. 96.-Benth. Fl. Austral. iii. 5.-A. proliferrem Turez, Bull. Mose. (1849) ii. 17.-Triphelia bruntivides R. BroEndl. Hueg. Euum. 48.
 ${ }^{13}$ Ex Schau. Linnaa, x. 310; Miyrt. Xeroc. 39, t. 13.-Lindl. Gen. n. 6281.-B. H. Gen. 697, n. 3.-Euosanthes A. Cunn. (ex Endl.).
 ${ }^{14}$ A genus differing from Darwinia (of which it is rather a section ?) only in sepals.
 ${ }^{15}$ Spec. 1. H. virgatus A. Cunn.-Bertif. Fl . Austral. iii. 16.

[^441]: ${ }^{1}$ Dict．Class．xi．400；xvi． 565 ；Prodr．iii． 209．－Space，Suit．à Buffon，iv．110．－Endl． Gen．n．6279．－H．Bx．Payer Fain．Nat．368．－B． H．Gen．（97，n．4．－Chrysorvhoe Lindl．Comp，to Bot．Mag．ii． 357 ；Sw．Riv．App．t．1；Mooli． Jotwn．Bot．ii．t．13．－Diplachue R．Bre mss．ox sichav．
 ：Generally coloured．
 ${ }^{3}$ Radicle very macropod；gemmule（ (5) very small incumbent（ $\%$ ），undivided or 2 －lobed．
 ${ }^{4}$ Petals white pink or sometimes yellow．
 ${ }^{5}$ Sect．（ex Schau．Mryrt．Teroc．t．\pm B）in 2 gen．：1．Calymmatrunthus；appendages of calyx comose；2．Euverticordia；appendages 0.
 ${ }^{6}$ Spec．about 39．Desf．Mém．Mus．v．t．4， 19 （Chamalauciunn）．－Linds．loc．cit．t． 2 A．－ Schac．Lehm．Pl．Pisiss，i．39．－Hиоा，Jown．

[^442]: Bot．ii．t． 13 （Chrysorrlioe），14．－Tuncz．Bull． Mosc．（1849）ii．19．－F．Muell．Trans．Vict．Inst． 122 ；Fragm．i．164，226；iv． 58 ；v． 14 ；viii． 182. —Benth．Fl．Austral．iii．16．－Bot．Bag．t． 5286. －Walp．Rep．ii．154；マ． 730 ；Amb．ii． 616.

 7 Pl．N．－Holl．ii．11，t．149．－DC．Prodr．iii． 209．－Spacie，Suit．à Buffoln，iv．111．－Endl． Ann．Wien．Afus．ii． 196 ；Gen．n．6278．－Scilau． Myrt．Xeroc．77，t．b，fig．A，B．－－B．H．Gen． 698，n． 5.
 ${ }^{8}$ Spec．3．J．Ann．Mus．xix．432．－Desf．Mém． Mus，v．t．3．－Fi．Muell．Fragm。 i．225．－ Meissn．Journ．Lim．Suc．i．45．－Benth．Fl． 1 us． tral．iii．34．－Walp．Rep．ii． 157 ；v． 731.
 ${ }^{9}$ Linneck，x． 309 ；Lindl．Introd．ed．2， 493 ； Myrt．Xeroc．t．7．－Endi．Gell．n．6276．－13．H． Gen．609，n． 8.

[^443]: ${ }^{1}$ From which genus it differs only in its obtuse or retuse sepals and in nearly the same manner as Homorantho Darwinia.
 ${ }^{2}$ Spec. 8. Arn. Hook. Journ. Bot. ii. t. 15.Lindel. Sw. Riv. App. 7 ; Mitch. Thr. Exped. ii. 178 (Genetyllis).-Turcz. Bull. Mosc. (1862) ii. 324.-Schau. Pl. Preiss, i. 103.-F. Muell. Trans. Phil. Soc. Vict. i. 16 ; Fragm. i. 13, 224.Benth. Fl. Austral. iii. 53.-Walp. Rep. ii. 157; จ. 732.
 ${ }^{3}$ Pl. N.-Holl. ii. 8, t. 146 (Calytrix).-DC. Prodr. ii. 208 ; Mém. Myrt.t. 1.-Spach, Suit. à Buffon, iv. 107.-Schau. Myrt. Neroc. (ex Nov. Act. Nat. Cur. xix.) 288, t. 6 B.-B. II. Gen. 699, n. 7.-Calycothrix Merssn. Gen. 107.-Endl. Gen. 2. 6275.-II. Bn. Payer Fam. Nat. 367.

 + letaloid.

[^444]: i. 156; (1862) ii. 324.-F. Muell. Fragm. i. 11 ; iv. 63, 169.-Walp. Rep. v. 732, Ann. i. 306; iv. 822.
 ${ }^{3}$ Hook. Few Jowrr. ix. 309.-B. H. Gen. 699, п. 9 .
 ${ }^{6}$ Of which perhaps only a section and to which it has been more recently referred (F . Mvell. Fragm. iv, 63, 77).

 7 Spec. 2. Benth. Fl. Austral. iii. 56.
 ${ }^{8}$ Gen. 700, n. 11.

 - Of which perhaps a section (?).

[^445]: ${ }^{1}$ Minute, or small, pink.
 2 Spec. 6, 7. Poir. Dict. Suppl, v. 247 (Stevc-orylon).-Sis. T, ans. Lim. Soc, iii. 259 (Imbrick-via).-Sier. Spreng. Syst. Cur. post. 149 (Buecket). -F. Muell. Fragm. i, 30 (Brechea) ; iv. 63 (Thryptomene),-Benth. Fl. Austral. iii. 63.
 ${ }^{3}$ Miers, 'On Barringtoniacece' (Trans. Limn. Soc. ser. 2, i. [1875] 47 ; Barringtonia (loc. cit.) 54,55 , t. 10).-Agasta Miers (lac. cit. 54, 59 , t. 11, 12). A genus proposed for B. splendida, Soland. macrophylla Miq. speciosa Wigut \& Arn. —Megadendron Miers (loc.cit. 54, 109, t. 15, 16). A genus proposech for B. macrocarpa Hassk. and

[^446]: ${ }^{1}$ Pl. Coromand, iii. 13, t. 217, 218 ; Fl. Ind. ii. 638.-DC. Prodr. iii. 295 (part).-Endi. Gen. n. 6326.-BL. V. Houtt. Fl. Scrres, vii. 25.-1B. H, Gen. 721, n. 62.-Cambea Hax. Mys. iii. 187 (ex Endl.), Miers (loc. cit.t. 16, 17), -Hook. Fl. Ind. ii. 510 - Doxoma Mielis (loc. cit. 5t, 99, t. 15). A genus proposed for Careya pendula Griff. Stravadirm cochinchinense BL, Barring* tonia cylindrostachya Griff. B. rosea, Wall. B. sarcostachys Wall. B. sumatrana Mia. B. neocaledonica Vieill. Vriesia Teysm, etc.
 ${ }^{2}$ Of which rather a section.
 ${ }^{3}$ Large or small, often showy, white; stamens a beautiful red.
 ${ }^{4}$ Spec. 2, 3. Wight, Ill. ii. t. 99, 100; Ieon. t. 147, 157.-Wigirt and Ales. Prodr. i. 334.'Tнw. Ëитм. Pl. Zeyl. 119:-Mrq. Fl. Ind.-Dat. i. p. i. 494.-F. Muell. Fragm. v. 183 (Barring-

[^447]: ${ }^{1}$ Chalaza facing inwards.
 2 "Arillate."
 ${ }^{3}$ With a bitter tenacious bark.
 4 White oftener rather large.
 ${ }^{5}$ An anomalous genus of Lythraria (B.H.)
 ${ }^{6}$ BoJ. Hort. Maur. 141.-Bl. Mus. Lugd-Bat. i. 143.-Walp. Ann. ii. 193.

 7 Suppl. 38.-J. Gen.325.-Lame, 7)ict. i. 429; Ill. t. 420.-Bucuan. Sym. Ava, iii. 313, t. 25.DC. Prodr. iii. 231.-Endl. Gen. n. 6342.-H. Bn. Payer Fam. Nat. 365.-B. H. Gen. 784, n. 26.-Baker, Fl. Maurit. 102.-Aubletia Gertn. Fruct. i. 379, t. 78 (not Jaca. nor Lour. nor Rich.nor Schreb.),-Chiratia Montrouz. Mém. Acad. Lyon. x. 202.-Br. et Gr. Ball. Soc. Bot. Fr. xi. 69 ; Ann. Sc. Nat. sér. 5, i. 362 ; vi. 266. -H. Bn. Adansonia, vii. 255 (where before the authorities previously cited, it is shown that Chiratia differs in no respect from Someratia,

[^448]: ${ }^{1}$ A genus apparently allied in some respects to Gustaria, in others to Courataris, but not scen by us.

 2 Spec. 1, 2 (ex Mibrs 4). Sloan. IIist. ii. 123, t. 127, fig. 1, 2 (Anchovy Pear),-P. Br. Jam. 245. -Lun. Hort. Jam. i. 19.-Seem. Voy. Herald, Bot.126.-Griseb. Fl. Br. W.-Ind. 242.-Hook. F. Bot. Mag. t. 5622.-Walr. Rep. ii. 193.
 ${ }^{3}$ Amcen. viii. 266, t. 5.-L. F. Suppl. 51.Puit. Ann. Mus. xiii. 155, t. 5-7.-DC. Prodr. iii. 289.-Spach, Suit. à Buffor, iv. 187.-Endl. Gen. n. 6327.-Berg, Linnca, xxvii. 441.-B.H. Gen. 721, n. 64.-Pirigara Aubl. Guian. 1. 487,

[^449]: t. 192, 193.-J. Gen. 326.-Poir. Dict. v. 344.Lame. Ill. t. $592 .-\mathrm{H} . \mathrm{B} . \mathrm{K}$, Noz. Gen. et Spec. vii. 261.-Spallanzania Neck. Elem. 79, n. 733. -Teichmeyera Scop. Introd. n. 1212.
 ${ }^{4}$ Nearly of Dillenic.
 ${ }^{6}$ White or pink or red, showy.
 6 Spec. about 10. Berg, Mart. Fl. Bras, Myrt.
 158,175 , t. 33 A.-Hook. Bot. Mag. t. 5069, $5239,6151 .-W_{\text {ALP. }} R t p$. ii. 193 ; v. 756.
 7 Nov. Stirp. Bras. Dec. 35.-Miers, Trans. Sinn. Soc. xxx. 169, 28t, t. 35 C.

[^450]: ${ }^{1}$ Perhaps better a sect. of Courataris, differing only in the ligule being shorter, the stamens all fertile and the fruit only somctimes alate.
 ${ }^{2}$ Spec. 7 (ex Miers). Raddi, Mem. Soc. Ital. Moden. Plys. xviii. 403.-Mart. Flora, xx. 127 (Courataris).-Berg, Mart. Ml. Is.as. Myrt. 510, t. 78-82 (Courataris).
 ${ }^{3}$ Guian. ii. 723, t. 290.-A IRrir. Ann. Sc. Nat. sér. 1, i. 321, t. 21.-Purt. Mém. Mus. xiii. 159, t. 8.-DC. Mrodr.iii. 294.-SpACH, Suit. à Buffon, iv. 198.-Endl. Ger. n. 6331.-H. Bn. Payer Fam. Nat. $370 .-$ B. H. Gen. 722, n. 66 (part).Miers, Trans. Linn. Sóc. xxx. 168, 279, t. 35 B, 62.-Lecythopsis Schr. Denkschr. Acad. Müиch. Vii. 241.-Berg, Mart. Fl. Bras, Mryrt. 503, t. 7, 75, 76.-B. H. Gen. 723, n. 68 .
 ${ }^{4}$ Is Cercophora Miers (Trans. Lim. Sjc. xix.

[^451]: ${ }^{1}$ Large，＂dirty white or pink．＂
 ${ }^{2}$ Spec．6，7．Berg，Linnca，xxvii． 461 ；xxxi． 261 ；Mart．Fl．Burs．Alyrt． 470 ，t． 5 7ー59．－Bot． Mag．t．3158．
 ${ }^{3}$ It．18リ，－L．Ger．n．664．－J．Ger．327．－ Lamk．Ill．t． 47 G ．－Pom．Dict．vi．25．－DC． Prodr．iii．290－－Sracit，Serit．©̀ Buffor，iv．185．－ Exdl．Gen，n．6332．－Poit．Mém．Mus．xili．141， t．2，3，7．－H．Bx．Payer Fam．Nat，369，－B．H． Gen．723，n．69．－Miens，Trans．Liren．Soc．xxx， 162，190，t． 34 A，38－57．－Chytrome Miere，buc． cif．164，229，t． 34 B．－？Jugastrum Mreis，loc． cit． $167,275, \mathrm{t} .35 \mathrm{~A}$（stamens at top of ligule sometimes fertile ：）．
 ${ }^{4}$ Dters，loc．cit． 170,291, t． 36 A．

[^452]: ${ }^{\text {a }}$ Mart．DC．Prodi．iii．203．－－Menen，loc．cit． 165,246, t． 34 G．
 ${ }^{6}$ Flowers often showy．
 7 Query if natives of this country？
 ${ }^{3}$ Spec．about 50 （ex．Miers 130）．Jacq．A mer． t．109－Aubl．Guiant．t．283－289．－A．S．－H．Fl． Bras．Mer，ii．272．—Berg，Liunca，xxvii． 448 ； xxix． 258 ；Mart．Fl．Bres．Mynt．479，t．62－74． －Walp．Rep．ii． 193.
 ${ }^{9}$ Pl．玉iquin。i．122，t．36．－Port．Mém．Mrus， xiii．148，t．4－8．－DC．Prodr．iii．293．－Endl． Gen．n．6333．－Schomb，Proc．Bot．Soc．i．71，t． 3，4．－H．Bn，Payer Fam．Nat．670．－B．H．Gen． 723，n．70．－Mrers，Tuans．Linn．Soc．xxx．161， $105, t .33 \mathrm{C}, 37$.

[^453]: ${ }^{1}$ Yellow ; strong-scented.
 2 According to earliest authors 1 species, much noted, viz., B. excelsa (concerning which see p.

 Reis. iii. 1130 ; Mat. Med. Bras. 17.-Berg, Linncea, xxvii. 460 ; Mart. Fl. Bras. Myrt. 47 S , t. 60,61 .

[^454]: 1 Velloz. ex Vandell. Rœm. Ser. 138, t. 7, fig. 4.-Chors. Piodr. Monogr. IIypéric. Genève (1821), 3, t. 1, 2-DC. Prodi. i. 542.-Spach, Consp. MIonogr. Hyperic. Ann. Sc. Nat. sér. 2, v. 319 Suit, à Buffon, v. 348.-Exdl. Gen. n.

[^455]: 5466.-Payer, Fam. Nat. 79.-B. H. Gen. 166, 980, n. 6. - Coapia Pis. Bras. 126. - Scor. Introd. n. 1256.-Acrossanthue Prese. Bot, Bem. 22 (ex 1'l. Ann. Se. Nat. sér. 4, ii. 264).

[^456]: ${ }_{2}$ The sepals and petals are striated with black. The anthers are primarily introrse.
 ${ }^{2}$ L. Amcen. Acad. viii. 33 (Hypericum), Guill. et Perr. Fl. Seneg. Tent. i. 107, t. 23 (Fismia).-Hook. F. Niger, 241, t. 21.-Oliv. Fl. Trop. Afr.i. 158.-WWalp. Tlep. i. 391 ; Aun. i. 128 ; ii. 189.
 ${ }^{3}$ Here is placed, on account of the drupaceous character of its fruit, but only provisionally retained by us, Endodesmia calophylloides, Benth. (Gen. 166, n. 5 ; Oliv. Fl. Trop. Afr. i. 157), a shrub of the Gaboon with opposite veined leaves like those of Calophyllum, and quite exceptional in this group by its very numerous stamens, in. separable within from a pentagonal tube (and consequently monadelphous), and especially by its milocular ovary which encloses only a single descending seed. The place of this genus is perhaps rather among the Clusiacea; indeed it
 much resembles Calophyllum.
 ${ }^{4}$ Bl. Bijdr. 143.-Spach, Ann. Sc. Nat. sér. 2, r. 352.-Endl. Gien. n. 5472.-B. H. Gen. 166, n. 4.-Hornschuchia BL. Cat. Hort. Buitenz. (ex Endl.).-Ancistrolobus Spach, loc. cit. t. 6 B; Suit. a Buffon, v. 360.—Endl. Gen. n. $3470 .-$ Tridesmis Spach, Ann. Sc. Nat. sér. L, v. 351, t. 6 A.
 ${ }^{5}$ They are more numerous in Tridesmis, which is also distinguished by a scale at the base of the petals; a charicter of very little importance.
 ${ }^{6}$ Miq. Fl. Jud.-Bat. i. p. ii. 515 ; Suppl. 194. -BL. Mus. Lugd.-Bat. ii. 15, t. 5.-Коrth. Verh. Nat. Gesch. Bot. t. 36, 37 (Tridesmis), Walf. Rep. i. 391 ; Am. iv. 362 ; vii. 333.

 7 Cambess. Amn. Sc. Nat. sér. 1, 5x. 400, t. 13. - Spach, Ann. Sc. Nat. sér. 2, v. 351.-Endr. Gen. n. 5469.-B. H. Gen. 166, п. 3.-Walp. Rep. i. 391.-Lanigercstomma Chapel. herb.

[^457]: Spach, Elodea Adans, Elodes Spact, Holoseprlum Spach, Isophyllum Spach, Millcporum Spach, Myriandra Spach, Norysca Spacri, Psorophytum Spach, Roseyno Spach, Reclevura Velloz. Sarothra L. Triadenia Spach, Tridia Korthe Webbia Spacti).
 ${ }^{3}$ Proposed eqpecially by Spack. Treyiranus (Hyper. Gen. ct Sp. Anim. 1861) re-united them all in a single genus Hypericum. Bentham and Hoorer distinguish only Irypericum $^{\text {and }}$ Ascyrum.
 ${ }^{4}$ Spach, Suit. à Buffon, v. 421 ; Ann. Sc. Nat. sér. 2, ャ. 363.-P'Ayble, Organog. 3, t. 4 ; Jam. Niat. 77.

[^458]: ' The pollen is ellipsoid, as in Hypericum generally, with three folds, " external membrane formed of two bands pointed at the two ends which cross (II. perforatum, I. quadrangutare). The folds correspond to the angles of a tetrahedron (II. perforatum) ; ovoid; three folds, in water, a sphere having three bands with three papillæ (II. hiveinum)."

 - The exterior is often loose reticulate; the next hard, coloured, covering a third membra-

[^459]: nous.
 ${ }^{3}$ All. Fl. Ped/m. n. 1440.-Spach, Suit à Buffon, V. 414; Amu. Sc. Nat. loc. cit. 360.Payer, Organog. 3, t. 1 ; Fam. Nat. 78.
 ${ }^{4}$ Hypericirn Syach, Suit. à Buffon, v. 382: Amn. Sic. Nat. loc. cit. 3ō6,
 s "This special position of the staminal bundles clearly indicates that the reduction to three arises not by abortion but by the union of four bundles two and two." (Payer.)

[^460]: ${ }^{1}$ Adans. Fam. dics Pl. ii. 442.-Spach, Suit. à cymbiform monospermous carpels. (Those we Buffon, v. 363 ; Ann. Sc. Nat. sér. 2, v. 165, 353. -Ennl. Gen. n. 5465.
 ${ }^{2}$ Spach, Suit. à Buffon, v. 369 ; Ann. Sc. Nat. loc. cit. 171, 3j3.-1'ayer, Organog. 3, t. 1; Fum. Nat. 79.
 ${ }^{3}$ Spach, Suit, à Buffon, v. 370 ; Ann. Sc. Nat. loc. cit. 172, 354, t. 4, 5. M. Sipach has established in this group many genera which may be retained as so many distinct subgenera. They may be grouped in two series. To the first, besides Euhypericum, Androscmum, Erimanthe, belong Drosanthe (Srach, Am. Sc. Nat. loc. cit. 355), which has denticulate or pectinate sepals 3-adelphous stamens and an osseous placenta; Webbia (Spach, loc. cit. 356), whnse stamens are also 3 -adelphous, with seeds spongy without; Olympia (SPach, loc. cit. 359), which with the llowers of Euhypericum, has very unequal sepals (the 3 interior being much smaller) ; Campylopus and Psorophytum (Spack, loc. cit. 360), very near Audroscemum; Campylosporus, Norysca, and Roscyna (Spach, loc. cit. 363, 364), the flower of which much resembles that of Eremanthe ; Brorthys (Mut. ex L. Fif.. Suppl. 43), Myriandra and Brathydium (S_{1} ACH, loc. cit. 364, 365), in which the lundles of the androecium are indistinct at adult age, though the study of development shows that they exist at the beginning. Ere-
 have seen appeared altered, perhaps by the puncture of an insect.) The habit of the plant is that of H. lincarifolium. Whilst in this first scries the interstaminal glands are wanting, they are developed in the second, where the stamens are 3-adelphous. Beside Elodea, Elodes, and Triadenia, it includes Adenotrias (Jalr. and Sracu, Ill. Pl. Or. 76, t. 39), differing from Triadenia chiefly by their biovulate ovarian cells, Thymopsis of the same authors (luc. cit. 72, t. 37) differs from the true Hypcricum by its campanulate caly x and the almost definite number of the ovales. Sarothra 1. (Gen. n. 383) and Receveura Velloz. (Fl. Flum. v. t. 119, 120) are referred to Brathys. Tridia Kortu. (Tijdschr. iii. 17, t. 1) is supposed (B. H. Gen. 165) identical with Hypericum japonicum.
 ${ }^{4}$ Spach, Suit. à Buffon, v. 432 ; Ann. Sc. Nat. sér. 2, v. 367.
 ${ }^{5}$ L. Gen. n. 903.-Nutr. Gen. ii. 15.-Сhots. Mrypér. 60 ; DC. Prodi. i. 55.-Spach, Ann. Sc. Nat. loc. cit. 368 ; Suit. à Buffon, v. 456.-Enirl. Gen. n. 5463.-A. Gray, Gen. Ill. t. 91.-B. II. Gen. 164, n. 1. There are calyces with very unequal sepals among the Roseyna and Brathydinec, and the flowers of these latter may bo here and there tetramerous.
 ${ }^{6}$ Ycllow, rarely white.

[^461]: ${ }^{1}$ H. B. K. Nov. Gen. et $S p$. v. 185, t. 455-460. -A. S.-H. Pl. Us. Bras. t. 61, 62.-Deless. Ie. Sel. iii. t. 27.-JAUb, and SPACH, Ill. Pl. Or. i. t. 16-33, 34-36 (Drosanthe), 37 (Thymopsis), 38 (Androscemum), 39 (Adenotrias).-Reichb. Ic. Fl. Germ. vi. t. 342-351.-Griser, Fl. Brit. W.Ind. 111 (Ascyrum),-Tнw, Eıum. Pl. Zeyl. 48. —Ma. Fl. Ind.-Bat. i. p. ii. 513 (Brathys), 514 (Norysca).-Hook. F. Handl. N.-Zeal. Fl. 28.Bexth. F\%. Hongl. 23 ; Fl. Austral. i. 181.Thi. and I'l. Ann. Sc. Nat. sér. 4, xviii. 290.Harv. and Sond. Fl. Cap. i. 117.-Oliv. Fl. Trop. Ajr. i. 15̄.--Borss. Fl. Or. i. T83 (Triadenia), 784.-Gren. and U'ODr. Fl. de Fr. i. 314,

[^462]: 320 (Elodes).—Bot. Mag.t. 137, 146, 178, 4949, etc.-Walp. Rep. i. 383 ; ii. 805 ; v. 141, 142 (Thymopsis), 143 (Adenotrias) ; Ann. i. 126, 960 ; ii. 184 ; iv. 357,359 (Noryeca), 360 (Roseyna, Brathys, Elodea) ; vii. 327, 332 (Norysca).
 ${ }^{2}$ Gen. Plant. 254, Ord. 8.
 ${ }^{3}$ I. 541 (1824), Ord. 84 (Hypericinece).
 ${ }^{4}$ Syn. of Bergia (Elatinece).
 ${ }^{5}$ Abnormal Rosacece (see vol. i. 401).
 ${ }^{0}$ Suit. à Buffon, v. 33 ; ; Am. Sc. Nat. Eér. 2, v. 157, 349.

 7 Ill. Pl. Or. i. 31-77 (1842).
 ${ }^{8}$ Hyper. Gen, et Spec. Anmadversion.
 ${ }^{9}$ Gen. i. 163, Ord. 26.

[^463]: ${ }^{1}$ See page 335.
 ${ }^{2}$ Fam. des $\mathrm{Pl} . \mathrm{ii}, 444$.
 ${ }^{3}$ Endl. Enchirid. 540.-Guib. Drog. Simpl. éd. 6, iii. 617.-Lindl.Fl. Med. 117; Teg. Kingd. (1846) 406.-Rosenth. Syn. Pl. Diaphor. 748.
 ${ }^{4}$ H. B. K. Nov. Gen. ct Spec. v. 182.
 Mart. ex Rosenth. op.cit. 751.
 ${ }^{6}$ A. S.-H. Fl. Bras. Mer. i, 826, t. 68.
 7 Chois. Prodr. Hypér. 36.-Hypericum latifolium Aubl. Guian. ii. 787, t. 312, fig. 1.
 ${ }^{8}$ Pers. loc. cit. - IHypericum sessilifoliun Aubl. Guian. ii. 787, t. 312, fig. 2.
 ${ }^{9}$ Mart. ex losenth. loc. ait.
 ${ }^{10}$ Pers. Syn. ii. 86.-Hypericum cayennouse L. Aman, viii. 321 (Bois Baptiste).
 ${ }^{11}$ Pers, loc. cit,-A. S.-H. Fl. Bras. Mer, i. 327.-Cuors. DC. Prodr. i. 542.-Hypericum

[^464]: guianense Aubl. Guian. ii. 784, t. 311.-Livde. Fl. AFed. 118.
 ${ }^{12}$ Bois sanglant, B. à dartres, B. cossais, B. d"acossais.
 ${ }^{13}$ Spact, Anno Sc. Nat. sér. 2, V. 163.-P. ferrugineum Hook. F.-Haronga febrifuga Steud.
 ${ }^{14}$ Bl. Bijdr. 143.
 ${ }^{15}$ L. Spec. $1105 .-D C$. Prodr, i. 549, n. 70 .Lindl. Fl. Med. 117.-Mér. et Del. Dict. Mat. Méd. ỉi. 576.-GuIn. Drog. Simplıéd. 6, iii. 617, fig. 737.-Gren. et Godr. Flo de Fr. i. 314.Caz. Pl. Med. Indig. êd. 3, 614.-Rosenth. op. cit. 748.-H. vulyare Lamk. Fl. Fr. iii. 151.II. officinarum Crantz. Fl. Austr. 99 (Herbe Saint-Jeas, H. à mille trous, H. aux piqûres, Trucheran, Chassc-diable, Fuga damonum).

[^465]: ${ }^{1}$ They have a double coat.
 ${ }^{2}$ Chols. DC. Irodr. i. 559, n. 13.-H. By. Payer Fum. Nat, 269.-Quapoya Iana-panari Aubl. Guian. 901, t. 344.
 ${ }^{3} 16$ (Pl. et Tris. Amn. Sc. Nat. sér. 4, xiii. 318).
 ${ }^{3}$ Euclusite (p. 396, note 3).

[^466]: ${ }^{5}$ B. H. not Pl. et Tri. (p. 396, note 3). To the sect. Spharandra (same note) Bentham and Hooker reter Triplandron Benth. (Sulph. 73, t. 38) Arrudea A. S.-H. Pobythecandra Pl. et Tui. (loc, cit. xiii. 314) Astrotheca Miers (ex Pl. et 'I'm. loc. cit. xiv. 254), Cahotia Karst. Linucea,

[^467]: Lond.Journ. ii. 368.-Walr. Rep. i. 393 ; ii. 811 ; v. 144 ; Ann. i. 128 ; ii. 190 ; iv. 364 ; vii. 338.
 ${ }^{3}$ Whence the coramon names Figuicrs maudits, Millte-pieds, etc.
 ${ }^{4}$ Aubl. Guiaur. 897, t. 343 (not 344).-EnnL. Gen. n. 5437 (part),-l'ı. et 'Tri. Ann. Sc. Nat. sér. 4. xiv. 240 (part).-H. Bx. Bull. Soc. Linn. I'ar. [1876] 77. - Xanthe Schreb. Gen. 710 (incl. : Balboa Pre et Tri. Havetiopsis 1'm. et Tri. Ifareticlla PL. et Tris. ELematrpus Pı, et The Rengeria Merssa, Rongifa Peepp, et Ende.).
 ${ }^{5}$ With micropyle exterior and inferior.
 ${ }^{6}$ P'eppr. et Exdl. Nov. Gen. et S_{μ}. iii. 12, t. 210.-Pl. et Tri. Ann. Se. Nat. sér. 4, xiv. 210.-13. II. Gen. 171, n. 3.

[^468]: ${ }^{1}$ They are ascending when they are few in number, and approach the horizontal direction as the number increases.

 2 Merssn. Gen. 42 ; Comm. 31.-Enml. Gen. n. 5436.-H. 13n. Payer Fam. Nat. 270.-Schueiggeva Mart. Nov. Gen. et Sp iii. 166, t. 297, fig. ii.
 ${ }^{3} \mathrm{P}^{\prime}$. et Tri. Amn. Sc. Nat. sér, 4, xiv. 246.B. H. Gen. 172, n. 6.
 ${ }^{4}$ Ple et Tris. loc. cit. 24 S .

[^469]: ${ }^{5}$ Ple et Tri. loc. cit. 247.
 ${ }^{6}$ Pl. et Thr . loc. cit. 252.-B. H. Gen. 172, n. 8.-1I. Bn. Bull. Sac. Limn. Par. 77.

 - Pl. et Tut. loc. cit. 249.
 ${ }^{\text {s B. H. Gch. 172, n. } 6 \text { (" Edematopode sepa- }}$ rated from Hacetiopsis by characters apparently of less importance").-See H. Bn. Bull. Suc. Linn. Par. 78.

[^470]: ${ }^{1}$ To 20 in the sect. Ifcmiruapoya (PL. et Tri. loc. cit. 288), and if, as the same authors suppose, Arrudea? bicolor Benth. belongs to this geaus, it would be the richest representative in stamens since the latter number about forty.
 ${ }^{2}$ Sect. 6: 1. Euruapoya (Rengifa) ; 2. Have. tiopsis; 3. Eidcmatopus; 4. Bulboa; 5. Renggeria; 6. Hemiquapoya.
 ${ }^{3}$ Mart. Nor. Gen. et Sp. iii. 166. t. 297, f. iii. (Havetia).-Benth. Hook. Lond. Journ. ii. 369 (Mrvetia), Hew Gard. Misc. iii. 146 (Arrudea?). - Pagpp. et Entre. Nov.Gen. et $S p$. iii. 11, t. 209 A (Uavetia).-WAlp. Rep. i. 493 (Rengifa); ii. 810 (Haretia); Ann. vii. 343 (Rengifa), 344 (Havetiopsis, (Edematopus), 345 (Balbow).
 ${ }^{+}$H. B. K. Now. Gen. ef Sip. v. 203, t. 462.Spach, Suit. è Buffon, v. 305.--Endl. Gen, n. シ 435 .-Tur, et PL. Am, Sc. Nut. sér. 4 , xiv. 245.

[^471]: -B. H. Gen. 171, n. 4.-H. Bn. Payer Fam. Nat. 270 .
 ${ }^{5}$ It has been supposed to be formed by the union of four staminodes in a sort of cupule.
 ${ }^{6}$ It may, it is said, have four, then two inferior ascending (B. H.).
 ${ }_{7}$ The raphe becomes dorsal or nearly so at adult age in Pilosperma (Pl. et Tri, Ann. Sc. Nat. sér. 4, xiv. 243.-13. H. Gen. 171, n. 4), a Columbian tree which has the characters of vegetation of Havetia, and of which the tetramerous female flowers only are known; but we know not if the raphe may not primarily be equally ventral. Is the uril (5) of the seed, as supposed, distinct in origin from that of Haretia?
 ${ }^{8}$ II. laurifolia H. B. K. loc. cit. (not alior.).
 ${ }^{9}$ PL. et Tri. Ann. Sc. Nat. हér. 4, xiv. 25̄3.B. H. Gen. 172, n. 7.

[^472]: ${ }^{1}$ C. elegans, Pl. et Tri. loc. cit. 254.
 ${ }_{2}$ Puepp. et Exdl. Nov. Gen, et Sp. iii. 13, t. 211. -Ennd. Gen. n. 6433^{1}.-PLe et Tri. loc. cit. xiv. $2055 .-$ B. H. Geยn. 172, n. 9.
 ${ }^{3}$ The g. Tuvomitopsis (Pl. et Tri. loc. cit. xiv. 261 ;-Bertolonia Spreng. N. Entd. ii. 110, t. 1, fig. 1, not Mart.) has been distinguished on account of its aril springing from the micropyle instead of from the hilum. Bentifan and Hooker say: "Nos tamen in Chrysochlumide arilli basin vidimus cum endocarpio et hilo seminis tam arcte concretam ut funiculus nullus appareat, et arillus cicatricis endocarpii v. seminis oriri videatur," and they join Tovomitopsis to the g. Chrysochlamis, to which they are in. clined likewise to refer Commirhea Miers (Trans, Linn. Suc. sxi. 252, t. 26).
 ${ }^{4}$ A. S.-H. Fl. Bras. Mer. i. 315, t. 64 (Tovo-mila).-Presw. Symb. ii. 20, t. 66 (Tovomita).Walp. Ame. vii. 345,346 (Tovomitopsis).
 © Aubl. Guian. 95̄6, t. 3G4.-J. Gere 256.Porr. Dict. vii. 717; Suppl. v. 327.-Endl. Gen. n. 5433.-Pl. et Tri. loc, cit. xiv, 267.-B, H.

[^473]: ${ }^{1}$ Guian.t. 113, fig. $a-j$ (excl.).
 ${ }^{2}$ L. F. Suppl. 49, 303.-Pl. et Tri. Amn. Sc. Nat. sér. 4 xiv. 286.-B. H. Gen. 173, n. 11.H. Bn. Paycr Fam. Nat. 272 - ? Blackstonia Scop. Introd. n. 1256.-Aneuriscus Presl. Symb.

[^474]: ${ }^{1}$ Moronoben globulifera Schlcetl, Linnaer, viii. 189.-Aneuricus exserens Presd.-A. Aubletii Presil.
 ${ }^{2}$ Ied, very odorous.
 ${ }^{3}$ Oliv. Fl. Trop. Afr. i. 163. It is a question if it has not been introduced.

 Nokonh. ex Dup.-Th. Gen. Nov. Mad, 14.DC. I'rodr. i. 厄̄63.-Spacut, Suit. à Buffon, v. 319. -Candess. Mém. Mus. xvi. 422, t. 19.-Endl.
 xiv. 289.

[^475]: ${ }^{5}$ In C. gymnoclada the ovary is described as directly surmounted by five punctiform stigmata (Pl. et Tri.).
 ${ }^{6}$ One of them, C. urophylla Dcne. is perbaps evidently a form little distinct from Symphonia globulifira L. F.

 7 Aubl. Guian. 788, t. 313 (excl. fig. $a-j$).Exdl. Gen. n. $5 \not 41$ (part).-Pl. et Thi. Aur. Sc. Nut. sér. 4, xiv. 295.-B. H. Gen. 174, n. 13. - Leucouocarpus Esproce, herb. (ex, Pl. et Thi.).

[^476]: ${ }^{1}$ White.
 a Panch, ex Pr. et Tri. Ann. Sc. Nat. "sér. 4, xiv. 292.-1B. H. Gen. 173, п. 12.
 ${ }^{3}$ In M. cautiflora the disk, little prominent, is quite entire beneath the stamens, and does not project into the intervals of the filaments.
 ${ }^{4}$ Panch. Séb. Not. Bois N.-Caled. 220.-II. Bn. Adansonia, xi. 366.
 ${ }^{5}$ Sarr Trans. Hort. Snc. v. 457.-Don, Gen. Syst. i. 619.-Spach, Suit. à Buffor, v. 320.Endl. Gen. n. 5445.-P'l. et Tri. Ann. sc. Nat. sér. 4, xiv. 300-13. H. Gen. 174, n. 15.-Oliv. Fl. Trop. Afr. i. 164.

 From which it cannot be retained as genc-

[^477]: rically distinct.
 ${ }^{7}$ From which the sepals are said to pass imperceptibly to petals.
 ${ }^{8}$ Diart. Nov. Gen. et Sp. iii. 108, t. 288, f. 2, t. 289.-Endl. Gen. n. 5456.-Pl. et Thi. Ann. Sc. Nat. sér. 4, xiv. 297.-B. H. Gen. 174, n. 14. -H. Bs. Payer Fam. Nat. 272.
 ${ }^{9}$ The pollen is "spherical with four rather short folds, and four transverse elliptical umbilics." (H. Moul. Ann. Sc. Nat. sér. 2, jii. 329.)
 ${ }^{10}$ Arred. Discors. 32 (Bacuy). - Abbey. Miss. Capuc. 222 (Pacoury).

[^478]: ${ }^{1}$ Large pink.
 ${ }^{2}$ Like all the types of this series, this will perhaps one day be regarded as simply a section of a single genus.
 ${ }^{3}$ Roxe. Pl. Coromand. ii. 51, t. 196 ; iii. t. 270. -Chois. DC. Prodr. i. 562 ; Gutt. Ind. 23, 32.

[^479]: Endl. Gen. n, 5444.-Pl. et Tri. Ann. Sc. Nrt. sér. 4, xív. 303.-B. H. Gen. 175, n. 17.-H. Bn. Payer Fam, Nat. 270.-Stalagmites Murr. Comm. Gutt. ix. 173 (part).-DC. Prodr. i. 562.
 ${ }^{4}$ The most exterior are the smallest.
 ${ }^{5}$ Or more rarely contorted.

[^480]: Tri. loc. cit. 363.
 ${ }^{5}$ Sect. 12: 1. It,bradendron (Gram.) ; 2. Mangostama (Gerrna.) ; 3. Peltostigma (Pl. et Tri.) ; 4. Xanthechymus; 5. Rheediopsis (an African species mentioned above); 6. Chesianthemum (Vieill.) ; 7. (?) Rhinostigma (Mir.) ; 8. Cambogia (L.) ; 9. Comarostigma (Pl. et Tair.) ; 10. Tiachycarpus (Ps. et Tri. luc. cit. 348) ; 11. Dis. costigma (Hassk.) ; 12. Terprophyllum (Trw.).

 6 Wight, Icon. t. 44, 102-105, 112-115, 116, 120, 121, 192, $960,960\left(^{2}\right)$; Ill. t. 44.-W WaLl. Pl. As. Rar. ii. t. 2j8.-Roxb. Pl. Corom. iii. t. 298.-Tıw, Ěuum, Pl. Zoyl. 48, 49 ; Suppl. 493 (Terpnopinyllum, Nunthochymus).-SEem. Toy. Her. Bot. t. 79, 93.-Miq. Fll. Iud.-Bat. i. p. i. 506 ; Ann。Mus. Lugd.-Bat. i. 208.-OLiv, Fl. Trop. Afr. i. 164, 168 (Xanthochymus).-Kurz, Journ. As. Soc. xxxvii. 64.-Anderson, Hook. Fl. Brit. Ind. i. 259.-Walp. Rep. i. 394, 395 (Tunthochymus), 811 ; Ann. ii. 190; iv. 365, 366 (Discostigma) ; vii. 350, 353 (Discostigma), 354 (Terpnophyllum).

[^481]: ${ }^{1}$ Le Gen. r. 6.56.-J. Gen. 25T.-Lamk. Ill. t. 458.-Desux. Dict. iii. 692; Suppl. iii. 582 (part)-DC. Prodr. i. 561.-Cambess. Mém. Mus. xvi. 424.-Turr. Dict. Sc. Nat. At1. t. 157.
 -Spacri, Suit. à Buffon, v. 321.-Endl, Gen. n. 5442.-B. H. Gen. 176, n. 23 (part), 981.-H. Bn. Payer Fam. Nat. 271.-PLe et Tri, Ann. Sc. Nat. sér. 4, xv. 210 (part).

[^482]: ${ }^{1}$ The seeds are ascending, nearly erect, large, covered with a thick bed resembling fibrous hemp, enclosing a large fleshy embryo quite riddled with reservoirs of gum-resinous juice, and much resembling a large almond, with plano-convex cotyledons, well defined externally, but united by their plane surface, and a very short inferior radicle.
 ${ }^{2}$ M. americana L. Spec. (ed. 1), 512.-JACQ. Amer. 268, t. 181, fig. 82 ; Amer. Pict. t. 248.Vahl, Ecl. ii. 40.-W. Spec. ii. 1157.-Mramay Bave, Hist. i. 172.-Mammei magno fruetu, Persicx sapore Plum. Gen. 44; Ic. 170.-Rheedia americana Griser, Fl. Brit. W. -Ind. 10S.
 ${ }^{3}$ The other species admitted into the genus by 'Triana and Planchon (loc. cit. 244-246) are attributed by Oliver to the genus Ochrocarpus (see p. 408, 426).

[^483]: ${ }^{4}$ L. Gcn. n. 656.-J. Gen. 258.-DC. Prodr. i. 562.-Cambess. Mém. Mus. xvi. 426, t. 17, fig. 6.-Spach, Suit. à Buffón, マ. 272.-Endl. Gen. n. 5447. B. H. Gen. 176, 981, n. 22.-H. Bn. Payer Fam. Nat. 272.-Pl. et Tri. Ann. Sc, Nat. sér. 4, xv. 298.-Rhyma Scop. Introd. n. 1185 (ex Endl.).
 ${ }^{5}$ Rumpr. Herb. Amboin. vii. 3, t. 2 (Nagassa-rium).-Rheede, Hort. Malab. iii. t. 35.-Herm. Zeyl. 7 (Naghas).- Cногs. Gutt. Ind. 40.Wight, Icon. t. 117-119, 961.-T'Tw. Enum. Pl. Zcyl. 50.-Miq. Fl. Ind.-Bat. i. p. ii. 509.Hook. F. Fl. Brit. Ind. i. 277.-Walp. Rep. i. 396 ; Ann. i. 129 ; vii. 358.
 ${ }^{6}$ Wall. Il. As. Rar. iii. 5, t. 210.-Endl. Gen. n. 5449.-B. H. Gen. 176, n. 21.-PL. et Tre, Ann. Sc. Nat. sér. 4, xv. 295.

[^484]: ${ }^{1}$ Thw. Enum. Pl. Zeyl. 50.-H. Bn. Adansonia, xi. 368.
 ${ }^{2}$ See vol. iv. p. 269. This genus, unknown to us, had previously been reforred doubtfully to the Ternstremiacere.
 ${ }^{3}$ Bedd. Fl. Sylv. t. 3, 93.-T. Dyer Mook. f. Fl. Brit. Ind. i. 278.
 ${ }^{4}$ L. Gen. n. 658.-J. Gen. 258; Ann. Mus. xx. 466.-Lamk. Dict. I. 552 ; Suppl. ii. 17 ; Ill. t. 459.-G.ertn. Fruct. i. 201, t. 43, fig. 1.-DC. prodr. i. 562.-Cambess. Mém. Mus. xri. 427, t. 17, fig. C.-Sracir, Suit à Buffon, v. 330.Endl. Gen. 1. 5448 .-Payer, Fam. Nat. 40.B. II. Gen. 170°, n. 20.-Pl. et Tri. Am. Sc. Nat.

[^485]: ${ }^{1}$ On these characters are founded the sections admitted in this genus particularly by Trwartes.
 ${ }^{2}$ Rumph. IIerb. Ambain. ii. t. 71, 72 (Bintan-gor).-Jacq. Amer. t. 165.-A. S.-H. Fl. Bras. Mer. i. 320, t. $57 .-\mathrm{Wrght}$ and Arn. Prodr. i. 102.-Wigחt, Hook. Bot. Misc. Suppl. t. 17 ; Icon. t. 106-108, 110, 111.-THW. Eurem. Pl. Zeyl. 51, 407.-Griseb. Fl. Brit. W.-Ind. 10s.Mre. Fl. Iud.-Bat. i. p. ii. 509 ; Suppl. 193, 497.

[^486]: -Hook. f. Fl. Brit. Ind. i. 271.-Bentit. Fl. Austral. i. 183.--W Wlp. Rep. i. 396 ; ii. 811 ; Aun. i. 129 ; ii. 191 ; iv. 366 ; vii. 3 อै 6.
 ${ }^{3}$ Aubl. Guian. Suppl. 19, t. 379.-Poir. Diet. vi. 34 (Quina).-Tul. Amn. Sc. Nat. sér. 3, xi. 156.-B. H. Gen. 176, 981, n. 24.-Pl. et Trt. Ann. Sc. Nat. sér. 4, xv. 309.-Guiina Crueg. Linnca, xx .115.
 ${ }^{4}$ Sometimes only one.

[^487]: ${ }^{1}$ Exceptionally, however, they enclose grains of pollen.
 ${ }^{2}$ The exterior is tomentose.
 ${ }^{3}$ Of a gummy nature (Trécul), see p. 415.
 ${ }^{4}$ Avbl. Guian. i. 492, t. 194.-J. Gen. 434.-
 Poir. Diet. vii. 718 ; 1ll. t. 424.-Eindl. Gen. n.

[^488]: 4565.-PL. et Tri. loc. cit. 315.-Robinsonia Schreb. Gen. is. 852.
 ${ }^{5}$ White or yellowish, odorous.
 ${ }^{6}$ Griseb. Fl. Brit. W.-Ind. 105.-Walp. Rep. ii 434 ; $\mathcal{A} n$. vii. 359.

[^489]: ${ }^{1}$ Bull. Soc. Bot. de Fr. viii. 26, 66; Amz. Sc. Nat. sér. 4, xiii. 306 ; xiv. 226; xv. 240; xvi. 263.

 2 'I'hese two latter, several essential organs of which are imperfectly known, are only doubtfully admitted.
 ${ }^{3}$ A $n \mathrm{~m}$. Sc. Nat. sér. 3, xi. 156.
 ${ }^{4}$ Gen. 167, 980, Ord. 27.
 ${ }^{5}$ Fl. Trop. Afr. i. 169 (1868).
 ${ }^{6}$ B. H. Gen. 980 (1807).
 ${ }^{7}$ Fl. Brit. Ind. i. 278 (1874).
 ${ }^{8}$ Sce vol. iv. p. 261.
 ${ }^{9}$ Bull. Suc. Limu. Par. 77.
 ${ }^{10}$ Following the example of Kurz (Joun As . Soc. Beng. xxxvii. G4) and J. Hooker (op, cit. 259).

[^490]: ${ }^{1}$ They are nourished from the soil into which their roots are plunged; but they often twine round trees for support and finally kill them; whence the common names, Murderous bindweed, Cursed figs, Millepedes, etc.
 ${ }^{2}$ The reservoirs of these juices have been especially studied by M. Trécul (Des vaiss, propr. dans les Clusiucées, Compt. Rend. Acad. Sc. lxiii. 537, 613; Adansonia, vii, 182, 191 ;-La-

[^491]: ${ }^{1}$ Mroronabece Chors.- Endl. -Pl. et Tri.-B. H. Gen. 168.
 ${ }^{2}$ Calophyllece Cnois. DC. Prodr. i. 501.
 ${ }^{3}$ Bulll. Soc. Linn. I'ar. 78.

[^492]: ${ }^{1}$ Endl. Enchirid. 535.-Lindl. Fl. Aled. 113 ; Feg. Kingd. (1846) 401.-Guib. Drog. Simpl. ed. 6, iii. 600.-Rosentif. Sinop. Pl. Diaphor. 740 , 1150.

 2 Desrouss. Lrmk. Dict. iii. 201. - Thw. Enum. Il. Zeyl. 49.-G.Gutta Wigut, Ill. 125, t. 44 (excl. syn.) - G. cambogioides Rorie, Mat. Med. ed. 3, 339.-G. lobulosa War, L. Cat. n. 4868.-G. elliptica Wall. Cat. n. 4869.-G. lateriftora Bl. Bijdr. 214.-G. pictoria Roxb, F\%. Iud. ii. 627.-Wıaнт. Ien. j. t. 102.-Chois. Gutt. de l'Inde, 37.-G. ucuminata PL, et Tri. Ann. Sc. Nat. sér. 4, xiv. 355.-G. Gardichaudii Pr. et Tri-Guttifera vera Kccy.-Carcapule dictus magnit. cerasi Linsch. It. (trans. de Bry) 100.- Arbor indica gummi-guttam fundens...Hermr. Mus. Zeyl. 26.-Stalagmitis cambogioides Murr. Conm. Gcett. ix. 73 (part).-Hebradendron cambogioides Grah. Hook. Comp. Bot. Mag。 ii. 199, t. 27.-Cambogia Gutta Lindl. F'eg. Fingd. 400 (part). - Hebradendron pictorium Grah. Eook. Comp. Bot. Mag. ii. 199 (Gukatu, Liana

[^493]: ${ }^{1}$ Desrouss. Lamk. Dict. iii. 701.-Roxb. Pl. Corom. iii. t. 298 ; Fl. Ind. ii. 621,-Ноок. F. Fl. Brit. Ind. i. 261, n. 6.-G. xeylanica Roxb. Fl. Ind. ii. 621,-G. elliptica Wall. (ex Ноok. F. loc. cit.).
 ${ }^{2}$ Bend. Fl. Sylv. t. 173.- Hook. F. Fl. Brit. Ind. i. 268, n. $2 \overline{5} .-\mathrm{Hanl}_{\mathrm{an}}$, et Flück. Phamacogr. 79.
 ${ }^{3}$ As such are mentioned G. Tydia Roxs. lanceolata Roxb, and ovalifolia (Stalagmites ova. lifolius G. Don. - Janthochymus ovalifolius Roxs.) ; but it is at least doubtful if their juice will gield a good gum-gutta. The same may be said of G. indica Chors. (DC. Prodr. i. 561), syn. of G. celebica Desrouss. (Dict. iii, 700). The latter is especially remarkable for the production of a concrete oil called Kokum Butter, which is extracted from the dried seeds by bruising and boiling them in water, on the surface of which this fat floats. (Hanb, et Flück. Pharmacogr. 79.) It has been suggested as serviceable in pharmacy and for making candles, but it is doubtful if it could be obtained in sufficient quantity in Europe for this industry.
 ${ }^{4}$ Especially G. collina Vierll.-PANch. et Sér. Not. Bois N.-Caléd. 223 (Mou of the natives, Faux Houp).

[^494]: ${ }^{5}$ Guib. op. cit. 611.
 ${ }^{6}$ L. f. Suppl. 302.-PL. et Tri. Ann. Sc. Nat. sér. 4, xiv. 287.-Oliv. Fl. Trop. Afi. i. 163.Moronobea globulifera Aubl. Guian. t. 313, a-j.M. glubulifera Schltl. Linnaea, viii. 189.Aneurincus exserens Presl. Symb. 48.-A. Aubletii Prest. op. cit. 72.-Mawna-tree Banck, Nat. Hist. Guian. (1763) 74.-Hog gum-tree Bancr. Hook. Journ. Bot. iv. 144.-Mrami resinifora... Barr. Fr. Équin。 76 (Oanani of the Brazilians).
 7 Guib. op. cit. 612.
 ${ }^{3}$ Jace. Amer. 269, t. 105.-H. B. K. Nov. Gen. et Sp. v. 202.-Descourt. Fl. Ant. ii. t. 74.C. Inophyllum, B. Calaba Lame. Dict. i. 553.Calaba folii citri splendente Puum. Gen. 39, t. 18 (Galba, Lignon, Parétuvier, Aceite de Maria, Resina Ocuje of the Cubans). M. Triana (Ann. Sc. Nat. sér. 4, xv. 251) distinguishes from it C. Maria (Arbol del Aceite de Maria of the Colombians).
 ${ }^{3}$ Guib. op. cit. 613.
 ${ }^{10}$ W. Berg. Mag. (1811) 79 (part),-Crooss, Prodr. i. 562.-Cambess. Mém. Gutt. 26, t. 17, fig. c, 1, 2.-PL. et Tri. loc. cit. 286.-C. Inophyllum Lamk. Dict. i. 552 (not L.).-C. lanceolarium Roxb.-C. lanceolatuu Bl.

[^495]: ${ }^{2}$ L. Spee. 732 (not Lame.).-Wight, Ill. i. 128 ; Icon. t. 77.- P' L. et Tri. loc. cit. 282.-C. ovatifolium Nor.-C. Bintangor Roxb.-C. Blemei Wight.-Bintangor maritiona Rumph. Herb. Amboin. ii. 211, t. 71.-Ponna, Pouna Marcm Rheed. Hort. Mal. iv. 76, t. 38.-Fooraha Flac. Madag. 139.-Kalophyllodendran indicum folio stebrotundo Vaill. Mém. Acad. Par. (1722) 207. -? Balsaqrariu Inophy?lum Lour. Fl. Cochinch. (ed. 1790) 470 (Domba-gass in Ceylon, Jamplond in Java, Tamana in Otahiti.
 ${ }^{2}$ L. Spec. 734 (part).--Kosenth. op. cit. 745. -M. Nagaha Gardn.-Naghas Herm. Zeyl. 7.Arbor Naghas Bcrm. Thes. Zeyl. 25.-Nagessarium Remph. Herb. Amboin. vii, t. 2.
 ${ }^{3}$ Chois. DC. Prodr. i. 562 ; Gutt. Ind. 40.Bulluta Tsjampacam s. Castanea rosea indica Rheed. Hurt. Malab. iii. 63, t. 53.
 ${ }^{+}$L. Spec. $1495 .-1$ 'urp. Dict. Sc. Nat. Atl. t. 156.-Schlehtl. Li/mea, viii. 181.- Pi. et Tri. Ann. Se Nat. sér. 4, xiii. 32t-Rosentry, op.cit. 740.-C. retusa Lamk. Ill. t. 85\%.-C. alba W.

[^496]: ${ }^{1}$ G. celebica L. Cambogia Desrx, zeylanica Roxb. Cowa Roxb. purpurea Roxb. cochinctinensis Chols. ; G. cornea L. the fruit of which is small and indifferent, etc.
 ${ }^{2}$ L. Spec. 731.-Jaca. Ainer. 268, t. 181, fig. 82; Tab. Pict. t. 21 S.-DC. Prodr. i. 561, n. 1. -Turf. Diet. Sc. Nat. Atl. t. 157.-Griser. Fl. Brit. IF.-Ind. 108.-Lindl. Fl. Med. 115.Guib. op. cit. iii. 601,-Rosenty, op. cit. 741.P'L. et 'I'ri. Amn. Sc. Nat. sér. 4, xv. 242.Mamay Baurr. IIist.i. 72.-Mrammeimagno fructu, Persicie sapore Plem. Gen. 44 ; Ic. 170 (Mammei, Wild Apricot, St. Domingo Apricot).
 ${ }^{3}$ Especially, in India, that of 0 . longifolius (Calysaccion longifotium Wight;-Mammea longifolia PLe et 'Tri.), and in Madagascar that of O. madagascaricnsis (Tovomita madagascariensis (x. Don.). O. africanus Oliv. (Fl. Trop, Afr. i. 169) is perhaps the Memana africana Dos (Gen. Syst. i. 619) the fruit of which is eaten at

[^497]: Sierra Leone.
 ${ }^{4}$ To this genus perhaps belongs the famous Cay-may, with which the Emperor of Hué is said to aromatize his tea.
 ${ }^{5}$ L. Spec. 710.-Tuss. Fl. Ant. iii. t. 32.I'an Rheedia Plum, ed. Burm. t. 257. In Panama the fruit of R. cdulis PL. et Tri. (Calophyllum edule Seem.) is eaten. R. acuminata (I'erticillaria acuminata R. et P'Av.) is the Arbol del Accyte de Maria of the Peruvians. Mradrono or Naranjuelo of the Colombians is also a Rhectia.
 ${ }^{6}$ Malrt. Nov. Gen. et Spec. iii. 169, t. 288, fig. 2, t. 289.-Rosenth. op. cit. 747.-Symphonia esculenta Steun.-Bacw'y Moronobera escutenta Arr. d. Camatra.
 ${ }^{7}$ See p. 404, note 5.-Rosenth. op cit. 744 (Butter-tree, Tallow-tree).
 ${ }^{8}$ Pancir, et Sér, Not. Diois N.-Caléd. 220.
 ${ }^{9}$ Particularly C. posea L. minor L. fare L. albr I_{s}.

[^498]: ${ }^{1}$ Gcn. n. 641.-Pl. et Tri. Ann. Sc. Nat. вér. 4, xiv. 306.-B. H. Ger. 175, n. 18.-Verticillaria R. et PAv. Prodr. 81, t. 15.-Chloromyron 1'ers. Enchirid. ii. 73.-Lamprophyllum Miers, T'rans. Linn. Soc. xxi. 249, t. 26.
 ${ }^{2}$ Spec. about 15. Curors. Gutt. Ind. t. 4, 5.
 ${ }^{3}$ Gin. Nv. Madag. 15.-Ml. et Tri. Ann. Sc.

[^499]: Nat. sér. 4, xiv. 364.-B. H. Gen, 175, 980, n. 19.-CalysaceionWıat, Ill. t. 130 ; Icon.t. 1999.
 ${ }_{4}$ Spec. 6, 7. Mra. Ann. Mus, Lugd.-Bat. i. 209.-Oliv, Fl. Trop, Afric. i. 169.-Pl. et Tri. Ann. Sc. Nat. sér. 4, xiv. 244 (Mammea, n. 2-6).-H. Bn. Bull. Soc. Linn. Par. 82.Walp. Ann. vii. 355.

[^500]: ${ }^{1}$ Short, versatile, often coloured red or brown when fertile.

[^501]: ${ }^{2}$ The pollen is " ellipsoid ; six folds; in water. six bands, on three of which a papilla. Lythrum

[^502]: Salicaria, L. thymifolium." (H. MuнL, Ann. Sc. Nat. sér. 2, iii. 331.)
 ${ }^{1}$ Red, pink, more rarely white.
 ${ }^{2}$ A. S.-H. Fl. Bras, Mer. iii. t. 186.
 ${ }^{3}$ Lindl. Introd. ed. 2, 101, 441. The stamens are often reduced to from five to seven in this species, which appears in other respects to connect Lythrum with Cuphea.
 ${ }^{4}$ Especially L. arnhemicum (F. Muell. Fragn. ii. 107 ;-Benth. Fl. Austral. iii. 299).

[^503]: ${ }^{5}$ H. B. K. Nov. Gen et Sp. vi. 192.-A. S.-H op. cit. 129,-BEXTH. op. cit. 298 ,-GREN, et Godi. Fl. de fr. i. 593.-G. Beck. Estr. Bl. [1853] 405.-Boiss, Fl. Oi, ii. 738.-Htern, Fl. Trop. Afr, ii. 465.-Harv. and Sond. Fl. Cap. ii. 516.-C. Gay, Fl. Chir. ii. 368.-A. Gray, Man. ed. 5, 183.-Fr. et Sav. Jap. 167.-But. Mag. t. 1003, 1812.-W Walp. Rep. ii. 103; v. 674 ; A $n n$. ii. 539 ; iv. 688.

[^504]: ${ }^{1}$ Bu. Bijdr. 1151 ; Mrus. Lugd.-Bat. 123, t. 42. -Endl. Gen. n. $5756 .-$ B. II, Gen. 783, n. 22. - Henslowia Wall. Pl. As. Rar. iii. 13, t. 221 (not Bl.).-Enid. Gen. n. 1905.-Lindl. Teg. Ningd. (1846) 570.-Hook. Fl. Ind. ii. 573.Quilamum Blanc. Fl. d. Filipp. S51.
 ${ }^{2}$ Especially to the lihamacece (ENdL.), to the

[^505]: Saliciner, and to the Saxifragacere.
 ${ }^{3}$ There are also, here and there, tetramerous llowers.
 ${ }^{4}$ It recalls, by its organization, that of some Saxifragacece-Cunonice with ovarian cells complete or nearly so.

[^506]: ${ }^{1}$ P' L. Hook. Journ. iv. 475, t. 16 (Henslowia). -Miq. Fl. Ind. Bat. i. p. i. 715 (IIenslovia).WALP. $A n n$. iv. 692.
 ${ }^{3}$ Dup.-Th. ex Gaudich, Freycin. Toy, Bot.

[^507]: 30.-Endi. Gen. 1205.-Tul. Ann. Sc. Nat. sér. 4, vi. 138.-H. Bn. Adansonia, x. 39.-Baker, Fl. Maurit. 101.-Fropiera Ноок, ғ. Joum. Limn. Soc. v. 1, t. 1: Gen. 725, n. 76.

[^508]: ${ }^{1}$ P. mauritianum. - Fropiera mauritiana Hook. F. loc. cit.
 ${ }^{2}$ Houst, ex L. Ger. n. 155.-Adans. Fam. des Pl. ii. 234.—J. Gen. 333.-Lask. Dict. i. 130 ; Suppl. i. 32s; Ill. t. 77.-DC. Mém. Gcnèv. iii.
 B. II. Gen. 776, n. 1.-Baker, Fl. Maurit. 99.H. Bn. F'tyer Fime Nat. 351 (incl. : Amanella MiQ. Ameletia DC. Cormhia Anduin. C'mptotheca

[^509]: Bl. Didiplis Rafin, Ditheca Wraht and Arn. Middendorfia 'Trautv. Nommoia Wight, Peplis L. Rotala L. Sellowia Roth. Suffreniu Berilard. Tritheca Wight and Arx. Winterlia Sprevg.).
 ${ }^{3}$ L. Gen. n. 446.-J. Gen. 333.-Scmivuri, Handb. t. 99.-Gerta. Fruct. i. 237, t. 51.DC. Irodr. iii. 76.-ENnL. Gen. n. 6144.-B. H. Gon. 776, n. 2.-H. Bn. Bull. Soc. Linn. Par. S7.
 ${ }^{4}$ L. Sjuce. $474 .-$ DC. Prodr. iii. 77.

[^510]: ${ }^{1}$ Bess. ex Sprevg. Syst. ii. 135.-Ammania borysthenice DC. Prodr. iii. 78, n. 10.
 ${ }^{2}$ Trautr. Diss. de Middendorffia, Mém. Sav. étr. Ac. Petersh. iv. 489, t.4.-Walp. Rep. v. 673.
 ${ }^{3}$ Nutt. ex DC. Prodr. iii. 77, n. 4.-Ptolina
 aquatica Nutr. (ex DC.).
 ${ }^{4}$ Rafin. Atlunt. Journ. (1833) n. 6, p. 23.Endl. Gen. 1427.-B. H. Gen. 777, п. 3.Hypobrichia M. O. Curt. Torr. et Gr. Fl. N.Amer. i. 479.

[^511]: ${ }^{1}$ It may be diandrous. The sepals are sometimes five or six in number. The petals are wanting, as is often the case in Peplis Portula, and the accessory teeth of the calys are as marked as in tbe latter.
 ${ }^{3}$ L. Mantess. 175.-DC. Prodr. iii. 75.-A. S.-1I. Mem. Mus. ii. 381.-Endl. Gcn. n. G143. -? Ortegioides Soland. (ex Enid.),-Entelia R. I3r. (ex Endl.).-Tritheca Wight and Arn. Prodr: i. 305.
 ${ }^{3}$ DC. Mêm. Genèv. iii. p. ii. 82, t. 3 ; Prodr. iii. 76.-Exnl. Gen. n. 6145.-Ditheca Wigilt and Ain. Prodr. i. 304.-Mapalocarpum Wight and Arn. loc. cit. 305.-Amernella Mra. Fl. Ind.Bat. i. p. i. 618.
 ${ }^{4}$ Bl. Bijdr. 1128.-DD. Prodr. iii. 76.-Endl. Gen. n. 6141.
 ${ }^{5}$ Bentham and Hooker admit two: ono in

[^512]: Ind. ii. 571.
 ${ }^{+}$Fam. des Pl. ii. 232, Fam. 31.
 ${ }^{5}$ Gen. (1789) 330, Ord. 9.
 ${ }^{6}$ Dict. Sc. Nat. xxrii. 453.
 7 Calycantheme Vent. Tabl. iii. 298.-Salicarina Lins, Enum. i. 142.
 ${ }^{8}$ Endl. Gen. 1198, Ord. 267.
 ${ }^{9}$ Mém. Suc. d'Hist. Nat. Genève, iii. p. ii. 65 ; Prodr. iii. 75, Ord. 74 (1828).
 ${ }^{10}$ Introd. ed. 2, 100 ; Veg. Kingd. (1846) 574, Ord. 918.
 ${ }^{11}$ Gen. 773, 1007, Ord. 69.
 ${ }^{12}$ See pp. 333, 337, 338, 381. The ovary is not free at the bottom of the receptacle.

[^513]: ${ }^{1}$ Without counting the genus Physopodium of Desvaux (Amn. Sc. Nat. sér. 1, ix. 403) generally enumerated in the Lythrariacece (DC. Prodr. iii. 94 ;-Endo. Gen. n. 6168), the place of which is not determinable, the characters of the grnecium and of the fruit not being given

[^514]: with precision. P. volubile, a climbing shrub of Bourbon, is perhaps a Combretacea; we have been unable to discover it in the herbarium of Desvaux.

 2 Especially Symmetria BL. which is a Rarraldeia and Tomostylis Montrous. (Mêm. Acad.

[^515]: a Combretacea, Lumuitzera racemosa W.
 ${ }^{1}$ Exdl. Euchirid. 644.-Linnl. Veg. Kingd. 575̄; FU. Med. 150.-Rosenth. Synops. Plant. Diaphor. 910.

[^516]: ${ }^{1}$ Lythrum Salicaria L. Spec. 640.-DC. Prodr. iii. 82, n. 13.-Gren. et Godr. Fl. de Fr, i. 593. -Caz. Pl. Méd. Indig. ed. 3, 945.-Salicaria spicata Lamx, Fl. Franç. iij. 103.-S. vulgaris Masincr, Meth. 665.-Lysimacñit purpurea quibusdam spicata J. Bauh. (Red Lysimachin).
 ${ }^{2}$ L. Spec. 642.-Rosenth. op. cit. 912.Salicaria hyssopifolia Lame.
 ${ }^{3}$ Pursir, Fl. Bor.-Amer. i. 334 (not Presl). -DC. Prodr. n. 5.-Ell. Bot. Mrag.t. 1812.L. vulneraria Scir. Pl. Rar. Hort. Mon. t. 27.L. acinifolium Sess. et Moç. (ex DC.).-L. Kennedyanum H. B. K. Nov. Gen. et Sp. vi. 191. -L.virginicum Kenn.-Pythagoren alata Rafin. (Ierba del cancer). L. Hunteri DC. mingled with Morinda, is used in India for dyeing.
 +H. B. K. ex Rosenth. op. cit. 914.-Lyth. rem verticillatum L .
 ${ }^{5}$ H. B. K. ex Rosenth, op, cit. 911.-Heimia syphilitica DC. Prodr. iii. 89.-Gynoria syphiliticu Mof̧. et Sess. ex DC. loc. cit. (Hanchinol). N. salicifulia II. B. K. Nov. Gen. et Sp. vi. 192 (Heimir salicifolia Link et Ott.), from the same country (fis. 394, 395), has analogous properties.

[^517]: ${ }^{6}$ H. B. F. Nov. Gen. et Sp. vi. 202.-DC. Prodr. iii. 87, n. 30 (Chiagari). C. Bulsamona Cham. and Schlchtl and ingrata Cham. and Schlchit, of Brazil (Sete Sangrias), are reputed antisyphilitic and febrifuge.
 ${ }^{7}$ H. B. K. Nov. Gen. et Sp. vi. 201.-DC. Prodr. n. 28. C. Apanxalon DC. is considered astringent in Mexico, and from C. lanceolata Ait. (Atlanchan) a tincture is prepared with which the abdomen of wumen in childbirth is rubbed.
 ${ }^{8}$ H. Bn. Bull. Soc. Lim. I'ar. (1876) 88.Peplis Portula L. Spec. 474.-SснкUHe, Handb. t. 99.-DC. Prodro iii. 77, n. 1.-Gren, et Godr. Fl. de Fro, i. 597.-Portula diffusa Mench. 1 . verticillaris (Rotala verticillaris L.;-DC. Prodr. iii. 76) used in India in the treatment of abscesses.
 ${ }^{9}$ On the coasts where Pemphis acidula Eiorst. (fig. 410, 411) grows, its slightly tleshy and salt leavos are eaten as salad.
 ${ }^{10}$ Roxb. F?. Ind. i. 447.-DC. Prodi。 jiii. 78, n. 7.-Lindl. F\%. Med. 149.-Rosenth. op. cit. 911.-A. baccifora L.?-Hapalocarpum vesicitorium Wight and Arn. (Daud-maree of the Bengalese).

[^518]: ${ }^{1}$ L. Spec. 784.-DC. Prodr, iii. 93 , n. 1.Curt. Bot. Mrag. t. 405. - Sibi, Fakusinda Kжммpr. Amcen. Exot. 855.
 ${ }^{2}$ Roxb. Fl. Coromb. i. 46, t. 65.-DC. Prolr. n. 5. -Rosenth. op. cit. 913.-Adambea glabra Lamk. Dict. i. 39.
 ${ }^{3}$ W. Spee. iii. 1178.-DC. Prodr. n. 6.Adamber hirsuta Lamk. loc. cit. n. 2.
 ${ }^{4}$ L. Spece. 498.-Desf. Fl. Atl. i. 325.-MÉr. et Del. Dict. Mat. Méd. iv. 78.-Endl. Euchirid. 144.-L. spinosa It-L. alba Lame. Dict. iii. 106.-Alcama Rumpir. Herb. Amboin. iv. t. 17 (Uепnа, Alhcma, Cyprus).
 ${ }^{5}$ "Penetrating, hircinous."
 ${ }^{6}$ The juice and extract are employed internally and the leaves locally in the treatment of cutaneous affections (Ainsl. Mrat. Ind. ii. 190).

[^519]: ${ }^{1}$ A genus scarcely distinguishable from Lythrum.
 : Spec. 3, 4. Coll. Pl. Chil. t. 14 (Lythrum). Hook. and AnN. Hot. Mise i. 225, t. 3.-I'wep. et Endl. Nov. Gen. et Sp. ii. 67, t. 193.-C. GAx, Fl. Chil. ii. 369.-Walp. Rep. ii. 105; Ann. ii. 540 : iv. 689.
 ${ }^{3}$ Ex J. Gen. 332.-DC. Mém. Soc. Gen. ỉi. p. ii. 74; Prodr. iii. 90.-EndL. Gern. n. 6147.-B. II, Gen. 779, n. 12.-H. Bn. Payer Fan. Nat. 354.- Decodon Gmel. Syst. Veg. 677.-DC. Prodr. ii. 90.-IUeimia Link et Otт. Io. Pl. 63, t. 28.-DC. Prodr. iii. S9.-SPACH, Siut. à Buffon, iv. 428.- Baker, Fl. Marrit. 100.-Chrysaliga W. (ex DC.).-Gimria Sess. et Moç. (ex DC.), not Jace. - Tulyperma E. Mey. (ex Endi. loc. cit.)

[^520]: ${ }^{4}$ Suppl. 36, 215.-J. Ger.323.-E. Mex. Nov. Act. Nrat. Cur. xii. 800.--DC. Proalr. iii. 91.-B. H. Gen. 780, n. 13.-Crenca Aubl. Guian. i. 523, t. 209.-Lamk. Dict. ii. 177; Ill. t. 407.-J. Gen. 332.-DC. Prodr. iii. 99.-Endl. Ge42. n. 61533.
 ${ }^{5}$ White, sometimes rather large.
 ${ }^{6}$ Spec. 2 (\%). G. F. W. Mey. Prim. Fl. Esseq. 186.-Griseb, Fl\%. Brit. W.-Ind. 270.-Walp. Rep. ii. 112.
 ${ }^{7}$ Nov. Gen. ct Sp. vi. 185, t. 549.-DC. Prodr. iii. 91.-Endl. Gen. n. 6157.-B. H. Gen. 777, n. 6.-H. Bs. Payer Fam. Nat. 354.

[^521]: ${ }^{1}$ Iellowish-red, nearly of Cuphca.
 ${ }^{2}$ Spec. 1. W. fluribunda Salisb.-Hrern, Oliv. Fl. Trop. Afr, ii. 481. -Grislea tomontosa Roxb. Pl. Corom. i. 29, t. 31.-DC. Prodr. iii. 92, n. 2. -Miq. Fl. Ind.-Bat. i. p. i. 620.-Tul. Ann. Š. Nat. sér. 4, vi. 135.-Bot. Mag. t. 1906.-G. punctata Buchan.-G. uniflora A. Rich, Fl. Abyss. Tent. i. 281, t. 52.-G. multiflora A. Rich. -G. micropetala Hochet.
 ${ }^{3}$ Jam. 21G.-JacQ Hort.Vindob. ii. 83, t. 177. -J. Gen. 332.-Polr. Dict. vi. 462 ; Suppl. v. 22; Ill. t. 407.-DC. Prodr. iii. 83.-SPach, Suit. à Buffon, iv. 422.-Endl. Gen. n. 6151.Payer, Organng. 477, t. 95.-B.. H. Gen. 778, n. 9.-H. IBn. Payer Fam. Nat. 355 -E. Foehne, Bot. Zeit. (1873) 110 ; (1875) 291.-Barclanu, Suh. und Luerss. Mit. Ges. d. Bot. Bd ii. Hft i,

[^522]: 179.-Melanium P. Br, Janz, 215.-Sprena. Syst. ii. 443. - Pursonsia P. Br. op. crt. 199, t. 21, fig. 2.-Duvernaya Desp. (ex Endl.).-Banksia Domb. (ex Endl. not R. Br.).-Balsamana Vandell. ex Rœm. Seript. 110.-Melvilla Andeks. Journ. Aits and Sc. (ex Lindl. Bot. Reg. t. 852).
 ${ }^{4}$ Pollen depresso-ellipsoid, 3-plicate, 3-papillose, unchanged in water. (H. Mопц, Ann. Sc. Nat. sér. 2, iii. 331).
 ${ }^{5}$ Sometimes tubular and hollow.
 6 Whence apparently partly free and spuriously central in some species.
 ${ }^{\text {F Funicles erect unequal ; but the upper often }}$ more slender and longer.
 s With double coat.

[^523]: ${ }^{1}$ Red, ycllow, orange, violet, pink, sometimes pale purple or white.
 ${ }^{2}$ Equi-distant from both leaves and superposed to axil below.
 ${ }^{3}$ A genus very near to Lythrum, notwithstanding the irregularity of the flower, intermediaries being A nisote on the one hand, on the other species of Cuphea in which the flower is scaxcely irregular. Subgenera 2 (Lythrocupher, Eucuphea), ex Koeune (App. alt. sem. Hort, berol. ann. 1873), by whom the characters of the sections and subsections are carefully enumerated.
 ${ }^{4}$ Spec. about 88. JACe. Hort. Findob. ii. t. 177. -Cav, Ic. t. 380-382.-R. et Pav. Fl. Per. iv.

[^524]: t. 404.-A. S.-H. Fl. Bras. Mrer. iii. 94, t. 182185; Mém. Mus. ii. 37, t. 4, fị. 26-28.-H. B. K. Nor. Gen. et Sp. vi. 196, t. 550-552.-Ноок. Exot. Fl.t. 161.-Griseb, Fl. Brit. W.-Ind. 269. -Bot. Reg. t. 852.-Bot. Mag. t. 2201, 2580, 420S, 4362.-Walp. Hep. ii. 105 ; v. 674 ; Ann. i. 294 ; ii. 540 ; iv. 689.
 ${ }^{5}$ Shr. Nat. Selsk. Hafn. ii. p. i. 211, t. 8.DC. Prodr. iii. 91.-Evol. Gen. n. 6158.-B. H. Gen. 782, n. 20.
 ${ }^{6}$ Spec. 1, 2. Walp. Rep, ii. 112.
 ${ }^{7}$ Ger. 783, n. 23 (name being changed).Baker, Fl. Maurit. 100.-Tetradia Dup.-Th. ex Tul. A $n n$. Sc. Nat. sér. 4, vi. 137 (not R. Br .).

[^525]: ${ }^{1}$ Spuriously umbellate.
 ${ }^{2}$ Spec. 1. T. salicifolia.
 ${ }^{3}$ Gen. n. 667.-J. Gen. 331,-DC. Prodr. iii. 93.-Spach, Suit, ù Buffon, iv. 439.-Endl. Gez. n. 6164.-B. H. Gen. 783, n. 24.-H. Bn. Payer Fan. Nat. 355.-Hook. Fl. Ind. ii. 575.-Velaga G.ertn. Fruct. ii. 245, t. 133.-Müıchhausia L. Mantiss. 153.- Banava Camell. (ex Ray)Adambea Lamk. Dict. i. 39.-Arjzma Jones, Asiat. Res. iv. 301 (ex Roxbr),-Fatioa DC. Prodr. iii. \$8.
 ${ }^{4}$ More rarely 4-5-merous.
 ${ }^{5}$ Turcz. Bull. Jlosc. (1816) ii. 508.
 ${ }^{6}$ Of which 5, 6, alternipetalous, sometimes much longer; the others shorter subregularly fasciculate before each petal and nearly equal to each otber.

[^526]: 7 Pollen spherical (ex H. Mohi, Ann. Sc. Nat. sér. 2, iii. 331) in L. indica, and marked with 3 connivent lines at each pole, with an areolate pore between each of the lines.
 ${ }^{8}$ Often large, showy, pink or white.
 ${ }^{9}$ Bracts formed of 2 small lateral glanduliform stipules (?).
 ${ }^{10}$ Spec. 10-12. K empr. Amcen. 855 (Sibi).Roxb, Pl. Corom, t. 65, 6G.-Wight, Ill. i.t. SG; Icon.t. 69, 109, 413.-Be. Mus, Lugd.-Bat. ii. t. 41, 42.-Mıя. Fl. Ind.-Bat. i. p. i. 620.-Tнw. Ehium, Pl. Zeyl. 122.-Walp. Rep. ii. 114 ; Am. i. 295 ; iv. 681.
 ${ }^{11}$ Trans. Liun. Soc. xvii. 178.-Endu. Gen. n. 6165.-B. H. Ger. 783, n. 25.-Hook. Fl. Ind. ii. 5 is.

[^527]: ' White, large, "strong-smelling."
 ${ }^{2}$ A genus very near to Lngerstrcemic, and not unlike Someratia, which Bentr. and Hook. place near Düabanga.
 ${ }^{3}$ spee. 2, 3. Huok. F. Ill. Himal. Il. t. 11.-

 ${ }^{4}$ Gen. n. 482 -J. Gen. 331 (Lausonia). -Lamk. Dict. iii. 106 ; Suppl. iii, 39 ; Ill. t. 296.-DC. Prodr. iii. 90.-Spacil, Suit. à Buffor, iv. 435.Jemd. Gen. n. 6159.-B. H. Gen. 782, n. 19.-H. Bn. Payer Fann. Nat.351.-Hook. Fl. Ind. ii. 573. Alsenma (Gתesin. Fruct. ii. 133, t. 110.
 ${ }^{5}$ simall, whitish, strong-smelling.
 ${ }^{6}$ Spec. 1. L. inermis L. Spec. 498.-Desf. Fl. All. i. 325.-L. spinosa L.-L. alba Lamk. Diet. iii.106.-Hiern. Fl. Tiop, Afri: ii. 483.-Wight, Ill. i. t. 87.-Boiss. Fl . Or. ii. 744.-Griser. Fl . Brit. W.-Ind. 271.-Miq. W\%. Ind--Bat. i. p. i. 620.-Bentii. Fl. Alestral, iii. 300.
 ${ }^{7}$ Char. Gen. 67, t. 34.-J. Gen. 331.-DC. Prod. iii. 89.-Spach, Suit. à Buffon, iv. 428.-Exdi. Gen. n. G148.-B. H. Gen. 780, t. 15.-Baкек, Fl. Murrit. 101.-Hook. Fl. Ind. ii. j32.Muchellandiu Wighr, Icon. t. 1926.

[^528]: 1 White or pink, rather large.

 - Spec. 1. P. acidula Fursi--Benth. Fil. Austral. iii. 300.-Mre. Fl. Ind.-Bat. i. p. i, 619.'I'ǔ. Ann. Sc. Nut. sér. 4, vi. 132.- Hiern. Oliv. Fl.Trop. Afr. ii. 482.-THw. Entom. Pl. Zeal. 122. -Lythrum I'mphis L. F. Sup pl. 249.-Lamk. Ill. t. 408 , fig. 2.--IIelanium finticosum Spreng. Si/st. ii. 455.-Mangium porcellanicum RumpH. /lerb. Amb. iii. t. 84.
 ${ }^{3}$ Rcem. Soript. 112, t. 7, fig. 13.-DC. Mént. Soc. Gen. iii. p.ii. S6; Prodr. iii. 94.-Spach, Suil. ̀̀ Buffon, iv. 441.-ExDL. Gtn. n, 6162.-B.

[^529]: H. Ger. 781, n. 17.-H. Bn. Pioyer Fam. Nat. $351 .-C a l y p l e c t u s$ R. et P'av. Prodr. 73, t. 13.
 ${ }^{4}$ Large, showy, white or pink.
 ${ }^{5}$ Kl. ex Eindl. loc. cit. 6.
 ${ }^{6}$ H. B. K, Nov. Gen. et Sp. vi 182 (Caly-plactus).-Tonl, Pl.Bras. Ic. ii. 141, t. 197-199. -A. S.-H. Fl. Bras. Mer. iii. 1577, t. 191.Walp. Rep. ii. 113.
 ; Il. Bras. Ic. i. 99, t. 82, 83.-DC. Prodr, iii. 89.-Spachi, Suit. à Buffon, iii. 434.-Endl. Gen. n. 6163.-B. II. Gen. 781, д. 18.

[^530]: 1 "Habit of Lagerstrœmia."
 2 Purple, showy.
 ${ }^{3}$ Representing a spurious calyx.
 ${ }^{4}$ Spec. 1. P. florida Ронц, loc. cit.
 ${ }^{5}$ Flora (1827) 150 ; Pl. Bras. Ic. 82, t. 6G-81.
 -DC. Prodr. iii. 94a.-Spacy, Suit à Buffon, iv. 430.-Endl. Gen. n. 6161.-B. H. Gen. 781, n. 16.-H. Bn. Payer Fam. Nat. 355.-Ḱqune,

[^531]: ${ }^{1}$ L. Gen. n. 469.-J. Gen. 319.-Laмк. Ill. t. 279.-Pork. Dict. iv. $5 \overline{5} 0$; Suppl.iv. 141.-DC. Prodr. iii. 45̃.-SPACH, Suit. à Buffon, iv. 353; N. Am. Mus. iv. (1835) 341.-Endl. Gen. n. 6115.-B. H. Gen. 789, n. 8.-H. Bn. Fayer Fam. Nat. 376.-Onagra T. Inst. 302, t. 156.-Adans. Eam. des Pl. ii. 85 (incl.: Agassizia Spach, Anoara Spacit, Baumamia Space, Blennoderma Spach, Boisduralio Spach, Calylophus Spach, Chamissonia Line, Chylisma Spach, Cratericarjuium Spach, Godetia Spach, Hartmannia Spach, Hlulostigina Spach, Kneiffa Spack, Lavauxia Spach, Megapterium Spact, Meriolix Rafin. I'achylopius Spack, Spharostigma Endl. Ta-

[^532]: raxia Nutt. Xylopleuram Spacy).
 2 M. Ducharthe ($1 n n$. Sc. Nat. sér. 3, xviii. 339) erroneously considers the calyx of (Enothera suaveolens as gamosepalous. Its parts are, on the contrary, free at every age.
 ${ }^{3}$ The pollen, in this series, presents very remarkable peculiaritics. It is "flattened, triangular with papillio on the angles ; transparent or opaque; external membrane punctuate, united on the parille" (H. Mohl, Ann. Sc. STat. sér. 2, iii. 332). The same author distinguishes, by the largeness of the papillx, that of Enothera, Clarkia, Circea, whilst the papillee are small in Lopezia and Fuclsia.

[^533]: ${ }^{1}$ Torr. et Gr, Fl. N.-Amer. i. (1840) 492.Wats. Proc. Amer. Acad. viii. (1873) 574, 579 (incl.: Onagra T. loc. cit.-Anogra SPAich, Nouv. Ann. Mus. iv. 323, 324.-İneiffia Spach, Nouv. Ann. Mus. iv. 364; Suit. à Buffon, iv. 373.Pachylophis Spach, Nouv. Am, 356, t. 30 ; Suit. 365.- Iylopleurum Spach, Nowv. Ann. iv. 369 ; Suit. iv. 369.-Lavazxia Spach, N. Ann. 357, t. 31 ; Suit. 367 (part, ex WATs. loc. cit. 585).Baumannia Spach, Suit. 351).
 ${ }^{2}$ Rafin. Amer. Monthe. Mag. [1819] ex Ewnd. Gen. 1190.-Calylophis Spach, N. Ann. Arus. iv. 337.-Calylophus Spach, Suit. à Buffon, iv. 366.
 ${ }^{3}$ Spacte, Nouv. Amr. Mus. iv. 350 ; Suit. \dot{a} Buffon, iv. 363.

 4 They recall in form and consistence a mreat

[^534]: 1 Setr. DC. Prodr. iii. 46.-Endl. Gen. n. 6113. -Wats. loc. cit. 576,591.-Itcterostemum Nutt. (ex Endl.),-Chamissomia Link. Jaheb. (1818) 186.-Holostigma Spaci, Nouv. Ann. Mus. iv. 332. - Agassizia Spach, Suit. à Breffor, iv. 347.

 2 The organization and development of this ovary are quite the same as in the true Cinotheras. Ducharties, as we have shown (Adansunin, xii. 25, 28), was mistaken on this point, in supposing that the infcrior ovary is entirely of a foliaceous nature, and that at a certain age the carpellary leaves are separated from each other by the axis interposed. Nothing of the kind takes place in nature.
 ${ }^{3}$ In certain species of Spheerostigma the seeds become mucilaginous on the surface when wet. Of them the genus Blennoderna has been made. (Spacir, Nouv. Ann. Mus. iv. 406.) The Chylisma of Nuttall (GE. brevip:s, scanuidea, etc.) are annual sphcerostigmas, the fruits of which are linear-claviform, pedicellate, and obtuse.
 ${ }^{4}$ Nutw. Torr, et Gr. $\mathrm{Fl}_{0} \cdot \mathrm{~N}_{0}$-Amer. i. (1840) 514.-ExdL. Gen. 1426, n. G118.-B. II. Gen.

[^535]: 789, n. 7.-M. Bw. Adansonia, xii. 30 ; Bull. Soc. Lim. Par. 113.
 ${ }^{5}$ The ascending glabrous seeds are lodged in distinct depressions of the valves.
 6 (1. Eucerothera (Torr. et Gr.).
 2. Taraxia (Nutt.).
 3. Meganterium (Spach).
 4. Meriulix (Rafin.).
 5. IIartmamia (Spach).
 (Enothera, 6. Cratericarpium (Spach).
 sect. 12.
 7. Boisduvalia (Spach).
 8. Godetia (Spacit).
 9. Siphurostigma (Ser.).
 10. Blemnoderma (Spach).
 11. Chylisma (Nutt.).
 12. Enlobas (Nutt.).
 -Gren. et Gomir. Fl. de Fr. i. 5S4.-Griseb. Fl. Brit. W.-Ind. 273.-Torr. et Gr. Fl.N.-Am. i. 492.-A. Gray, Man. ed. 5, 178.-C. Gay, Fl. Chil. ii. 324, 346.-Presl, Rel. Henh, ii. 31. -Hook. Ieor. t. 33S, 339.-Bot. Reg. t. 763, 1040, 1142, 1479, 1593.—Bot. Mag.t. 347, 468, 2832, 2873, 3545, 3764, 5078.-WALr. Rep. ii. 79 ; Λ 2и. i. 291 ; ii. 533 ; iv. 676.

[^536]: ${ }^{1}$ White, yellow, or pink, often large, handsome, sometimes odorous, nocturnal.
 ${ }^{2}$ A. Juss. Aun. Sc, Nat. sér. 1, xxv. 18, t. 4. -Spach, Nouv.A m. Mus.iv. 331 ; Suit. à Buffon, iv. 346.-Endl. Gen. n. 6112.-B. H. Gen. 759, n. 6 .
 ${ }^{3}$ To which the genus might perhaps be united as a sect. characterized by a dicarpellar ovary. (Sce Adansonia, xii. 29.)
 ${ }^{4}$ Small, often pink.
 ${ }^{5}$ Presi, Rel. Hark. ii. 51.-Spach, Nouv. Ann. Mus. iv. 334 (Holostigmn).-C. GAY, Fl. Chil. ii. 323, t. 22.-Walp. Rep. ii. 76.
 ${ }^{6}$ L. Gen. n. 153.-J. Gen.319.-Desrx, Lamk. Dict. iii. 613; Suppl. iii. 511 ; Ill. t. 77.-

[^537]: ${ }^{1}$ Figures from the work of Spach (Suit. à Buffon, Atlas, t. 35).
 ${ }^{2}$ Fisch. et Mey. Ind. ii. (1835) Sem. Hort. Yetr. 36.-Spach, Nour, Ann. iv. 395.-Endl. Gen. 1. 6120-B. H. Gen. 790, n. 9.-H. Bs. Paycr Fan. Nat. 374.
 ${ }^{3}$ Lindl. Bot. Reg. t. 1100, 1575, 1962 (Eu= charidium), 1981.-Torr. et Gr. Fl. N.-Amer. i. 515, 516 (Eucharidium).-Bot. Mag. t. 2918.Walp. Rep. ii. 89.
 ${ }^{4}$ Prese, Rel. Hoenk. ii. 28, t. 52.-Spach, Norv. Ann. Mus, iv. 405 ; Suit. à Buffon, iv. 400. -Evdl. Gen. n. 6122.-B. H. Gen. 788, д. 2.

[^538]: ${ }^{5}$ The latter are oppositipetalous.
 ${ }^{6}$ Presl, loc. cit.-Torr, et Gr. Fl. N.-Amer. i. 486.-Hook. Bot. Mag. t. 4493.-WAle. Rep. ii. 93.-Z. mexicana Presi.

 7 Very variable in form, down, etc.
 ${ }^{8}$ Epilobium L. Gen. n. 471.-J. Gen. 319.Gartn. Fruct. i. 157, t. 31.-Lamk. Dict. ii. 373 ; Suppl. ii. 568 ; Ill. t. 278.-DC. Prodr. iii. 40.-SPach, Nouv. Am. Mus, iv. 403 ; Suit, a Buffon, iv. 398.-Endl. Gen. n. 6121.-Payer, Organog. 450, t. 94.-B. H. Gen. 471, n. 1.-H. Bn. Payer Fam. Nat. 273.-Hook. Fl. Ind. ii. 582.-Chananerium Tausch, Hort. Canal. 1.-

[^539]: ${ }^{3}$ As in Chamanerium.
 ${ }^{4}$ Reichb. Pl. Crit. t. 170, 180, 189, 341, 342. -Gren, et Godr. Fl. de Fr. i. 576.-Oliv, Fl. Thop. Afr. ii. 486.-Torr. et Gr. Fl. N.-Amer. i. 486.-Hook. F. Man. N.-Zeal. Fl. 76.-C. Gax, Fl. Chit. ii. 34G.-Bot. Mag. t. 76.-Walp. Rep. ii. 90 ; V. 665 ; Ann. ii. 534 ; iv. 678.

[^540]: ${ }^{1}$ Moc. et Sess. Fl. Mex. Icon. ined. ex DC. Mém. Onagrar. 2, t. 1; Prodr. iii. 36.-B. H. Gen. 791, n. 11.
 ${ }^{2}$ Pinkish white.
 ${ }^{3}$ Montinia acris L. F. (Suppl. 427) a Cape shrub with alternate leaves was considered by De Candolle (Mém. Fam. Ohagrar, 2 ; Prodr. iii. 35) as a type of a tribe of Mrontinite, retained by Endicher (Ger. 1192), and admitted by Bentran and Hooker (Gen. 794, n. 22) as an abnormal genus in the Onagrarices. It has nearly the capsular fruit of Hanya, but bivalve, dicecious $4-5$-merous flowers, and stamens equal in number and alternating with the petals, erroneously said to be wanting in the female flowers where they exist though sterile (H. BN. Adan-

[^541]: sonia, xii. 38). The inferior ovary is wanting in the male flower, the shallow receptacle of which is covered with a fleshy disk around which are inserted the perianth and androecium. It has also been referred (Harv, and Sond. $F l$. Cap. ii. 307) to the Saxifragacea. (See Burm. Afr. t. 90. f. 1, 2.-Gerrtn. Fruct. i. 170, i. 33. -Lamk. Ill. t. 808.-Sm. Spicil. t. 15.)
 ${ }^{4}$ Plum. Gen. 14.-L. Gen. n. 128-J. Gen. 320. -Lamk. Diet. ii. 564; Suppl. ii. 678; Ill. t. 282. -DC. Prodr. iji. 36,-SPACH, Suit. à Buffon, iv. 404.-Endl. Gen. n. 6125.-B. H. Gen. 790, 1007, n. 10.-H. Bn. Payer Fam. Nat. 374 (incl.: Encliandra Zrec. Skimera Forst.).
 ${ }^{5}$ Forst. Char. Gen. 57, t. 29.-Srach, Ahn. Sc. Nat. sér. 2, iii. 178.

[^542]: ${ }^{1}$ Eufuchsia.-Fuchsia Spacu, Suit. à Buffon, iv. 404.-hierschlegeria Spach, loc. cit. $403, N$. Ann. Mus. iv. 330.-Schufia Spack. S. à Buffon, 411.-Desmoul. Act. Soc. Linn. Bordeaux, xxiv. -Ellobizm Lilua, Linnca, xv. 262.-Spachia Lilja, luc. cit. (not A. Juss.).-Nahusia Schnee, Ic. n. 21.-Quelusia Vandell.-Velloz. Fl. Flum. iv. t. 6.-Dorvalia Commers. (ex Endl.). -Thilco Feulle. Obs. iii. 64, t. 49.
 ${ }^{2}$ Zucc. Abh. Bayer. Akad. Wiss. ii. 335.Myrinia Jilua, Linncea, xv. 262.-Brebissonia S'pach, Ann. Sc. Nat. sér. 2, iii. 175 ; Nouv. Anne. AIus. iv. 329 ; Suit. à Buffon, iv. 401.Lyciopsis Spacy, Nouv. Ann. Mus. iv. 329.
 ${ }^{3}$ Endi. Loc. cit.-B. H. Gen. 791 : 1. Enctiandra: Howers polygamous; petals open; stamens short; 2. Eufuchsia: flowers hermaphrodite; petals none or convolute; stamens exserted; 3. Skinnera: flowers hermaphrodite; petals little developed; seeds small.

[^543]: ${ }^{4}$ R. et Pay, Fl. Per. iii. 86, t. 322-325.-H. 13, K. Nov. Gen. et Sp. vi. 103, t. 534-536.Cambess. A.S.-H, Fl. Bres, Mer, i. 272,-Preel. Rel. Heenh. ii. 26.-C. GAy, Fl. Chil. ii. 349.Hook. f. Man, N.-Zeal. Fl. 728.- Hook. Icon. t. 421.- Hemsl. Journ. Bot. [1876] 67.-Bot. Reg. t. $857,1269,1480,1805 ;(1838)$, t. 1,66 ; (1840), t. 18, 70; (1841), t. 66, 70.-Bot. Mag. t. 2507, 3364, 3948, 3999, 4174, 4082, 4233, 4375, 5907, 6139.-Walp. Rep.ii. 94 ; v. 666 ; Am. i. 292 ; ii. 535 ; iv. 681.
 ${ }^{5}$ Red, pink, violet, or white. The calyx, rarely greenish, sometimes of two tints, is often coloured the same as the recoptacle. These flowers often become double in culture, by the mutiplication of the petals. We have also scon each of the sepals or some of them prolonged externally in a sort of basilar spur, descending, curved or straight, hollow or Hat.

[^544]: ' L. Gen. n. 470.-J. Gen. 319.- Gerrtn. Fruct. ii. 205, t. 127.-Lamk. Dict. ii. 614 ; Suppl. ii. 711 ; Il'.t. 281.-DC. Prodr. iii. $44 .-$ Spach, N. Am. Mus. iv. 375 ; Suit. d Buffon, n. 16.-II. Bn. Payer Fam. Nat. 374 ; Adansonia,
 xii. 36 .
 ${ }^{2}$ Straight or detlexed.
 ${ }^{3}$ Ordinarily caducous.

[^545]: ${ }^{1}$ The ovules later direct their micropyle sidewise or even outwards.
 ${ }^{2}$ There is a double coat,
 ${ }^{3}$ It bears four salient columns, alternating with the cells, and corresponding to the bands of the fruit of Gayophytum, Onagra, etc. They are filled with 1-3 longitudiual woody bundles. Before complete maturity the fruit may be slightly drupaceous.
 ${ }^{4}$ SPACH, Nouv. Am. Drus. iv. 325, 374; Suit. à Buffon, iv. 379.
 ${ }^{5}$ Spach, Nouv. Ann. Ifus. iv. 325, 381.
 ${ }^{6}$ Spach, Nomi. Ann. Mus. iv. 326.-Rothr.

[^546]: ${ }^{1}$ Circaa T. Inst. 301, t. $155 .-$ L. Gen. n. 24. -Gertn. Fiwet. i. 1l4, t. 24. - Schkuhr, Handb. t. 2.-DC. Prodr. iii. 63.-Endl. Gen. n. 6130.-H. Bn. Payer Fan. Nat. 375 ; Adansonia, xii. 24.-B. H. Gen. 793, n. 20.-Aschers. et Magn. Bot. Zeit. (1870) n. 23 (392), 47-49.Heor. Fl. Ind. ii. 589.-Ocimastrum Rupr. Fl. Ingr. 366.

[^547]: ${ }^{2}$ Sometimes two, nearly superposed.
 ${ }^{3}$ It has a double envelope.
 ${ }^{4}$ It is on this character that Ascherson and Manines have founded their division of the genus into: A. Uniloculares, B. Biloculares.
 ${ }_{5}$ As it is incompletely anatropoun, the hilum, situate near the middle of the interior margin, is finally parallel to the embryo.

[^548]: id Buffon, ir. 414.-Ennl. Gen. n. 6129.-B. H. Gen. 791, n. 13.-H. Bn. Payer Fam. Nat. 375 ; Adansonia, xii. 37.-Pisauta Bonato, Monogr. (1793) c. icon. (ex Endl.).-Jehlia Hort. (ex. B. H. loc. cit.).

 + With multiovulate ovarian cells.
 ${ }^{5}$ There are occasionally flowers with five petals and two petaloid staminodes.
 ${ }_{6}$ The pollen is that of Fuchsia.

[^549]: ${ }^{1}$ The seeds are often united two and two (fig. 451) in a single mass. Their external coat is rugose, granular.

 2 JacQ . Collect. v. t. 10 ; Je. Rar. t. 203 ; Eclög. t. 109, 140.—Bonpl. Jard. Nae. t. 25.H. B. K. Nov. Gen. et $\$ p$. vi. 95.-Schrank,

[^550]: G3.-Nees, Ger, ii. t. 5.-Spacr, Suit, à Buffor, iv. 443.-Endl. Gel. n. 6140.-Barnéoud, Ann. Sc. Nat. sér. 3, ix. 222, t. 12-15.-Payer, Org. $45 \overline{5}$, t. 106.-B. H. Gen. 793, n. 21.-H. Bn. Puyer Fam. Nat. 378 ; Adansonia, xii. 24.Hook. Fl. Ind. ii. 590.-Tributoides 'I'. Inst. 565, t. 431.-Shringata Jones, As. Res. ii. 350 ; iv. 253.
 ${ }^{2}$ It is sometimes twisted.
 ${ }^{3}$ Pollen dry, elliptical ; in water, trigonal, like that of the Enotherce. (Bannéoud.)

[^551]: ${ }^{1}$ Later the ovule undergoes a twisting movement which renders its raphe lateral. It has a double envelope, and is not unlike in form and direction that of the common Box.
 ${ }^{2}$ The other seed is early aborted, but its remains are seen for a long time.
 ${ }^{3}$ Roxb, Pl. Coromo t. 234.-Braam, Ic. Chin. t. 22.-Oliv. El. Trop. Afr. ii, 491.-Gren, et Godr. Fl. de Fr. i. 588.-Walr. Rep. ii. 100.
 ${ }^{4}$ For the study of the germination, and also that of ramification, etc., consult the very beautiful work of Mrbel (Ann. Mus. xvi, 447, t. 19) and also that of Barnéoud mentioned above.
 ${ }^{5}$ Precisely the same disposition is met with in certain Jussiace which have quite the leaves of Trapa. When young, the leaves appear to have two small stipules.

[^552]: ${ }^{6}$ White or greenish, without lustre.
 7 Haloragis Forst. Char. Gen. 61, t. 31.-Poir. Dict. viii. 854.-LHÉr. Stirp. t. 82.-DC. Prodr. iii. 66.-Endl. Atakt. t. 15 ; Gen. n. 6138.--B. H. Gen. 674, 刀. 2.-H. Bn. Payer Fam. Nat. 376; Adansonia, xii. 22. - Cercodia Murr. Comm. Gaett, iii. (1780) 1. t. 1.-Gertn. Fruet. i. 164, t. 32.-Cercodea Lame, Ill. t. 319.-Gonocarpus Thunb. Fl. Jap. 5, t. 15.-Giertn. F. Fruct. 250, t. 25.-Gonatocarpus IW. Spec. i. 690.-Gonjocmpus 太̈qn. Aun. Bot. i. 546, t. 12, fig. 5, 6. -Goniocarpus DC. Prodr. iii. 67.
 ${ }^{8}$ More rarely of three or five parts.
 ${ }^{9}$ Sometimes nearly peltate, or slightly decurring under the point of insertion on the floral receptacle.

[^553]: ${ }^{1}$ Labile. N.- IHoll. t. 53 (Gonjucarpus), 128, 129.-Jaca. Ic. Rar. i. t. 69.-Ad. Br. Duperr. Foy. Bot. t. 68-70.-A. Rich. Fl, N.-Zel. 324. - Hook. F. Fl. Tasman. i. t. 22 ; Man. N.-Zeal.

 Fl.64.-Bentir. Fl. Austral. ii. 473.-F'. Muell. Fragm. Phyt. Austral. viii. 162.- Ноок, Icon.t. 290, 311 (Goniocarpus). -Franch. et Say. Enum. Pl. Jap. 164.-Walp. Rep. ii. 99 ; v. 672 ; $A m$.

[^554]: i. 293 ; ii. 537,538 (Goniocarpus) ; iv. 883 ; vii. 940.
 ${ }^{1}$ Small, yellow, greenish or reddish.
 ${ }^{2}$ R. Br. Flind. Foy. App. ii. 550,-Endl. Gen. 1197.-B. H. Gen. 675, n. 3.-H. Bn. Adansonia, xii. 34.
 ${ }^{3}$ We have shown that this character does not permit its being made other than a section of the gezus Haloragis.
 ${ }^{4}$ M. Brownii Hook. F. Hook. Icon. t. $306 ; \mathrm{Fl}^{2}$

[^555]: Tasm. i. 123.—Benth. Fl. Austral. ii. 486.-M. Preissii Nees, Pl. Preiss. i. 22t.-IIaloragis Meionectes R. Br.
 ${ }^{3}$ Lindl. Su. Riv. App. 42, c. ic.; Teg. Kilig. (1846) 722, fig. 382.-Endl. Gen. n. 6139.-B. H. Gen. 674, n. 1.-H. Bn. Payer Fam. Nat. 377 ; Adansonia, xii. 34.-Glischrocaryon Endl. Amn. Wien. Mus. ii. 209; N. st. Mus. Vindab. Dec. n. 88.

[^556]: ${ }^{1}$ Which become green or black in drying. ${ }^{3}$ Benth, Fl. Austral. ii. 471.-Walp. Ann. i. 293 ; iv. 821 ; vii. 938.
 ${ }^{3}$ Vaill. Act. Acad. Par. (1719) t. 2, fig. 3.Adans, Fam. des Pl. ii. 471.-Myriophyllum L. Gen. n. 1066.-J. Gen. 18 ; Ann. Mus. iii. 321.Schruhr, Mandb, t. 296.-Geertn. Fruct. i. 331, t. 68.-Labrk. Dict. iv. 189.-Turf. Dict. Sc. Wat. Atl. t. 217.-DC. Prodr. iii. 68.-Spach, Suit. à Buffon, iv. 446.-Nees, Gen. fasc. 8, t. 13.Endl. Gen. n. 6135.-B. H. Gerr. 676, п. S.-H. Bn. Payer Fam. Nat. 377 ; Adansonia, xii. 35.Pentapterophyllum Dill. Nov. Gen. 7.-Pentapteris Hall. Helu. 1. 454.-Enydria Velloz. Fl. Flum. i. t. 150.-? Hylas Brael. (ex Ende loc. cit.).-Purshia Rafin. N.-York Med. Repos. ii. 361 (not DC. nor Dennst. nor Spreng.).--Burshia Auctt. (erron.).-Pelonastes Hook. F. Lond. Journ. Bot. vi. 474,-Mullofullon Drosc.-Belioukandos Celit. (ex Adans.).

[^557]: ${ }^{4}$ The pollen is spherical ; on the equator, four small pores surrounded by a halo: M. verticillatum (H. Mohl. Ann. Sc, Nat. sér. 2, iii. 331).
 ${ }^{5}$ The funicle may sometimes thicken above the micropyle to a short obturator.
 ${ }^{6}$ Labill. N.-Holl. ii. t. 220.-Fr. et Say. Enum. Pl. Jap. 164.-Brew. et Wats. Geol. Surv. Calif. Bot. i. 215.-Wigut, Ill. t. 102.Torr, et Gr. Fl. N.-Amer. i. (1840) 528.-C. Gay, Fl. Chil. ii. 356.-Harv, and Sond. Fl. Cap. ii. 572.-Hоок. Icon. t. 289.-Ноок. ғ. Fl. Tasm. i. t. 23 ; Man. N.-Zeal. F6. 66.-Benth. Fl. Austral. ii. 486.-Mia. Fl. Ind.-Bat. i. p. i. 634.-Thw. Enzm. Pl. Zeyl. 123.-Boiss. Fl. Or. ii. $\mathbf{7 5 4}$.-A. S.-H, Fl. Bras. Mer. ii. 251.-Gr, et Godr. Fl. de Fr. i. 587.-Walr. Rep. ii. 98 ; Ann. i. 292 ; ii. 537 ; vii. 943.
 ${ }^{7}$ Divided by Torrey and A. Gray. (op. cit.) into 3 sections: 1. Sphondylopnyllum (Torr. et

[^558]: Gr.) ; 2. Sphondylastrum ('Iorr. et Gr.) ; 3. Ptilophyllum (Nutt.).
 ${ }^{1}$ L. Mantiss. 16.-J. Gen. 318.-Lame. Ill.t. 758. - Porr. Dict. vii. 122; Suppl. v. 136.-DC. Prodr. iii. 65.-Endl. Gen. n. 6136.-B. H. Gcn. 675, n. 4.-H. BN. Payor Fam. Nat. 377.-Laurenbergia Berg. I\%. Cap. 350 (not H. Bs.).Epilithes Be. Bijdr. 734 ; Mus. Lugd.-Bat. i. 110 .
 ${ }^{2}$ In this case they are often lodged in the
 VOL. VI.

[^559]: ${ }^{1}$ L. Gen. n. 102.--J. Gen. 68 ; Ann. Mus. iii. 320, t. 30 --Lamk. Ill. t. 50.-Porr. Dict. viii. 117 ; Suppl. v. 369.-DC. Prodr. iii. 67.-Endl. Gen. n. 6137.-B. H. Gen. 675, n. 5.-H. Bn. Payer Fam. Nat. 377.-Trixis Mıтсн, Eph. Cur. Nut. (1748) n. 23, c. ic.-Grertw. Fruct. i. 115,

[^560]: t. 24 (not P. Br.).
 ${ }^{2}$ Small, greenish or brownish.
 ${ }^{3}$ Torr, et Gr., Fl. No-Amer. i. (1840) 5' 28 . A. Ghax, Man。ed. 5, 175.
 ${ }^{4}$ L. Mantiss. 16, 21 ; Gen. n. 1272 ; Amen. vii. 495.-J. Gen. 405, 452 .-Lamk. Dict. iii. 61 ;

[^561]: ${ }^{1}$ Sometimes, however, trimerous.
 ${ }_{2}$ These would be sepals if the alternate teeth proceeded only from a marginal projection the receptacle. They are sometimes cucullate, and may also, doubtless, be three in number. (See Adansonin, xii. 38.)
 ${ }^{3}$ Anatropous or peritropous (?).
 ${ }^{4}$ In G. chilensis, the fruit of which ripens pretty well in our conservatories, the exterior membrane of the drupaceous fruit is orangecoloured.

[^562]: ${ }^{1}$ Soft and purple in G. chilensis.
 ${ }^{2}$ R. et Pav. Fl. Per. i. t. 44.-Ragur, Choix re Pl. t. 8.-Benn. Horsf. Pl. Jav. Rar. 75, t. 15. —Be. Bijdr. 513; Mus. Lugd.-Bat. ii. 100, 171. - Hook. F. Fl. N.-Zel. i. 66 ; Mren. N.-Zeal. Fl. 67 ; Fl . Tasm. 125; Fl. Antarct. ii. 274.-C. Gay, Fl. Chil. ii. 362.-A. Grax, Un. St. Exp. Exp. Bot. i. 629, t. 78, 79.-Harv. and Sond. Fl. Cap. ii. 571.-Oliv. Fl. Trop. Afr. ii. 405.Phil. Arn. Sc.Nat. sér. 4, vii. 90.-Hook. Icon. t. 489, 490-Bot. Mag. t. 2376.-Walp. Rep. ii. $100 ;$ v. 672 ; Ann. vii. 941 .
 ${ }^{3}$ Of uncertain nature.
 ${ }^{4}$ L. G'en. מ. 11.-lietz. Obs. iii. 7, t. 1.-

[^563]: Adans. Fam. des Pl. it. 566.-Hellen. Diss. des Hippur. Abo (1786).-J. Gen. 18; Ann. Mus. iii. 323, t. 30.-Lamk. Ill. t. 5.-Poir. Dict. Suppl. iv. 373.-Gertn. Fruct. ii, 24, t. 84.Reichb. Iconogr. t. 86.-DC. Prodr. iii. 71.Tulep. Dict. Sc. Kat. Atl. t. 220.-Nees, Gen, ii. fasc. 8, t. 14.-Spach, Suit. à Buffon, iv. 443.Endl. Gen. n. 6134.-B. H. Gen. 675, n. 6.H. Bn. Payer Fam. Nat. 378. - Limnopence Vaicl. Act. Acad. Par. (1719), t. 1.-Pinastella Dili, Nov. Gen. 168.
 \$ The marginal collar is especially prominent outside, under the stamen.

[^564]: ${ }^{1}$ There are sometimes abnormal flowers which are diandrous (fig. 478).

 OOn the characters of this ovule andoncmbryogany, sce Ung.Bot.Zeit. vii. 329.-Tul. Ann. Sc. Nat. sér. 3, xii. 67, t. 5.--ILormeist. Ann. Sc, Nat. sér. 4, xii. 65.

 Fig. 478

[^565]: et Gr. Fl. No-Amer. i. (1840) 531.-Borss. Fl. Or. ii. 754.-Gr. et Godr. Fl. de Fr. i. 589.-Brew. et Wats. Genl. Surv. Calif. Bot. i. 215.-BoIss. Fl. Or. ii. 754.-Walp. Rep. ii. 98 ; Ann. vii. 941.

 4 From four to twelve.
 ${ }^{5}$ A. L. J. Gen. Ixx.
 ${ }^{6}$ Fann. des Pl. ii. 81 (1763).

[^566]: ${ }^{1}$ Gen. (1789) 317, ()rd. 6 ; Ann. Mus. iii. 315.
 ${ }^{2}$ From which unfortunately the apetalous types have been removed as far as possible.
 ${ }^{3}$ Flind.Voy. 17 ; Misc.Works (ed Benn.), i. 21.
 1 Mémoire sur la Famille des Onagrariées (1829) ; Irodr. iii. 39, Ord. 74.
 ${ }^{5}$ Op. cit. 65, Ord. 77.
 ${ }^{6}$ Rafin. Journ. Phys. Ixxxix. 258.

 - Rafin. loc. cit.-Mleurandra Rafin, Fl. Iud. 95 (not Lamil.). These are perhaps Enotheras inaccurately observed, but it is impossible as

[^567]: yet to be certain; "there are some genera (ex Torr. et Gr.) which cannot be recognized" (B. H. Gen. 787).
 ${ }^{8}$ Monographia Onagrearum, Ann. Mus. sér. 3, iv. 321 ; Suit. a Butfon, iv. 340 (1S35) ; Δ nn. Sc. Nat. sér. 2, iv. 161, 270 (1835).
 ${ }^{9} \mathrm{Fl}$. N.-Amer. i. (1840) 486-531.
 ${ }^{10}$ Gen. 785, Ord. 70 (Onagrariece).
 ${ }^{11}$ Lindl. Veg. Fingd. (1846) 724, Ord. 278 (Onagracece).-Exdl. Gen. 1188, Ord. 265 (Euotheres).

[^568]: ${ }^{1}$ Onagrea DC. Mém. Onagrar. 2.-Jussica DC. loc, cit.-Fuchsica DC. loc. cit.-? Montinica
 ${ }^{2}$ Gaurce Endl. Gen. 1195, tribe 7.- Enotherece (part) Spach, Suit. da Buffon, iv. 335. UC. loc. cit. 1.

[^569]: ${ }^{1}$ 1)(. loc. cit. 2.-Endl. Gen. 1194, tribe 6.Circeacece Linnd. Synogis. (1829) 109.-Lopezitce Slach, Ann. S'c. Nat. sér. 2, iv. 162.
 ${ }^{2}$ Eindl. (Ten. 1197.-IIydrocarycs DC. Mëm. Onayr. 2.
 ${ }^{3}$ Li. Bre Flind. Voy. ii. 549.-DC. Prodr: iii.

[^570]: 65, Ord. 72.-Exdl. Gen. 1195, Ord. 266.-B. II. Geir. 673, Ord. 61.- Hygrobice Ricin. Aual. du Ereit, 34.-Cercodiaccec J. Dict. Sc. Nat. vii. 441.
 ${ }^{4}$ Gumeracea Endl. Gen. 285.-DC. Prodi. xvi. sect. ii. 596, Ord. 72.
 ${ }^{5}$ Livk, Enum. i. (1821) 5.

[^571]: ${ }^{1}$ Callitriche has also been referred to this family; but to justify its admission, it must be supposed, I think, that the free ovary is surrouded by a receptacular sac, at the summit of which there is no calyx, or only, as some authors say, an obsolete one. It is an error to suppose that Callitriche has four uniovulate cells like Maloragis; they are only half cells; it has also only two stylary branches.
 ${ }^{2}$ Endl. Euchirid. 638, 640.-Linde. Veg. Lingd. (1846) 724.-Rosenth. Syn. Pl. Diaphor. 906. 909.
 ${ }^{1}$ Henck, Jacq. Collect. ii. 50.-Gir, et Goda.

[^572]: Fl. de Fr. i. 583.-E. angustifolium Lamk. Fl. Fr. iii 282.-E. angustissimum Bertol.-E.Dodunce Vill.-Chancenerion palustre Scop.-Lysimachic Chamonerion dicta angustifolia C. BaUn.
 ${ }^{4}$ L. Spec. 494.-E. frigidum Retz.
 ${ }^{5}$ L. Spec. 494.-Sm. Engl. Bot. t. 1948.-E. ramossimum Mcench.
 ${ }^{6}$ L. Spec. 12.-DC. Prodr. iii. 63.-Gren. et Godr. Fl. de Fr. i. 586.-C. major Lamie. Fl. Fr. iii. 475.-C. vulgaris Mgench.

 7 L. Spec. 492.-(Ed. Fl. Darn. t. 446.-Mill. Icon. t. 189, fig. 2.-DC. Prodr. iii. 4G, n. 4.Gren, et Godr. Fl. de Fr. i. 584.

[^573]: ${ }^{1}$ Jussica diffusa Forsk. Descr. Fl. ag.-arab. 210.-DC. Prodr. iii. 53, n. 8.
 ${ }^{2}$ I. Spec. ed. 2, 173.
 ${ }^{3}$ L. Mantiss. 40.-L. trifiora Lamk. Dict. iii. 613.
 ${ }^{4}$ Jussiac repens L. Mantiss. 381.--J. adscendens L. Mantiss. 69?-Cubospermum palustre
 Lour. Fl. Cuchinch. (ed. 1790) 275 (Rau jua).
 ${ }^{5}$ Sce P. 469, note 3.
 6 I. F. Suppl. 217.-Lindl. Bot. Reg. t. 857.-

[^574]: Link et Ott. Abb. t. 46.-DC. Prodr. iii. 39, n. 20.-Hook, F. Man. N.-Z. Fl. ii. 75.-Bot, Reg. t. 857.-Skinnera excorticata Forst. Prodr. 163.
 ${ }^{7}$ Arp. Hort. Keve. ii. 8.-Bot. Mag. t. 97.DC. Prodr. iii. 38.-F. magellanica Lamk. - F. pendula Salisb - Nahusia coccinca Schnev.Skimera coccinca Mancu.
 ${ }^{8}$ Lamk. Dict. ii. 565 ; Ill. t. 282, fig. 1.Plum. ed. Burm, t. 133, fig. 1,-DC. Prodr. n, 18.

[^575]: ${ }^{1}$ Lamk. Dict. ii. 61-; Ill. t. 801 a.-Rosentit. op. cit. 909--A. DC. Prodr. xvi. s. ii. 598.-G. scabra R. et Pav, Prodr. Fl. Per. i. 29, t. 44.G. pilosa H. B. K. Nov. Gen. et Sp.ii. 24.-Panke Anapodophylli folio Feuill. Obs. ii. 741, t. 30 (Pangue, Nalca).
 ${ }^{2}$ L. Mfantiss. 121.-Thunb. Fl. Cap. (ed. Schult.) 32.-Hary. and Sond. Fl. Cap. ii. 571. -DC. Prodr. n. 7.-But. Mag. t. 2376.-Blitum Africanum Calthce Palustris Folio Pluk. Phyt. t. 18.- Perpensum blitispermum Burar, Prodr. ap. 26.
 ${ }^{3}$ Bl. ex Rosenth. op. cit. 909.
 ${ }^{4}$ R. Br.-Hook. f. Man. N.-Zeal. Fl. G6.I. tenella An. Br.-Goniocarpus citriodorus A. Cunn. M.J. Hooker, and several other travel-

[^576]: lers however represent this species as absolutcly inodorous.
 ${ }^{5}$ L. Spec. 1409.-Schкuнb, Handb. t. 296.DC. Prodr. iii. 68, n. 1.-Gren. et Gomr. Fl. de Fi. i. 588.-Rosenth. op, cit. 900.
 ${ }^{6}$ L. Spec. 1410.-DC. Prodr. n. 4.-Gren. et Gonr. Fl. de Fr. i. 587.

 7 L. Spec. 3.-DC. Prodr. iii. 71, n. 1.-Gr. et Godr. Fl. de Fr. i. 589.-Rosenth. op. cit. 999.
 ${ }^{8}$ L. Spec. 175.-Schkuhr, Handb, t. 25.Lamk. Ill. t. 75.-DC. Prodr. iii. 63, n. 1.-Gr. et Godr. Fl. de Fr. i. 589.--Rosenth, op. cit. 910.
 ${ }^{9}$ L. F. Suppl. 128.-DC. Prodr. iii. 64, n. 4. -T. chinensis Lour. Fl. Ccchinch. (ed. 1700) 86.
 ${ }^{10}$ Lour. loc. cit.

[^577]: ${ }^{1}$ Roxre. Pl. Coromb. t. 234 ; Fl. Ind. i. 449.Rheede, Mort. Malab. ii. 64, t. 33.-Shringata

[^578]: ${ }^{1}$ Forst. Char.Gen.t. 0 0.-J.Gen.445.-Lami. Dict. i. 355 ; Ill. t. 742.-L.-С. Rıcн. Ménı. Mus. viii. (1822) 424.-Gepp. Balanophor. 29, t. 1-3. -Endl. Gen. n. 718.-Griff. Trans, Linn. Soc. xx. 93, t. 3-6.-Wedd. Ann. Sc. Nat. sér. 3, xiv. 163.-Hook. F. Trans. Linn. Soc. xxii. 44, 426, t. 4-8, 75 B.-Eichl. Act. Congr. Bot. Par. (1867) 138, t. 1, fig. 1, 2; DC. Prodr. xvii. 103,

[^579]: 321.-Cynopsole Endl. Gen. n. 719.-Sarcocordylis Wall. Herb. n. 7249.
 ${ }^{2}$ Rarely two.
 ${ }^{3}$ Sepals (?) or petals (?).
 *From 10 to 30 in B. polyandra Gripf.
 ${ }^{5}$ Transverse, or longitudinal, or hippocrepiform. The pollen is formed of globular, sub-3gonal seeds, beariag three warty prominences,

[^580]: sometimes little developed, with the exterion coat smooth.

 1 Suspended by a unicellular funicle, it is composed of a nucule formed of a small number of cellules. (On the structure of the gynecium see Hofmeist. Pringsh. Jahb. i. 110, t. $18 ; N^{\prime}$, Beitr. 58j, t. 14, 15; Ann. Sc. Nat. sér. 4, xi 49, t. 5, 6, fig. 48-56.)
 2 It is formed of a very small number of cellules (often two or three).
 ${ }^{3}$ On the roots of very various trees (Accr, Quercus, Hibiscus, Ficus (\%), Eucclyptus, Vireya, Thilandia, Araliacea, etc.).

[^581]: 4 Yellow or red.
 ${ }^{5}$ It has been considered as the summit of the secondary axis, and the name of spadicel has been given to it (Eichler).
 ${ }^{6}$ W. Spec. v. 177 (Cynomorium),-Bi. Enum. Pl. Jov. i. 87.-Schott et Endl. Melet. 12.Jungir. Nor. Acta Acad. Nat. Cur. xviii. Suppl. i. 203, t. 1, 2.-Royle, Ill. Pl. Himal. 330, t. 99. -Thw, Enum. Pl. Zeyl. 293.-Airw, Ilook. Icon. t. 205, 206 (Lang:dorffia).-Uva. Amn. Hien. Mus. ii. t. 2.-Becc. Att. Snc. Ital. Se. Nat. Mil. xi. 197; N. Giorn. Bot. Ital. i. 65, t. 2-4.-Benth. Fl. Alustial. vi. 232.

[^582]: ${ }^{1}$ Dactylanthus Taylorii (Hook. ғ. Trans. Linn. Soc, xxii. 425, t. 75, fig. A; Eichl. Prodr. 149), a plant growing parasitically on the beech and Pittosporum of New Zealand appears to resemble Balanophora and also Langsdorffia. It has naked male flowers, reduced to one or two stamens with bilocular anthers, and female flowers formed of an ovary surmounted by two or three narrow scales and a filiform style, with obtuse stigmatic summit. The flowers are diœcious, and the inflorescences are divided into numerous small catkins forming a sort of terminal corymb. The internal organization of its gynæcium and fruit are unknown.
 ${ }^{2}$ Sparm. Kiongl.Vet. Ak. Handl. Stockh. xxvii. (1776) 300, t. 7.-Schott et Endl. Melet. 11.Endl. Gen. n. 714.-Griff. Thans. Linn. Soc. xix. 338, t. 38.-Wedd. Ann. Sc. Nat. sér. 3, xiv, 173, t. 10, fg. 34-38.-Hofmetst. N.Beitr. i. 581,

[^583]: t. 13 ; $A \not / n . . S c$. Nat. sér. 4, xi. 40, t. 4, 5, fig. 43-47.-Eichl. Act. Congr. Par. (1867) 138, t. 2, fig. 21, 22 ; Prodr. 126.-Hook. F. Trans. Linn. Soc. xxii. 37, t. 1 C.-Tratt. Arch. i. 89; Thes. 90.-Harv. Ger. S.-Afr. Pl. 300.-Hare. and Sowd. Fl. Cap. ii. 574.-Ichthyosma Wehdemami Schlchtl, Linncer, ii. 671, t. 8 ; iii. 194.
 ${ }^{3}$ The pollen grains are globular, smooth, and have three pores.
 ${ }^{4}$ Harv. Ann. and Mag. Nat. Hist. i. ser. ii. 385. t. 19, 20 ; G. S.-Afr. Pl. 418.-Endl. Gen. Suppl. i. n. 717^{1},-Griff. Trans. Linn. Soc. xix. 336.-Ноок. ғ. Trans. Linm, Soc, xxii. 31, t. 1 B. -Eichl. Act. Congr. Par. (1867) t. 1, fig. 10 ; Frodr. 124.-Blepharochlamys PresL. Epim. 245. -? Scybalium Harv. Gen. S.-Afr. Pl. 315 (not Schott and Endi.).
 ${ }^{3}$ Pollen subcubical, tubercular.

[^584]: ${ }^{1}$ Harv, and Sond. Fl. Cap. ii. 574.-Walp. Ann. iii. 511 (Blepharochlanys).
 a Red or yellow.
 ${ }^{3}$ Micmeli, Nov. Pl. Gen. (1729) 17, t. 12.-L. Gen. n. 922 ; Amen. iv. 351, t. 2.-Adans. Fam. des Pl. ii. 80.-J. Gen. 445.-Lamk. Dict. ii. 241; Suppl. ii. 434 (part) ; Ill. t. 742.-L. C. Ricy. Mém. Mus. viii. 420, t. 21.—Endl. Gen. n. 717. -Wedd. Ann. Se. Nat. sér. 3, xiii. 186, t. 11, fig. 43-47; Bull. Soc. Bot. Fr. iv. (1857) 513, 795 ; Arch. Afus. x. 269, t. 24-27.-Ноок. т. T'rans. Linn. Soc. xxii. 29, 33, t. 1 A.-Schnizl. Iconogr. t. 39.-Hofmeist. N. Beitr. i. 572, t. 2 ; Pringsh. Jahrb. i. 109, t. 10 ; Amn. Sc. Nat. sér. 4, xi. 37, t. 4, fig. 35-38.-Eichl. Prodr. 122.
 +C. coccinerm L. Spoc. ed. 4, 89.-Desf. Fl.

[^585]: Atl. ii. 330.-Borsgel. Malt.t. ii. (ex Pritz.) Tratt. Thes. 1. 30.-Guss. Fl. Sic. ii. 561.Bertol. Fl. Ital. x. 4.-Mor. Fl. Sard. iii. 445. - Webr. Fl. Canar. jii. 431.-Willk. et Lge. Prodr. Fl. IIisp. i. 223.-Parlat. Fl. Ital. iv. 382.-C. purpurcum Rupr. Sert. Tiansch. Mem. Acad. Pétersb. xiv. 72.-C. purpureum officinarum Micheli, loc. cit. - İunomorion Diosc. (ex Adens. loc, cit. 549).
 ${ }^{5}$ Found in Spain, Italy, Sicily, Sardinia, Greece, Malta, Morocco, Algeria, and other Mediterranean localities, in the Canaries, in Palestine, and Arabia, in Soungari and in the valley of Cashgar, etc.
 ${ }^{6}$ Often four or five.
 i Furnished with a single coat.

[^586]: ${ }^{1}$ All are rarely wanting.

 * Rarely two (Parlat).
 ${ }^{3}$ The pollen is subglobular, smooth, with three small warty prominences.
 + Also containing oil.
 ${ }^{5}$ Fungus melitensis Auctt.-F. mauritanicus rerrucosus ruber Pertv. Gazopn. t. 37, fig. 8.F. typhoides liburnensis Till. Cat. Hort. Pis. 64, t. 25.-F. typhoides coccineus melitensis Bocc. Ic. et Descr. Sic. 81, t. 43.
 ${ }^{6}$ On the roots of very different plants (Myrtles, Pistachios, Lucernes, Salsola, Orach, Melilot Grasses, etc.).

 7 Variable in form according to the part of the plant which bears them (the peduncle of the inflorescence is destitute of them). Those im. mediately accompanying the flowers are claviform, truncate at the summit; to the partial inflorescences are often interposed obliquely peltate bracts, with oval head.

[^587]: ${ }^{8}$ Mart. Eschw. Journ. Bras. ii. 178 ; t. 5 (not Leandr.) ; Nov. Gen. et Sp. iii. 181, t. 298, fig. 1, t. 209.-Schott et Endl. Melet. 12.-Ung. Ann. Wien. Mus. ii. t. 4, 6.-Endl. Gen. n. 722. -Wedd. Aun. Sc. Nat. sér. 3, xiv. 187, t. 11, fig. 48-51.-Hoos, F. Trans. Lim. Soc, xxii. 39, t. 9.-Hofmests. N. Beitr. i. 576 ; Ann. Sc. Nat. sér. 4, xii. 40, t. 4, fig. 38-42.-Karst. Nov. Actanat. Cur. xxvi. p. ii. 903, t. 63, 64.-Eichl. Act. Congr. Par. (1867) 149, t. 2, fig. 28, 29 ; Mart. Flor. Bras. Balanoph. 9, t. 1-3; Prodr. xvii. 140.-Senftenbergia Kl. et Karst. (not Cord.).
 ${ }^{9}$ Eichler considers the placenta basilar and the ovule orthotropous, and intimately united with the wall of the ovarian cell. The placentation, in this case, would be the same as in the Helosidere.
 ${ }^{10}$ The pollen is nearly globular, smooth, with 2,3 , or 4 pores.

[^588]: ${ }^{1}$ Mart. loc. cit.-L. janeirensis L. C. Rich.L. vubiginasa Wedd. - Thömingia mexicanu Liebm. Fork. Skand. Natursf. Christ. (1841) 17, 180.-T. janeirensis Liebm. loc. cit.-Senftenbergia Moritziana Kl, et Kiarst. ex Linncer, xx. 460.

 2 On several Palms, Figs, etc.
 ${ }^{3}$ Yellow or reddish, rich in waxy matter.
 ${ }^{4}$ Vahl, Dansk. Selsh. Shrivt. vi. 124, t. 6.S'm, et Tuönn. Beshr. 431,-Hook, r. Trans. Lim. Soc. xxii. 42, t. 3.-Eichl. Prodr. 141.Conophyta purpurascens Isert, Reis. 283.-lfec matostrobrs Endl. Gen. 76.

[^589]: - Pollen globular 3-gonal, smooth with three verrucose prominences, scarcely visible.
 ${ }^{6}$ Parasitus anonymus Isert, loc. cit.
 ${ }^{7}$ It must be remembered, moreover, that those characters are found in a great number of parasitic plants not green, to whatever natural group they belong (Orobranchea, Oichidece, Mnnotropece, Lennacice, etc.).
 ${ }^{8}$ Without being able actually to insist upon this point, we indicate the numerous analogies observed between the Loranthacece and Balanophorece on the one hand and the Coniferce on the other. We know that the gynecium of certain

[^590]: ${ }^{1}$ Tratt, Linncta, iii. 194,-Unger, Ann. Wien. Mrus, ii. 38.-Gcepp. Nov. Acta Acad. Nat. Cur. xviii. Suppl. i. 229 ; xxii. 117.-Poleck, ibid. xxii. 161.-Griff. Trans. Limn. Soc. xx. 96.Wend. Mém. sur le Cynomorium (see p. 503 , note 3).-Ноoк, f. Tians. Linn. Soc. xxii. 2, t. 3, 4, 6, 8.-Chat. Anat. t. 93, 95, 99, 100 (part).Solars, Pringsh. Jahrbe vi. 529.
 ${ }^{2} \mathrm{~J}$. Hooker indicated the wax cellules in Balanophora (Trans. Limn. Soc. xxii. t. 4), and Eichler (Mart. Fil. Bras. Balanoph. t. 2) in Langsdorffia. This substance exists also in Thonningia. It has been called balanophorium and balanophorine. It renders L. hypogaa so combustible that tapers are made of it at Bogota, and torches in many parts of Columbia.
 ${ }^{3}$ In Cynomarium, Sarcophyte, Mystropetalon.
 ${ }^{4}$ Cynomorium coccineum yields by pressure a reddish, bitter, and styptic juice described by Boccone as astringent in cases of sores, contusions, heemorrhage, dysentery, etc. 'The Kinights of Malta are said to have prepared from it a powerful remedy for wounds received in battle. A dental opiate has been prepared from it, and an astringent decoction said to be successfully prescribed for certain ulcers.
 ${ }^{5}$ J. Hooker has classed the Balanophorca,

[^591]: ${ }^{1}$ Arch. Mus. x. 277, t. 26.
 ${ }_{2}$ Eichl. Mart. Fl. Bras. Balanoph. t. 2, fig. 3, 5, 6, 11.-Hook. F. Trans. Linn. Soc. exii. t. 2.

[^592]: 1 These often emerge from the rhizome as an adventitious bud.
 ${ }^{2}$ In Balanophora involucrata IIook r. (Trans. Li九n. Soc. xxii. 30, t. 4-7).

